
Supplementary Methods 

 

Cohort: 

 The sample comprised of mothers participating in the Maternal Adversity, 

Vulnerability and Neurodevelopment (MAVAN) Project. MAVAN is an ongoing, 

longitudinal, birth cohort study that has recruited over 500 mother-child dyads in 

Hamilton (Ontario) and Montreal (Quebec), Canada, since 2003 [1]. The project focuses 

on the development of individual differences in vulnerability for mental illness through 

the interplay of biological mechanisms and maternal adversity in early life. The families 

participate in surveys, interviews, social experiments, and behavioral and cognitive 

experiments at 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, and 10 years postpartum. Fully informed 

written consent was obtained from the mothers and ethics approval was obtained from the 

Comité d’éthique de la recherche at the Douglas Hospital Research Centre (Montreal, 

Canada). 

 The mothers reported their depressive symptoms at 4 years postpartum using the 

Center for Epidemiological Studies Depression Scale (CES-D) [2]. The questionnaire 

consists of 20 questions about their feelings and behaviors during the past week. Each 

question is scored between 0 and 3 with higher scores reflecting a greater burden of 

depressive symptoms. 

 A subsample of the cohort with CES-D scores and genotype data (n = 236) were 

used for the regression analysis. Table 1 describes the subsample used. 

Genotyping, quality control, and imputation: 



Participants provided buccal epithelial cells which were used to extract DNA for 

genomic analyses. We used the PsychChip and PsychArray (Illumina) to describe genetic 

variation in women (N = 264; mean age: 35 years) from the MAVAN study [1]. We used 

good quality (call rate >95%) genetic markers shared across the PsychChip and 

PsychArray platforms for our analyses (n=551,589 markers). We removed genetic 

variants that deviated from Hardy-Weinberg equilibrium at p<1E-13, and non-autosomal 

variants (e.g., indels, sex chromosome markers), resulting in 316,480 autosomal SNPs. 

We also checked for samples’ heterozygosity rate, biological sex estimate, and cryptic 

relatedness (identity-by-descent) between samples. We further removed SNPs with minor 

allele frequencies <0.05 (resulting in 240,566 SNPs) to submit to Sanger Imputation 

Service to generate our imputed genotype datasets using the Haplotype Reference 

Consortium for reference genotypes [3]. Specifically, each chromosome was phased 

against the reference panel using EAGLE2 (v2.0.5) [4]. Imputed posterior probabilities 

then were calculated from the phased data using Positional Burrows-Wheeler Transform 

methods with the PBWT software [5]. We removed SNPs with imputation accuracy 

(INFO score) <0.30, resulting in 27,232,417 autosomal SNPs in our imputed posterior 

probabilities dataset to generate PRS for the regression analysis. For the performance 

tests, a third dataset was generated from the imputed data by removing strand-ambiguous 

SNPs and SNPs with an INFO score <0.80, resulted in 17,434,284 autosomal SNPs 

(Imputed PP). A posterior probability threshold of 0.90 was used through PLINK 1.9 [6] 

to convert the posterior probabilities to hard calls to generate the imputed hard call 

dataset (Imputed HC).  

Discovery data: 



 The PRS calculation requires data from two independent cohorts. One cohort is 

the study cohort of interest (target data); we describe the genetic risk in this cohort (e.g., 

the MAVAN cohort presented in our study). The other cohort (discovery data) provides 

information about the risk associated with each SNP (i.e., the effect size and the p-value 

of the trait association).  

We used the Psychiatric Genomics Consortium Major Depressive Disorder 

dataset (N = 18,759) as the discovery cohort for all our PRS calculations [7]. We used 

their “clumped” results, which is a subset of the full results created after pruning SNPs 

that are in high linkage disequilibrium (r
2
 = 0.25 within a window of 500kb) and 

selectively retaining the most strongly associated SNPs in the linkage disequilibrium 

regions. SNPs with minor allele frequency ≤2% and INFO score <0.9 were also removed.  

  



Examples of the executed commands for performance analysis: 

All commands were executed in Terminal on Linux CentOS 7. 

 

Timing PRSoS generating PRS at five p-value thresholds (PT = 0.1, 0.2, 0.3, 0.5): 

/usr/bin/time –v `# <-- this functions to time process completion` \ 

spark-submit PRS_run.py \ 

MAVAN_ArrayData.gen \ 

GWAS_MDD_beta_clump_noambi.txt \ 

PRSoS_0.1_arr \ 

--sample MAVAN_ArrayData.samples \ 

--sample_skip 2 \ 

--sample_delim " " \ 

--filetype GEN \ 

--gwas_delim "\t" \ 

--threshold_seq 0.1 0.5 0.1 \ 

--no_a1f \ 

&>> PRSoS_0.1_arr.timelog `# <-- this writes standard output and 

saves it to file to record processing time` 

 

Timing PRSice v1.25 generating PRS at five p-value thresholds (PT = 0.1, 0.2, 0.3, 0.5): 

/usr/bin/time -v \ 

R -q --file=PRSice_v1.25.R \ 

--args plink /share/bin/plink \ 

base GWAS_MDD_beta_clump_noambi.txt \ 

target MAVAN_ArrayData \ 

slower 0 supper 0.5 sinc 0.1 \ 

clump.snps F \ 



report.best.score.only F \ 

allow.no.sex T \ 

covary F \ 

pheno.file phenoNA.pheno \ 

no.regression T \ 

&>> PRSice_0.1_arr.timelog 

  



Supplementary Analysis 

PRSice v1.25 and PRSoS performance across number of cores used: 

 We tested how the number of cores used affects the processing time a PRSoS run. 

We ran the PRSoS software using the Imputed HC with 1, 4, 12, 20, and 24 cores, three 

times each. A one-way ANOVA was conducted to compare the effect of the number of 

cores used on processing time. There was a significant effect of the number of cores used 

on processing time (F(4,10) = 119,253, p <0.0001). Post hoc comparisons using the 

Tukey’s HSD method indicated that using 1 core (M = 1305.0sec, SD = 5.0sec) is 

significantly slower than using 4 cores (M = 387.8sec, SD = 1.6sec), using 4 cores is 

significantly slower than using 12 cores (M = 154.7sec, SD = 0.3sec), and using 12 cores 

is significantly slower than using 20 cores (M = 126.1sec, SD = 0.7sec) (Supplementary 

Figure 1). 

 As PRSice v1.25 can only run on a single core, we also compared the 

performance of PRSice v1.25 and PRSoS on a single core using a paired t-test. PRSice 

v1.25 calculated PRS significantly more quickly than PRSoS when using one core only (t 

= 61.304, p = 2.66E-04, two-tailed). However, PRSoS calculated PRS significantly more 

quickly than PRSice v1.25 when PRSoS used multiple cores (all p <0.001). 

 

PRSice-2 performance comparison: 

 PRSice version 2 (PRSice-2) is a recent release of PRSice [8]. The software uses 

binary PLINK (.bed) or binary Oxford (.bgen) input files. These files are much smaller 

than their plain text counterparts (i.e., .ped for PLINK and .gen for Oxford format) [9]. 

We compared the performance of PRSice-2 with PRSice v1.25 and PRSoS for 



calculating PRS at five p-value thresholds, using the Imputed PP, Imputed HC, and Array 

Data. We provided .bgen input files for PRSice-2. PRSice-2 ran using one thread on one 

core. It outperformed the other software in all three datasets (Imputed PP: M = 94.2sec, 

SD = 0.2sec; Imputed HC: M = 93.2sec, SD = 1.8sec; Array Data: M = 2.6sec, SD = 

0.01sec) (Supplementary Figure 2). Paired t-tests indicated that PRSice-2 completes a run 

with less time than PRSoS in all three datasets (Imputed PP: t = 130.147, p = 5.90E-05; 

Imputed HC: t = 56.348, p = 3.14E-04; Array Data: t = 73.202, p = 1.87E-04; all two-

tailed). 

 

The number of SNPs within the target dataset influences PRSoS performance: 

 In our examples, the Array Data (316,480 SNPs, 264 samples) took 49.6sec (SD = 

1.1sec) to run using PRSoS. The Imputed HC (17,434,284 SNPs, 264 samples) took 

165.9sec (SD = 0.4sec) to run under the same environment. A paired t-test indicated that 

the difference is significant (t = 148.7, p = 4.52E-05, two-tailed). Figure 3 illustrates the 

difference. 

 

Influence of sample size on PRSoS performance: 

 We simulated sample data by replicating the Imputed HC’s sample data fivefold 

(17,434,284 SNPs, simulated n=1320 samples) and calculated PRS using PRSoS three 

times. Specifically, we ran PRSoS three times to calculate PRS at five p-value thresholds 

(PT range: 0-0.5, interval: 0.1). A paired t-test indicated that using the larger sample set 

(M = 558.4sec, SD = 31.2sec) takes significantly longer time to run than using the 

Imputed HC (t = 21.835, p = 2.09E-03, two-tailed). We also ran PRSice v1.25 with the 



larger simulated dataset under similar conditions (using the binary PLINK file input 

instead) to provide a reference point. A paired t-test indicated no significant difference in 

PRSice v1.25 performance between using the Imputed HC (M = 816.7sec, SD = 18.4sec) 

and the larger simulated dataset (M = 830.8sec, SD = 3.7sec) (t = 1.243, p = 0.34, two-

tailed) (Supplementary Figure 3).  

 

Number of p-value thresholds and SNPs influence PRSice v1.25 and PRSoS performance: 

 We tested the performance of PRSice v1.25 and PRSoS at an increasing number 

of p-value thresholds in a single run using the Imputed HC (17,434,284 SNPs, 264 

samples) and Array Data (316,480 SNPs, 264 samples). Each software generated PRS at 

5, 10, 25, 50, 100, 125, or 200 p-value thresholds (PT range: 0-0.5). The processing time 

for the Array Data is shorter than for the Imputed HC for both software at each p-value 

threshold (Supplementary Figure 4). PRSoS showed a linear increase in processing time 

as the number of thresholds to process increased with both the Imputed HC (intercept = 

156.8sec, slope = 2.14sec/threshold) and the Array Data (intercept = 45.0sec, slope  = 

1.38sec/threshold). PRSice v1.25 showed a mean of 802.6sec (SD = 7.8sec) for the 

Imputed HC and a mean of 35.2sec (SD = 1.1sec) for the Array Data for each p-value 

threshold set in a single run (Supplementary Figure 4). 
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Supplementary Figure Legends: 

Supplementary Figure 1. PRSice v1.25 and PRSoS performance across the number of 

cores used to generate PRS and five thresholds using the Imputed Hard Call dataset. 

PRSice v1.25 could only run on 1 core. PRSoS performance was tested with 1, 4, 12, 20, 

and 24 cores on a Linux CentOS 7, 24-core Intel Xeon server. Error bars indicate 

standard deviations.  

 

Supplementary Figure 2. PRSice v1.25, PRSice-2, and PRSoS performance across 

datasets. Bar plot shows the results of the performance test comparing running PRSice 

v1.25, PRSice-2, and PRSoS across the datasets. Processing time (y-axis) uses a log base 

10 scale. Error bars indicate standard deviations. Numbers in boxed inserts indicate the 

size of the genotype data input. 
†
Note that the file sizes used for the Imputed PP are same 

for PRSice v1.25 and PRSoS, thus illustrating the processing speed difference with same 

file size input. Genotype input formats are different across all three software for the other 

performance tests. Imputed PP = imputed posterior probabilities, Imputed HC = imputed 

posterior probabilities converted to “hard calls”, Array Data = observed genotypes.  

 

Supplementary Figure 3. Software performance of generating PRS at five p-value 

thresholds in a single run with different sample sizes. The left panel shows the results 

using the Imputed Hard Call dataset (N = 264). The right panel shows the results using 



simulated data based on the Imputed Hard Call dataset with five times the sample size (N 

= 1320). Error bars indicate standard deviations. 

 

Supplementary Figure 4. Software performance between datasets across number of PRS 

p-value thresholds to generate in a single run. Imputed HC = imputed posterior 

probabilities converted to “hard calls”, Array Data = observed genotypes. 

 

 


