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ABSTRACT Gramicidin A (gA) is a short b-helical peptide known to form conducting channels in lipid membranes because of
transbilayer dimerization. The gA conducting dimer, being shorter than the lipid bilayer thickness, deforms the membrane in its
vicinity, and the bilayer elastic energy contributes to the gA dimer formation energy. Likewise, membrane incorporation of a gA
monomer, which is shorter than the lipid monolayer thickness, creates a void, thereby forcing surrounding lipid molecules to tilt to
fill it. The energy of membrane deformation was calculated in the framework of the continuum elasticity theory, taking into ac-
count splay, tilt, lateral stretching/compression, Gaussian splay deformations, and external membrane tension. We obtained the
interaction energy profiles for two gA monomers located either in the same or in the opposite monolayers. The profiles demon-
strated the long-range attraction and short-range repulsion behavior of the monomers resulting from themembrane deformation.
Analysis of the profile features revealed conditions under which clusters of gA monomers would not dissipate because of diffu-
sion. The calculated dependence of the dimer formation and decay energy barriers on the membrane elastic properties was in
good agreement with the available experimental data and suggested an explanation for a hitherto contentious phenomenon.
INTRODUCTION
Gramicidin A (gA) is a peptide antibiotic produced by
Bacillus brevis. The peptide consists of 15 alternating
L- and D-amino acid residues. gA is majorly hydrophobic
and, being applied exogenously, easily incorporates into a
lipid membrane with a water/membrane distribution coeffi-
cient of�10�4 (1). In the membrane, gA can adopt the form
of a transmembrane dimer composed of head-to-head linked
b6.3-helical monomers that results in the opening of an ion
channel (2–8). At the same time, being dissolved in organic
solvents, it can adopt several other conformations (9–12).
As demonstrated by electron spin resonance spectroscopy
(13), in lipid membranes there is equilibrium among con-
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ducting dimers, free monomers, and a small fraction of other
nonchannel forms, such as gA double helices. According to
electrophysiological measurements (14), the equilibrium of
conducting dimers and nonchannel forms (mainly presented
by gAmonomers) in a ‘‘usual’’ membrane is strongly shifted
toward monomers (�1:100). In these experiments, the
channel-forming activity can be seen as a series of step-
wise changes in membrane conductance. gA channels can
be characterized by the conductance ‘‘step’’ amplitude,
probability of channel formation (probability of transmem-
brane dimerization), and average lifetime of the conductive
state (2,14).

Being associated with monomer/dimer equilibrium, the
formation of gA channels should depend on the concentra-
tion of membrane-incorporated monomers and the rate of
their lateral diffusion. Once the conductive state is lost
(the transmembrane dimer dissociated), the released mono-
mers are expected to be free to diffuse and form conductive
channels with other dimerization partners. Busath and
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colleagues (15) described an experimental investigation
of the evolution of the electric conductivity of a large mem-
brane after fusion with vesicles containing gA at high
concentrations. Immediately after the fusion, the total con-
ductivity of the membrane increased in a stepwise manner
because of the incorporation of transmembrane dimers of
gA molecules initially confined to a small area. The lateral
diffusion of gA in the large membrane was expected to
result in a monotonous reduction of its local surface con-
centration and hence a decrease in the likelihood of dimer-
ization. The average conductivity of the membrane was thus
expected to decay with time. However, it proved practically
invariable on the scale of tens of minutes, with multiple
events of formation and disappearance of conductive dimers
occurring within this period. The authors hypothesized that
closure of the gA channels is associated with a reversible
conformational transition in the dimer (internal gating)
rather than dissociation of the dimer into freely diffusing
monomers (15). The assumption, however, directly contra-
dicted the results accumulated over decades of investigation
by other laboratories, which were in good agreement
with the notion that the conductive channels are formed
by means of dimerization (and that the dimers dissociate
back into monomers). In particular, the dimerization ex-
plained well the impact of a voltage jump applied to the
membrane (14) or a flash of light in the presence of a photo-
sensitizer (16). Besides, the experimental evidence that the
lifetime of the channels formed by laterally linked dimers
of gramicidin is much longer than the lifetime of ordinary
gA channels (17–19) is also against the internal gating
mechanism. Recently, the long-lasting conductivity of the
membranes received a plausible explanation, alternative to
the internal gating of gA channels (20). It was explicitly
demonstrated that the vesicles and the membrane of large
area can exchange gA molecules without complete fusion.
However, Lum and colleagues (20) could not explain the
extremely low probability of formation of gA and grami-
cidin M (gM) heterodimers delivered to the membrane
in different vesicles, which was observed by Busath and
colleagues (15).

The length of the gA monomer along the axis of the
helix is �1 nm (21), whereas the thickness of the hydro-
phobic zone of the monolayer in the membrane formed
from a ‘‘common’’ lipid (e.g., dioleoylphosphatidylcholine
(DOPC), diC18:1) is�1.5 nm (22–24). Therefore, the trans-
membrane gA dimer is �1 nm shorter than the usual width
of the bilayer membrane hydrophobic core. This means that
the membrane has to be deformed in the vicinity of a mono-
mer or a conductive dimer. The average thickness of the
membrane with incorporated gA was experimentally
shown to differ from that of a pure bilayer (25). The
thickness of the relatively ‘‘thin’’ dilauroylphosphatidylcho-
line (diC12:0) bilayer increased upon incorporation,
whereas that of the thicker dimyristoylphosphatidylcholine
(diC14:0) bilayer decreased in both cases toward approxi-
mately the same average thickness of �3.2 nm between
the planes of phosphorus atoms of lipids from the two oppo-
site monolayers. The observed decrease in the average
thickness of the dimyristoylphosphatidylcholine membrane
in the presence of gA does not necessarily imply the trans-
bilayer dimerization of gA. Indeed, shallow incorporation of
the monomer into the lipid bilayer creates a void immedi-
ately under the peptide in the corresponding monolayer.
This void has to be filled with acyl tails of the neighboring
lipid molecules, which should cause a reduction of the
average thickness of the affected monolayer in the immedi-
ate neighborhood of the peptide. However, transbilayer
dimerization of the peptide appears to be the only viable op-
tion for the increase of the average membrane thickness
upon incorporation of gA into the dilauroylphosphatidyl-
choline bilayer. Any deviation of the membrane thickness
from its equilibrium value means the emergence of elastic
deformations, which require mechanical work to be per-
formed. Thus, both too ‘‘thick’’ and too ‘‘thin’’ membranes
are expected to hinder gA channel activity. Some optimal
thickness of the bilayer should exist, in which gA con-
ducting dimer formation is accompanied by only minimal
membrane distortion. The parameters of the conductive
channel (the probability of formation and the lifetime)
were shown to depend on the elastic properties of the
lipid bilayer, including the lateral tension (26), the mem-
brane thickness (21,27), and the monolayer spontaneous
curvature (28).

Except for several studies on molecular dynamics
modeling (29,30), it was usually assumed that the mem-
branes are not deformed near the gramicidin monomers so
that only the dependence of deformations in the vicinity
of a conductive dimer (or partly dissociated dimer (27))
upon the parameters of the membrane in elastic models of
different levels of discretization was analyzed. The strong
influence of the membrane mechanical parameters on the
formation probability and lifetime of the conductive dimer
considerably complicates the task of formulating a consis-
tent hypothesis about the internal channel gating, as sug-
gested by Busath and colleagues (15).

In this work, we consider a continuous trajectory of for-
mation of a conductive dimer from two initially separated
monomers. Elastic deformations are also assumed to occur
near the individual monomers because the length of their he-
lices is smaller than the thickness of the hydrophobic zone
of a lipid monolayer. As monomers approach each other, de-
formations induced by them start to overlap, causing consid-
erable lateral interaction. We use the elasticity theory of
liquid crystals adapted to lipid membranes to calculate the
interaction energy profile as a function of the distance be-
tween the monomers, the change of the elastic energy
upon formation of the conductive dimer, and the conductive
channel lifetime and the probability of their formation. The
results of the analysis are compared with the available
experimental data. We demonstrate that the characteristics
Biophysical Journal 115, 478–493, August 7, 2018 479
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of the interaction energy profile of a pair of monomers
explain the preservation of conductivity in a large-area
membrane observed in (15) without the assumption about
the internal gating of the gA channel.
MATERIALS AND METHODS

We consider the deformations of a lipid bilayer occurring in the presence of

peptides in one or two monolayers using gA as an example. As discussed

above, a gA monomer deforms the membrane around it, and several pep-

tides in close proximity interact through overlapping of the induced defor-

mations. When a pair of gA monomers dimerizes to form a conductive

channel, the field of induced membrane deformations around the pair

changes, and the energy associated with the deformation affects the channel

lifetime and monomer/dimer equilibrium. The goal of this work is to

evaluate the energy of peptide interaction mediated by lipid bilayer

deformations.

Themembrane deformations are considered in the continuous approxima-

tion. The assumption is justified by the characteristic lengths of deformations

being significantly greater than the characteristic lateral dimensions of lipid

molecules. The elastic energy is calculated in the framework of the Hamm-

Kozlovmodel (31), inwhich the state of the lipid bilayer is determined by the

field of unit director vectors n characterizing the time-averaged orientation

of the acyl chains of lipid molecules. The field of directors is defined on an

arbitrary surface lying inside a monolayer referred to as the dividing surface.

The surface is characterized by a field of unit vectors normal to it,N, and the

field of specific change of the dividing surface area relative to its area in the

initial, nondeformed state,a ¼Da

a
. Besides that, the state of themonolayer is

determined by the local thickness field. The normal and the director are

considered to be directed into the monolayer. In this analysis, we consider

four types of deformations: 1) splay, characterized by the splay modulus B

and quantitatively described by the divergence of the director along the

neutral surface div(n); 2) tilt, characterized by the tilt modulus Kt and

described by the tilt vector field t¼ n/(nN)� nz n� N, where (nN) stays

for the scalar product of the director and the normal vectors and where, for

small deformations, (nN) ¼ jnjjNjcos(q) ¼ cos(q) z 1 � q2/2 z 1 (q is a

small angle between n and N); 3) lateral stretch/compression, characterized

by the stretch/compression modulus Ka and described by the surface area

change fielda; and 4) the contribution of Gaussian curvatureK characterized

by the modulus kG. External lateral tension, s, of the membrane is also

taken into account. We utilize the specific dividing surface inside the lipid

monolayer, where the energy contributions from splay and lateral stretch/

compression deformations are independent of each other. This surface

is known as the neutral surface and is located at a distance of �0.7 nm

from the outer surface of the monolayer in the area of junction between

the polar head groups and the acyl tails of lipid molecules (32). Besides,

we introduce some (arbitrary) reference plane parallel to the surface of the

undeformed membrane to describe the shapes of neutral surfaces of

deformed monolayers.

In the quadratic approximation, the energy of monolayer deformation

can be expressed as follows (31):

W ¼
Z

dS

�
B

2
ðdiv nþ J0Þ2 � B

2
J20 þ

Kt

2
t2 þ Ka

2
ða� a0Þ2

þ s

2
ðgradHÞ2 þ kGK

�
;

(1)

where J0 is the spontaneous curvature of the lipid monolayer, H is the dis-

tance from the reference plane to the neutral surface of the monolayer

measured along the normal to the reference plane, and a0 ¼ s/Ka is the

equilibrium stretching of the monolayer caused by the lateral tension. In
480 Biophysical Journal 115, 478–493, August 7, 2018
a certain Cartesian system of coordinates with Oxy plane parallel to the

average membrane plane, the contribution of the Gaussian curvature can

be written as K ¼ vnx
vx

vny
vy

� vnx
vy

vny
vx

, where nx, ny are projections of the

director onto Ox, Oy axes, respectively. Integration in Eq. 1 is performed

over the neutral surface of the monolayer. We choose the reference state

of a monolayer as the planar monolayer (zero geometric curvature),

which is not subject to lateral tension. The energy necessary to bring the

monolayer from its spontaneous state (zero lateral tension, the geometric

curvature equal to the spontaneous curvature J0) to the reference state

equals the following:

W0 ¼
Z

dS

�
B

2
ð0� J0Þ2 þ s

�
¼

Z
dS

�
B

2
J20 þ s

�
: (2)

This energy is subtracted from the energy of a monolayer obtained with

respect to its energy in the spontaneous state in Eq. 1 to relate the elastic

energy to the reference state.

A ‘‘usual’’ lipid monolayer at room temperature is similar to a layer of

smectic A liquid crystal with unstructured (laterally liquid) layers (33).

For such liquid crystals, the vector field of directors is conservative, i.e.,

curl(n) ¼ 0, under the assumptions of the linear theory of elasticity (34),

which we utilize in this work. Thus, neither twist nor bend deformations

are applicable to lipid membranes, as their energies are proportional to

(n,curl(n))2 and [n� curl(n)]2, respectively. These deformations are gener-

ally common for nematic rather than smectic A liquid crystals. Physically,

this means that the corresponding elastic moduli in smectic A are very high

and that the energy stored in twist and bend deformations is thus negligibly

small (34).

It was recently demonstrated in (35) that the elastic energy functional

Eq. 1 should be augmented by a second-order term proportional to the prod-

uct div(n)div(t). Despite the apparent importance of this work and its high

impact on the field of membrane elasticity, the question on this additional

term is still open. As the authors indicate, this term leads to inevitable insta-

bility of the membrane, making the energy functional not positively deter-

mined. That makes practical use of this additive impossible; further

investigations should be carried out to bring the modified model to more

physically meaningful results with the flat lipid bilayer being stable. We

thus opted not to include the term �div(n)div(t) into the energy functional.

The hydrophobic part of the membrane is assumed to be locally volumet-

rically incompressible, as is justified by the large value of its volumetric

compressibility modulus �1010 J/m3 (36). The volumetric incompressibil-

ity imposes a constraint on the mechanical deformation fields. With the

adopted accuracy, the local volumetric incompressibility condition can be

written as follows (31):

hc ¼ h� h2

2
div n� ha; (3)

where hc is the current local monolayer thickness, and h is the thickness of

the undeformed monolayer.

The gramicidin monomer is represented as an infinitely rigid nondeform-

able cylinder with a radius of r0 and a hydrophobic part length of hp. Our

model assumes that gramicidin imposes boundary conditions upon defor-

mations, i.e., on the functional Eq. 1. Based on the geometric meaning of

the director (Fig. S1), the director at the boundary of gA can be evaluated

as follows:

nnðr ¼ r0Þhn0 ¼ ��
h� hp

���
h� hp

�2 þ h2p

��1
2
;

ntðr ¼ r0Þ ¼ 0;

(4)

where nn and nt are the normal and the tangential component of the director

at the gA boundary on the neutral surface of the corresponding monolayer,
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respectively, and r0 is the radius of the gA molecule (we assume that

r0 ¼ 1 nm). It must be also taken into account that all the deformations

tend toward zero at a sufficiently large distance from the peptide:

nt Nð Þ ¼ 0; nn Nð Þ ¼ 0; div n Nð Þð Þ ¼ 0; t Nð Þ
¼ 0; grad H Nð Þð Þ ¼ 0;a Nð Þ ¼ 0: (5)

Thus, the problem of evaluating the interaction energy of gA monomers

is reduced to the problem of minimization of the elastic energy functional,

Eq. 1, with the Dirichlet boundary conditions Eqs. 4 and 5. In the frame-

work of our model, any membrane inclusion is modeled by the boundary

conditions imposed on the membrane shape and deformations. Because

the energy functional (Eq. 1) could be minimized for different peptide con-

figurations (boundary conditions), the developed formalism is applicable

for the description of a large variety of membrane proteins, including

amphipathic peptides (37–40) and channels.
Special cases

Although the elastic energy functional Eq. 1 is of the second order in de-

formations and the corresponding Euler-Lagrange equations are linear

equations in partial derivatives, the boundary conditions Eqs. 4 and 5 do

not allow for solving the problem analytically even in the case of two

gA molecules at a finite distance. An analytical solution is only possible

in several special cases in which the system has an additional symmetry

and the problem becomes effectively unidimensional. In these cases,

the Euler-Lagrange equations become ordinary differential equations.

Three configurations of peptides can be considered under the assumption

of the cylindrical symmetry of the system: 1) a single peptide

(Fig. 1 A), 2) a pair of peptides one under the other in the opposite mono-

layers of the membrane (Fig. 1 B), and 3) a conductive dimer formed by

two peptides located in the opposite monolayers (Fig. 1 C). Details of the

analytical minimization of the energy functional, Eq. 1, and the obtaining

of the spatial distribution of deformations under conditions of the rota-

tional symmetry for these three special cases (Fig. 1) are presented in

the Eqs. S1–S14.
FIGURE 1 Cylindrically symmetrical configuration of peptides. (A) An

isolated gramicidin monomer, (B) a pair of monomers coaxially located

in two opposite monolayers, and (C) a conductive dimer are shown. The

red dotted lines illustrate the channel pore lumen. The black dotted line des-

ignates the rotational symmetry axis of the configurations. To see this figure

in color, go online.
General case

Generally, configurations of peptides lack any symmetry. The gA

monomers deform the membrane. If the distance between the peptides

is large enough, the deformations are independent as they do not overlap,

and the total elastic energy of the membrane is a sum of the energies

of deformation induced by each peptide. As the peptides come closer

to each other, the deformations start to overlap, leading to effective

lateral interaction. In this case, the total energy is not equal to the

doubled energy of deformations induced by a single peptide. The differ-

ence between the elastic energy at the finite peptide-to-peptide distance

and the deformation energy of two infinitely separated peptides is

referred to as the interaction energy. Thus, considering peptide pairwise

interaction, we account only for the membrane deformations induced by

the peptides.

Due to the analytical difficulty of minimizing the elastic energy func-

tional, Eq. 1, under the boundary conditions Eqs. 4 and 5 in the absence

of the additional symmetry, we resorted to numeric minimization of the

functional using a finite difference scheme. Details of the numerical mini-

mization of the energy functional, Eq. 1, in the most general case of absence

of any symmetry in the system are presented in Eqs. S1–S3 and S15–S18.
Collective phenomena

Below, we consider a system of Nu particles in the upper monolayer and Nd

particles in the lower monolayer of lipid membrane of an area S, corre-
sponding to particle surface concentrations Cu ¼ Nu/S and Cd ¼ Nd/S,

respectively. We assume that the particles are independent in the sense

that the interaction energy can achieve its minimum for each couple regard-

less of the state of other particles. Then, the energy of a couple can be

expressed as follows:

Ucouple ¼

R
S

Wint e
�Wint

kBT dr

R
S

e
�Wint

kBT dr

z

R
S

Wint e
�Wint

kBT dr

S
; (6)

where Wint ¼ W(2L) � W(N) is the energy of interaction of two

particles. The integral in the second denominator of Eq. 6 was

taken under the assumption that the membrane surface area S is much

greater than the region in which the interaction energy Wint(r) is
Biophysical Journal 115, 478–493, August 7, 2018 481



Kondrashov et al.
substantially nonzero. The total energy of the system is given by the

following:

U ¼ N2
u

2

R
S

Wuu e
�Wuu

kBTdr

S
þ NuNd

R
S

Wud e
�Wud

kBTdr

S

þ N2
d

2

R
S

Wdd e
�Wdd

kBTdr

S
; (7)

whereWuu,Wdd, andWud are the interaction energies between monomers in

the upper, bottom, and opposite monolayers, respectively; obviously,Wuu¼
Wdd. The interaction energy profiles,Wuu andWud (appended by the energy

of two isolated monomers), are presented in Fig. 5, B and C, in the para-

graph titled ‘‘Gramicidin A monomer/monomer and dimer/dimer interac-

tions’’ of Results. This total energy corresponds to the chemical potential

mu,d ¼ midu,d þ mintu,d, where midu,d is the chemical potential of the ideal

two-dimensional gas of the particles, and mintu,d is the derivative of the total

energy U with respect to Nu or Nd, respectively. The diffusive flow J is

known to be generally determined by the chemical potential according to

the following relation:

J � C � gradm: (8)

We consider the case of a high local concentration of gA in the form of a

spot on the membrane, assuming the characteristic length of a change in

concentration to be much greater than the characteristic distance of interac-

tion between individual particles. We also assume local thermodynamic

equilibrium to exist so that we can use the above-mentioned chemical po-

tential in the case of variable concentrations. Taking into account the extra

term U in the chemical potential, the flow in the case of symmetrically

distributed gA is given by the following:

J � kBT$gradCþ C$gradC$I Tð Þ; (9)

where

IðTÞ ¼
Z
S

Wuu e
�Wuu

kBTdrþ
Z
S

Wud e
�Wud

kBTdr: (10)

As can be seen from Eq. 9, the flow tends to zero at a certain critical con-

centration ofScrit ¼ � kBT=IðTÞ, which corresponds to a stable, nondiffus-
ing cluster of gA in the membrane.
RESULTS

System parameters

We are going to use the following parameters for graphical
representation of the obtained results: monolayer splay
modulus B ¼ 10 kBT (kBTz 4 � 10�21 J) (22), tilt modulus
(per monolayer) Kt ¼ 40 mN/m (31,41), monolayer lateral
stretch/compression modulus Ka ¼ 120 mN/m (22), area
per lipid molecule a0 ¼ 0.65 nm2 (29), thickness of the
hydrophobic part of the monolayer h ¼ 1.45 nm (typical
for DOPC (22–24)) unless specified otherwise, Gaussian
curvature modulus (per monolayer) KG ¼ �3 kBT,
and lateral tension (per monolayer) s ¼ 0.1 mN/m unless
specified otherwise. The depth of insertion of a gA
molecule measured from the neutral surface inward the
482 Biophysical Journal 115, 478–493, August 7, 2018
monolayer was assumed at hp ¼ 0.75 nm. The value of
the boundary director n0 ¼ �0.68 is obtained from Eq. 4
at a given hydrophobic length of gramicidin hp and mono-
layer thickness h.
Special cases: cylindrically symmetrical
configurations of peptides

The membrane shapes calculated for the cylindrically sym-
metrical configurations of the peptides are shown in Fig. 2
for an isolated monomer (Fig. 2 A), a pair of juxtaposed
monomers (Fig. 2 B), and a conductive dimer (Fig. 2 C).
The radial distributions of the bilayer hydrophobic thickness,
Hu(r) � Hd(r) (see Eq. S1), around an isolated monomer, a
pair of monomers, and a dimer are shown in Fig. 2 D. The
radial distributions of the area per lipid molecule are pre-
sented in Fig. 2 E; the area is the same in both monolayers,
even for the gA monomer, because of the specific symmetry
of the deformations (see Eq. S7). As illustrated by Fig. 2, the
membrane deformations occur in all three cases. Except for
several works on molecular dynamics (e.g., (29,30)), earlier
it was assumed in a number of publications that only the
conductive dimers cause membrane deformations, whereas
a single monomer or a juxtaposed pair leave the membrane
unperturbed (27,28,42,43). The deformations in these cases
are caused by amismatch between the length of the gAmole-
cule and the thickness of the monolayer. Under the condition
of local volumetric incompressibility, nonzero director
values occur at the peptide boundary both in the case of an
isolated monomer and in the case of a juxtaposed pair (see
Eqs. 4, S12, and S13). This yields nontrivial (nonzero) solu-
tions of the Euler-Lagrange system of equations, Eq. S5, for
spatial distribution of deformations. In the case of a conduc-
tive dimer, nontrivial solutions arise because of the con-
straints imposed on the bilayer thickness at the boundary
of the dimer, Eq. S14. The deformations occurring in all
three cylindrically symmetrical configurations are to be
taken into account in the analysis of the dependence of en-
ergy barriers for the formation and disappearance of the
conductive state upon the membrane elastic parameters,
in particular upon the monolayer thickness and lateral ten-
sion (26,27). In some previous works (26,27,43,44), the bar-
rier-to-dimer formation was simply assumed to be equal to
the energy of the membrane deformation in the vicinity of
the dimer calculated with respect to the energy of a planar
unperturbed bilayer. However, the conductive dimer is
formed from a pair of juxtaposed monomers; this configura-
tion is formed from two initially isolatedmonomers. Accord-
ingly, the energy barrier to formation of a conductive state
should be calculated from the nonzero energy of the mem-
brane deformation in the vicinity of the pair of isolated
monomers. Because both energies—that of a dimer and
that of a pair of monomers—depend on the elastic parame-
ters of the membrane, their difference might depend on these
parameters in a rather nontrivial manner, which needs to be



FIGURE 2 Calculated membrane shapes for the

cylindrically symmetrical configurations of pep-

tides: (A) an isolated monomer, (B) a pair of juxta-

posed monomers, and (C) a conductive dimer. The

dashed curves illustrate the shape of the intermo-

nolayer surfaces, and the solid curves illustrate

the shapes of the neutral surfaces of the mono-

layers. Gramicidin molecules are shown as gray

rectangles. (D) The radial distribution of the

bilayer hydrophobic thickness, Hu(r) � Hd(r) (see

Eq. S1), is shown around an isolated monomer

(red curve), a pair of juxtaposed monomers (blue

curve), and a dimer (green curve). (E) The radial

distribution of the area per lipid molecule, a(r) ¼
a0(1þ a(r)), is shown around an isolated monomer

(red curve), a pair of juxtaposed monomers (blue

curve), and a dimer (green curve). The elastic

properties of the membrane correspond to these

of DOPC (diC18:1), except for the spontaneous

curvature: it was assumed to be zero. To see this

figure in color, go online.
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taken into account during interpretation of the experimental
results.
Dependence of the probability of dimer
dissociation on the lateral tension

To compare the results of analysis with the experimental
data, we used the works in which the dependence of the
probability of disappearance of the conductive state upon
lateral tension (26) and the dependence of probability of for-
mation of the conductive state on the lipid bilayer thickness
(27) were investigated. According to the study by Goulian
and colleagues (26), to achieve the conductive state corre-
sponding to the dimer configuration, two isolated monomers
have to be brought into juxtaposition and then dimerized.
Bringing the monomers into juxtaposition requires mechan-
ical work against the elastic forces. The amount of work
depends on the membrane tension and other mechanical pa-
rameters. The dimerization process also requires mechani-
cal work to be performed against elastic forces, which is
achieved by the formation of six hydrogen bonds between
the N-termini of two monomers (13). The hydrogen bonding
energy is independent of the elastic parameters of the
membrane. Thus, the energy barrier of DEform ¼ Wpair �
2Wmonomer needs to be crossed to achieve the conductive
state, and the energy barrier of DEdecay ¼ Wpair � Wdimer

needs to be crossed to destroy the conductive state.
As it was shown in the work by Goulian and col-
leagues (26), the logarithm of probability of formation of
the conductive state, which was measured by the authors
as a function of the membrane lateral tension, equals
ð�DEform=kBTÞ to within an additive constant. Fig. 3 A illus-
trates the dependence of the energy difference DEform ¼
Wpair � 2Wmonomer on the membrane lateral tension
calculated on the basis of our model (dashed curve) and
the result of approximation of the experimental data from
(26) (solid curve). Within the statistical uncertainty, our
model adequately describes the experimental data.

Fig. 3 B illustrates the dependence of the energies of the
cylindrically symmetrical configurations of the peptides
on lateral tension for the cases of two isolated monomers
2Wmonomer (red curve), a pair of juxtaposed monomers
Wpair (blue curve), and conductive dimer Wdimer (green
curve). All three energies depend on lateral tension in
a different manner, creating the opportunity for nontrivial
dependence of the energy difference �DEform ¼
2Wmonomer � Wpair (Fig. 3 A) upon the lateral tension.
We should note that when calculating the energy of
different states (in particular, the configurations denoted
in Special Cases), we take into account only the energy
of elastic deformations of the membrane induced by
the peptides and neglect any direct peptide-peptide and
lipid-peptide interactions. Besides, we assume that the
state of the peptide is independent of the deformations it
Biophysical Journal 115, 478–493, August 7, 2018 483



FIGURE 3 (A) Dependence of the sign-inversed energy barrier,

�DEform¼ 2Wmonomer�Wpair, upon lateral tension, 2s, of the DOPCmem-

brane (dashed curve). The solid curve shows the result of a quadratic approx-

imation of the experimental data from (26). The gray curves delineate the

statistical spread of the experimental data (shaded as light gray). (B) The

dependence of the energies of deformations induced by two isolated mono-

mers, 2Wmonomer (red curve), a pair of juxtaposed monomers, Wpair (blue

curve), and the energy of conductive dimer, Wdimer (green curve), upon the

lateral tension of the DOPC lipid membrane, 2s. (C) The dependence of

the sign-inversed energy barrier, �DEform ¼ 2Wmonomer � Wdimer, is shown

upon lateral tension, 2s, of the thinmembrane, where hydrophobic thickness

is smaller than that of the dimer (2h ¼ 1.1 nm). (D) The dependence of the

energies of deformation induced by two isolated monomers, 2Wmonomer

(red curve), and the energy of conductive dimer Wdimer (green curve) upon

the lateral tension of the thin membrane, 2s. (E) The dependence of the

energy barrierDEdecay¼Wpair�Wdimer upon the lipid monolayer thickness

(solid curve) is shown. Black circles— experimental points from (27) verti-

cally shifted by a certain constant value. (F) The dependence of the mem-

brane elastic energy induced by two monomers, 2Wmonomer (red curve), a

pair of juxtaposed monomers,Wpair (blue curve), and a dimer,Wdimer (green

curve), upon the monolayer thickness is shown. For (C) and (D), the

spontaneous curvature was assumed to linearly decrease with the increasing

monolayer thickness: JC16:1 ¼ 0.08 nm�1, JC18:1 ¼ 0.06 nm�1, and JC20:1 ¼
0.04 nm�1. To see this figure in color, go online.
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induces, as the peptide is considered as an infinitely rigid
undeformable cylinder.

For the chosen set of the elastic parameters, our model
predicts stimulation of gA channel activity upon application
of the lateral tension. Martinac and Hamill have experimen-
tally demonstrated that the lateral tension may either acti-
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vate or inactivate the channel activity depending on the
thickness of the lipid bilayer (45). In diC20:1 and thicker
lipid membranes, the tension activates gramicidin channels,
whereas in diC18:1 and thinner lipid membranes, it inacti-
vates them. The authors conclude that the lateral tension
activates channels in bilayers whose thickness exceeds the
gramicidin dimer length and inactivates channels in thinner
bilayers. For the thicknesses utilized in (45) of diC18:1 and
diC20:1 bilayers of 2.7 and 3.0 nm, respectively, and the
length of the gA dimer of 2.6 nm, the explanation quantita-
tively agrees with the experimental observations (45). How-
ever, for the more realistic hydrophobic thickness of the
diC18:1 bilayer of 2.8 nm (29) and the length of the gA
dimer of 2.2 nm (21,46), this explanation does not work.
However, qualitatively the effect of switching the response
of gA channels to applied lateral tension upon variation of
the hydrophobic thickness of the membrane can also be pre-
dicted in the framework of our model. For bilayers whose
thicknesses exceed the length of the gA dimer, the activation
by the lateral tension directly follows from the plot Fig. 3 B:
the membrane elastic energy in the case of two isolated
monomers grows faster than the elastic energy in the cases
of the dimer and a pair of juxtaposed monomers upon appli-
cation of the lateral tension. Thus, the barrier of the channel
formation decreases as the tension grows. In the membrane,
whose thickness is smaller than the gA dimer length, the
configuration of a pair of juxtaposed monomers does not
exist; the conducting dimer can only be formed directly
from the two isolated monomers, with negative hydrophobic
mismatch, i.e., increased bilayer thickness, at the dimer
boundary. Upon application of the lateral tension, the
membrane elastic energy in this case grows faster than in
the case of the two isolated monomers (Fig. 3 D), thus
resulting in an increase of the energy barrier of channel
formation (Fig. 3 C).

Thus, as predicted by our continuum elastic model, the
lateral tension of the membrane may either activate or inac-
tivate the channel activity of gA depending on the relation of
the hydrophobic thickness of the bilayer and the length of
the gA dimer. The theoretical results are in qualitative agree-
ment with the available experimental data (26,45).
Dependence of the probability of dimer formation
on the lipid membrane thickness

According to the experimental work of Lundbaek and
Andersen (27), the logarithm of the conductive state lifetime
ln(tlife)¼DEdecay to within an additive constant. The ln(tlife)
was measured as a function of the thickness of the hydropho-
bic part of the lipid bilayer. The lipid bilayerwas formed from
monopalmitolein (C16:1), monoolein (C18:1), and monoei-
cosenoin (C20:1) dissolved in squalene rather than from
‘‘common’’ lipids. For comparison with the experimental
dependence of the barrier DEdecay upon the membrane
thickness, we estimated the corresponding values for the



FIGURE 4 (A) Shapes of the membrane in the vicinity of the conducting

dimer for different spontaneous curvatures of the monolayer: solid curve,

J0 ¼ 0; dashed curve, J0 ¼ �0.2 nm�1; and dotted curve,

J0 ¼ þ0.2 nm�1. (B) The dependence of the energy of elastic deformations

induced by two monomers, 2Wmonomer (red curve), pair of juxtaposed

monomers, Wpair (blue curve), and dimer, Wdimer (green curve), upon the

monolayer spontaneous curvature is shown. To see this figure in color,

go online.
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membranes consisting of the lipids S16:1 (h¼ 1.3 nm),S18:1

(h¼ 1.45 nm), andS20:1 (h¼ 1.6 nm), assuming that the elas-
ticity moduli change insignificantly upon the change of the
acyl chain length from 16 to 20 carbon atoms and that the
spontaneous curvature depends linearly on the acyl chain
length. Thus, the respective spontaneous curvatures are
JC16:1 ¼ 0.08 nm�1, JC18:1 ¼ 0.06 nm�1, and JC20:1 ¼
0.04 nm�1. The following energy barriers were obtained:
DEdecay(h ¼ 1.3 nm) ¼ 9.7 kBT, DEdecay(h ¼ 1.45 nm) ¼
7.8 kBT, and DEdecay(h ¼ 1.6 nm) ¼ 4.2 kBT. It is generally
believed that head-to-head dimerization of gramicidin is
provided by the formation of six hydrogen bonds between
monomers located in opposite monolayers (13). The energy
of these bonds does not depend on the elastic properties of
the lipid bilayer, in particular on its thickness or lateral ten-
sion, and can be considered as a certain constant (negative)
addition to the energy of the elastic deformations of the
membrane arising near the conducting dimer. Thus, the
total energy of the dimer is determined to within an
unknown constant: the energy of the hydrogen bonds formed
during dimerization. Thus, the energy barrier, DEdecay ¼
Wpair�Wdimer, can also be determined towithin the unknown
constant, although this constant should be the same for
different monolayer thicknesses. We only calculated the
contribution of the elastic energy into the total energy
barrier, not taking into account the energy of hydrogen
bonds formed during dimerization. The experimentally ob-
tained energy barrier values are DEdecay(h ¼ 1.3 nm) ¼
5.64 kBT, DEdecay(h ¼ 1.45 nm) ¼ 3.58 kBT, and
DEdecay(h ¼ 1.6 nm) ¼ �0.35 kBT. In Fig. 3 E, these values,
shown as black circles, were shifted upward by the same
constant to fit the calculated dependence DEdecay(h) (solid
line). The slope of the straight line approximating the
dependence of the energy barrier on the bilayer
thickness calculated with the aid of our model amounts to
�18 kBT/nm, whereas the experimental results yield the
value of �20 kBT/nm (Fig. 3 E).

Fig. 3 F illustrates the dependence of the energies of three
cylindrically symmetrical configurations of peptides upon
the monolayer thickness. All three energies depend differ-
ently on the thickness, yielding a nontrivial dependence
of the energy barrier DEdecay ¼ Wpair � Wdimer upon h. Of
note, the energy of the conductive dimer is smaller than
the energy of a pair of juxtaposed monomers only in the
case of positive spontaneous curvature of the monolayer
consisting of the lipids used in the membrane-forming solu-
tion (27). The spontaneous curvature of ‘‘regular’’ lipids,
such as DOPC, is usually negative (47,48). In this case,
the energy of a pair of monomers proves considerably
smaller than the energy of a conductive dimer (Fig. 4 B).

Thus, our continuum elastic model predicts the decrease of
gA channel lifetime in membranes of successively increasing
thickness (accompanied by decreased spontaneous curvature
of the monolayers (48)). Good agreement of the calculated
values with the experimental results for the dependence of
DEdecay on the membrane thickness (27) and of DEform on
the lateral tension (26) suggests that our model adequately
describes the ‘‘gramicidin-lipid bilayer’’ system.
Dependence of the energy of the symmetric
configurations upon the spontaneous curvature
of monolayers

The deformations induced by peptides in their vicinity
include, but are not limited to, the splay deformation. The
energy of splay deformations depends on the spontaneous
curvature of monolayers. The spontaneous curvature does
not enter the Euler-Lagrange equations or their solutions
directly (see Eqs. S5–S8). However, as this parameter stands
in the energy (Eq. 1), the spontaneous curvature affects the
membrane shape and distribution of deformations by influ-
encing the integration constants of the solutions (Eq. S7).
The only term containing the spontaneous curvature in the
energy functional is the following:

Wspont ¼
Z

J0divndS ¼ J0

Z
nðGÞdG: (11)

Here, we utilized the divergence theorem to proceed from
the integral over the neutral surface (S) to the integral over the
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peptide boundary (G). Thus, for rotationally symmetric con-
figurations, the spontaneous curvature in the elastic energy
stands multiplied by the boundary director and the boundary
perimeter. If the boundary director is fixed, as in the cases of
isolated monomers and a pair of juxtaposed monomers, the
corresponding term is just an additive constant to the elastic
energy, which does not affect the membrane shape. In the
case of the conductive dimer, we do not fix the boundary di-
rector; the director is obtained by minimization of the elastic
energy, and thus, the spontaneous curvature influences the
membrane shape. The effect of the spontaneous curvature
on the shape of the membrane in the vicinity of the con-
ducting dimer is illustrated in Fig. 4 A. From the figure, it
is seen that in the case of the positive spontaneous curvature,
the contact angle of the neutral surface at the dimer boundary
increases compared to the case of negative spontaneous cur-
vature, so that the lipid polar heads ‘‘overhang’’ the channel
pore at J0 > 0.

Fig. 4 B illustrates the dependence of the energies of
the cylindrically symmetrical configurations of peptides,
2Wmonomer,Wpair, andWdimer upon the spontaneous curvature
of the monolayer. The spontaneous curvatures of the two
monolayers of the membrane were assumed to be equal.
Only the energy of elastic deformations was taken into ac-
count in the calculations; hence, the curve corresponding to
the dimer energy can be vertically shifted by a certain con-
stant value corresponding to the energy of hydrogen bonds,
which is independent of the spontaneous curvature. The en-
ergies of a monomer and a pair of monomers depend linearly
on the spontaneous curvature, both of them decreasing with
the decrease of the spontaneous curvature. The correspond-
ing straight lines are parallel, because as discussed above,
the contribution of the spontaneous curvature into the energy
is linear: WS ¼ �pr0BJ0(nd(r0) þ nu(r0)), whereas the
fixed director at the boundary of the gA molecule is the
same for an isolated monomer and a pair of monomers,
n0 < 0. Thus, in the case of a pair of monomers, the
spontaneous curvature contribution to the energy is
WS

pair ¼ �pr0BJ0(nd(r0) þ nu(r0)) ¼ �pr0BJ0(n0 þ n0) ¼
2pr0BJ0jn0j. In the case of two isolated monomers, the corre-
sponding contribution is 2WS

monomer ¼ �2pr0BJ0(nd(r0) þ
nu(r0)) ¼ �2pr0BJ0(n0 þ 0) ¼ 2pr0BJ0jn0j ¼ WS

pair. In the
configuration of a conductive dimer, the director at the pep-
tide boundary is not fixed, but the bilayer thickness is; the en-
ergy dependence on the spontaneous curvature in this case
becomes nonlinear. As can be seen from Fig. 4 B, the dimer
energyWdimer increases with decreasing spontaneous curva-
ture, and the energy barrier for the decay of the conductive
state DEdecay ¼Wpair �Wdimer, defined to within a fixed en-
ergy of hydrogen bonding, decreases. Accordingly, the life-
time of the conductive channel is also expected to decrease
with decreasing spontaneous curvature.

It has been experimentally shown that the lifetime of the
conductive state indeed decreases with decreasing sponta-
neous curvature (28) and increases with increasing sponta-
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neous curvature (49). In (28), the spontaneous curvature
was varied by means of adding cations (Hþ, Ca2þ, Mg2þ)
to the solution bathing the membranes formed of a nega-
tively charged lipid (dioleoylphosphatidylserine, diC18:1).
It was assumed that neutralization of the lipid charge by
the added counterions would mitigate the electrostatic
repulsion of the lipid head groups, resulting in a sponta-
neous curvature decrease. In (49), a spontaneous curvature
increase was achieved by replacing a lipid with weakly
negative spontaneous curvature (diphytanoylphosphatidyl-
choline) with the one having a positive spontaneous curva-
ture value (lysophosphatidylcholine). In both experimental
systems, the possibility of inhomogeneous lateral distribu-
tion of components in the deformation field in the vicinity
of peptides complicated the interpretation of the results.

Our continuum elastic model thus predicts the lifetime
of the conductive channel to decrease with decreasing
spontaneous curvature of the membrane. The prediction
qualitatively agrees with the available experimental data
(28,49). The energy barrier of the channel formation,
DEform ¼Wpair � 2Wmonomer, is predicted to be independent
of the spontaneous curvature.
gA monomer/monomer and dimer/dimer
interactions

Using the approach outlined in General Case, we calculated
the dependence of the membrane elastic energy in the vicin-
ity of two gramicidin dimers upon the distance between
them (Fig. 5 A). At large separations, the energy of elastic
deformations induced by each dimer is additive, and the to-
tal elastic energy equals 2Wdimer. As the dimers approach
each other, the deformations induced by them overlap, lead-
ing to effective interaction characterized by the energyWint.
At distances of 2L �4–8 nm, the interaction is repulsive,
whereas at shorter distances of 2L < 4 nm, it switches
to strong attraction. On average, such an energy profile
considerably favors the aggregation of gramicidin dimers,
as the elastic energy at the minimal dimer separation is
�8 kBT lower than the energy of deformations induced by
two infinitely separated dimers, 2Wdimer (Fig. 5 A).

We used the same generic approach to obtain the depen-
dence of the membrane elastic energy in the vicinity of two
monomers upon the distance between them in the case when
the molecules are situated in the same monolayer (Fig. 5 B)
and when they are in the opposite monolayers (Fig. 5 C). As
can be seen in Fig. 5, B and C, for any mutual arrangement
of gA molecules, the interaction force between them is
repulsive at short distances (2L < 6 nm) and attractive at
longer distances (6 nm < 2L < 10 nm). At a distance of
2L z 6 nm, the elastic energy is minimal, which corre-
sponds to a stable state of the system. At distances above
�10 nm, the deformations induced by the monomers no
longer overlap, and there is practically no interaction be-
tween the molecules.



FIGURE 5 The energy of membrane deformation in the vicinity of two

gramicidin dimers (A) and monomers (B and C) as a function of the distance

between the monomers. (B) The monomers here are in the same monolayer,

whereas in (C) the monomers are in the opposite monolayers. The black

horizontal dashed line corresponds to the energy 2Wdimer of two infinitely

distant gramicidin dimers; the brown horizontal dashed lines correspond

to the energy 2Wmonomer of two infinitely distant isolated gramicidin mole-

cules. To see this figure in color, go online.
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The energy profiles in the cases of monomers located in
the same monolayer (Fig. 5 B) and in the opposite mono-
layers (Fig. 5 C) look very similar. The similarity arises
because the characteristic lengths of deformations (decay
and oscillations) depend only on the elastic properties of
lipid monolayers (Eq. S8) and not on the position of the pep-
tides. Characteristic lengths determine the structure of the
energy profiles, in particular the locations of minima and
maxima. Besides, the monolayers are coupled to each other
through the intermonolayer surface. In equilibrium, all
forces and torques generated by the opposite monolayers
at the intermonolayer surface should be exactly balanced.
This requirement imposes a certain symmetry on the spatial
distribution of deformations in the opposing monolayers
(see Eq. S7). This symmetry additionally contributes to
the similarity of the energy profiles of interaction of the
gA monomers located in the same monolayer (Fig. 5 B)
and in opposing monolayers (Fig. 5 C). The main difference
between the profiles is their behavior at small distances: in
the case of monomers in the same monolayer, the peptides
should not overlap (the energy is infinite for L < r0),
whereas in the case of monomers located in the opposite
monolayers, the configurations with L < r0 are not pro-
hibited, although they cost a substantial amount of energy,
of the order of 20 kBT (comparable with the energy of a
pair of monomers, Figs. 3, B and F and 4).

Taking into account the membrane perturbation
induced by isolated gA molecules, the energy of attraction
between the molecules amounts to about Wuu(N) �
Wuu(6 nm) z Wud(N) � Wud(6 nm) z 0.2 kBT0. Unfortu-
nately, the integrals inEq. 10 do not generally yield analytical
integration in the case of numerically calculated interac-
tion energy. The main issue is the integrand multiplier
dr � (2pr), due to which a small uncertainty of numeric
determination of the energy of two monomers transforms
into a large uncertainty of the integrals in Eq. 10 at large
values of r. We applied the following algorithm for numeric
quantification of these integrals. First, we found the average
energy of two (infinitely) distant isolated gA molecules
(Fig. 5, B and C, brown horizontal dashed lines). Then,
we determined the distance between the monomers Rmax, at
which the same energy value is achieved at 2L> 6 nm. There-
after, the integrals were only calculated in the region pR2

max,
which physically corresponds to the assumption of predom-
inant contribution of short-range forces to the interaction of
monomers. This process allows us to find from Eqs. 9 and
10 the critical concentration Scrit ¼ � kBT=I, at which the
gA cluster is stable. Substituting the numerically obtained
energiesWuu(2L) andWud(2L) (Fig. 5,B andC) and assuming
short-range interaction, we determined the value of I(T). For
room temperature T0 z 300 L, the critical concentration is
Ccrit ¼ 0.025 nm�2. It should be pointed out that the devel-
oped theory predicts the stable mode only qualitatively
because the correlations between particles and interactions
between three or more particles were disregarded in the
calculations. These effects become significant at higher
concentrations. However, the qualitative predictions suggest
the possible existence of an ordered phasewith a high surface
concentration of gA at room temperature.

Thus, the elastic energy profile obtained for two approach-
ing conducting dimers allows the prediction of a strong aggre-
gation of the channels even at a low dimer:lipid ratio. For gA
monomers, a weak aggregation is expected upon exceeding
the critical surface concentration of the monomers.
DISCUSSION

In this work, we analyzed deformations occurring in the vi-
cinity of gA peptides incorporated into lipid membranes for
Biophysical Journal 115, 478–493, August 7, 2018 487
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cylindrically symmetrical configurations: an isolated mono-
mer, a pair of juxtaposed monomers in the opposite
monolayers, and a conductive dimer (Fig. 1). Membrane de-
formations proved to occur in all three configurations
(Fig. 2).

The neutral surface profile of the upper monolayer goes
up (increase in z coordinate) at the peptide boundary for
the isolated monomer (Fig. 2 A). At the peptide boundary,
the fixed projection of the director onto the Or axis is nega-
tive (n(r0)¼ n0¼�0.68) and tends toward zero far from the
peptide (n(r / N) ¼ 0). Such director distribution corre-
sponds to a concave neutral surface, in accordance with
the volumetric incompressibility condition, Eq. 3. It be-
comes obvious if tilt deformation is prohibited. In this
case, the director coincides with the normal to the neutral
surface. The negative projection of the normal onto the Or
axis at r ¼ r0 and zero projection at r / N leads to that
on the average div(n) ¼ div(N) ¼ �Jav z (N(N)�N(r0))/
ldecay ¼ �n0/ldecay > 0, where Jav is the average geometric
curvature of the neutral surface and ldecay is the character-
istic length of the decay of deformations. Thus, Jav z n0/
ldecay< 0, which corresponds to the concave neutral surface.
As the neutral surface is horizontal at r/N, it has to go up
(on average) in the vicinity of the single peptide boundary.
In the case of a pair of monomers, the fixed negative director
projections at peptide boundary r ¼ r0 lead to concave sur-
faces of both monolayers. However, there is no significant
change in the z-coordinate of the surfaces at r ¼ r0, as
the neutral surface of the upper monolayer tends to go up,
and the neutral surface of the lower monolayer tends to
go down. Because the peptides in the upper and lower
monolayers are identical, they induce identical (but opposite
in sign) bending torques in the monolayers, compensating
each other without significant displacement of the neutral
surfaces along the z-coordinate. For the conductive dimer,
we do not set the value of the director at the boundary;
only membrane thickness is fixed. The boundary director
value in this case is obtained from the total elastic energy
minimization; this value appears to be positive, leading to
a convex (on average) monolayer neutral surface (Fig. 2 C).

Our radial profiles of bilayer hydrophobic thickness
(Fig. 2 D) and area per lipid molecule (Fig. 2 E) calculated
for the case of a juxtaposed pair of monomers are qualita-
tively similar to the profiles obtained by molecular dy-
namics (MD) for the conductive dimer (29,30). In terms
of the theory of elasticity, this means that in MD, the direc-
tor projection to the radial axis at the dimer boundary is
fixed at some negative value despite thinning of the mem-
brane around the dimer. The negative director projection
value may be achieved if the effective shape of the dimer
is more similar to an hourglass rather than to a cylinder
that indeed may take place because of bulky tryptophan
side chains located in the vicinity of a monolayer neutral
surface (13,46). However, the fixed negative value of the
director projection at the dimer boundary should lead to
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an abrupt increase of the membrane elastic energy upon
the approaching of two dimers, analogously to the case of
the membrane-mediated interaction of two monomers with
a fixed boundary director (Fig. 5, B and C). As the dimers
approach each other, the reorientation of the director from
its value at the boundary of the left dimer to its value at
the boundary of the right dimer takes place on successively
decreasing distance, which is equivalent to the growth of
jdiv(n)j, i.e., to the growth of the splay energy (see Eq. 1).
However, according to our calculations, the membrane
elastic energy abruptly decreases as the distance between
the dimers reaches �4 nm (Fig. 5 A). It points to the capa-
bility of reorientation of the boundary director to relax the
total elastic energy. Our profile of the dimer interaction en-
ergy is in qualitative agreement with the profiles obtained in
(50) by MD modeling. The MD profile predicts repulsion of
the dimers at distances exceeding 2L �4 nm and strong
attraction as the distance becomes shorter than �4 nm,
with the interaction energy thus having a local maximum
at 2L �4 nm (compare with the profile in Fig. 5 A). For di-
palmitoylphosphatidylcholine (diC16:0), MD evaluates the
energy drop between the local maximum (2L �4 nm) and
the energy minimum at a small distance between the dimers
(2L �2 nm) as �7.5 kcal/mol z 12 kBT (50), which is in
good agreement with our calculated value of �14 kBT
(Fig. 5 A), although our model predicts stronger repulsion
at L > 4 nm. The barriers for the dimer approaching are
�3.5 and�6 kBT in MDmodeling (50) and our calculations,
respectively.

The results of the MD modeling in works (29,46,50)
implies that deformations induced by a dimer spread to
�2–4 nm around it. Our calculations predict substantially
larger extension of dimer-induced membrane distortions,
�6 nm (Fig. 2, D and E). To match the MD results with con-
tinuum elastic modeling, the radial dependence of the
stretch/compression modulus Ka with the hardening factor
of 4.27 is introduced in (46). This elastic model neglects
some substantial membrane properties. First of all, the
deformation of tilt is not taken into account, although its
elastic modulus (Kt �40 mN/m) is several times smaller
than the stretch/compression modulus (Ka �120 mN/m).
Besides, the membrane was not subjected to the condition
of local volumetric incompressibility. This condition is
generally responsible for the oscillation of deformations.
For the upper monolayer, the substitution n ¼ t þ N ¼
t þ grad(H) into the condition of the local volumetric
incompressibility, Eq. 3, yields the following:

hc ¼ H �M ¼ h� h2

2
div n� ha

¼ h� h2

2
divðtþ gradðHÞÞ � ha; (12)

where M is the distance between the reference plane and
intermonolayer surface measured along the normal to the
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reference plane. Eq. 12 can be transformed into the equation
of harmonic oscillator:

DH þ 2

h2
H ¼ 2

h2
M þ 2

h
� divðtÞ � 2

h
a; (13)

where D ¼ div(grad) is the Laplace operator. The left-hand
side of the equation determines the oscillation of deforma-
tions, generated mainly by the splay, div(n). The right-
hand side of the equation is responsible for the decay of
oscillations of the neutral surface. The decay is provided
by the tilt (div(t)) and the lateral stretch/compression
((2/h)a) deformational modes. Thus, a decrease rather
than an increase of the stretch/compression modulus Ka is
expected to reduce the membrane area affected by deforma-
tions. According to (46), the elastic energy of deformations
induced by the gA dimer is divided between the deforma-
tional modes as follows: stretch/compression (with variable
modulus), 49%; splay, 33%; Gaussian curvature, 17%; and
surface tension, less than 1%. In the framework of our
model, the elastic energy distribution between the deforma-
tional modes is somewhat different, mainly due to account-
ing for the tilt deformation. For constant modulus Ka ¼
120 mN/m, the data are as follows: stretch/compression,
28.9%; splay, 31.6%; Gaussian curvature, 6.4%; surface
tension, 0.4%; and tilt, 32.7%, i.e., the splay and tilt store
the major part of the elastic energy (�65%). For constant
Ka ¼ 4.27,120 mN/m ¼ 512.4 mN/m, the data are as fol-
lows: stretch/compression, 10.9%; splay, 41.9%; Gaussian
curvature, 3.4%; surface tension, 0.3%; and tilt, 43.5%,
i.e., again the most energy (�85%) is stored in splay and
tilt deformations. This is also expected to be the case for
Ka varying from 512.4 mN/m at the dimer boundary to
120 mN/m far from the dimer.

In the calculations, we tacitly assumed that gA monomers
incorporate into the membrane in such a manner that the
axis of the helix is approximately perpendicular to the mem-
brane surface, and the end face of the helix containing
several tryptophan residues is situated in the acyl chain-po-
lar head interface area. To the best of our knowledge, the
structure and orientation of a gA monomer in the membrane
have not been experimentally determined to date. The effec-
tive spontaneous curvature of gA in the inverted HII phase,
measured in (51), is found to be highly negative, which cor-
responds to deeper penetration of the peptide into the lipid
monolayer. However, these results were obtained in a
strongly curved monolayer lipid phase rather than in a
lamellar bilayer membrane and can be inconsistent with
the position and orientation of gA molecules in regular
membranes. In (29,30), molecular modeling techniques
were used to demonstrate that the axis of a gA molecule
is indeed oriented almost normally to the membrane surface
(tilt angle �10�), and the tryptophan residues are preferen-
tially located in the vicinity of the lipid monolayer neutral
surface. From the standpoint of the linear elasticity theory,
the depth of incorporation of the monomer is of no conse-
quence. In the case of shallow insertion, the director at
the gramicidin boundary must be negative, whereas in the
case of deep insertion, it has to be positive. However, ac-
cording to Hooke’s law, the deformation energy is indepen-
dent of the boundary director sign, being a function of n0

2.
In the case of very deep insertion of the gA monomer or in
the very thin membrane, the configurations of a pair of
juxtaposed monomers and a dimer coincide; as in the thin
membrane, it is impossible to place one monomer on the
top of the other monomer without setting the membrane
thickness equal to the doubled monomer length at the pep-
tide boundary. Generally, the presence and positions of max-
ima and minima in the dependence of the deformation
energy on the distance between gA monomers (Fig. 5, B
and C) are determined by the characteristic lengths of defor-
mation, i.e., by the physical properties of the membrane
rather than by the boundary conditions imposed by grami-
cidin. Changes in the depth of insertion and orientation of
monomers would change the boundary director value and
the interaction energy profile (Fig. 5, B and C) scaling as
n0

2 without any change in the minima and maxima posi-
tions. At small separation distances, it becomes substantial
whether the boundary director is fixed, as in the case of
two interacting monomers (Fig. 5, B and C), or the boundary
director may reorient to relax the total elastic energy, as in
the case of two interacting dimers (Fig. 5 A). The fixed
boundary director leads to growth of the elastic energy of
approaching peptides, whereas the free boundary director
allows for relaxing the elastic energy at small separation dis-
tances, thus favoring aggregation (compare Fig. 5, A–C).

Earlier, membrane deformations induced by gA and
conversely the influence of the elastic properties of the lipid
bilayer on the parameters of gA channels were considered
by a number of authors (26–28,30,43). The rapid and quan-
titatively measurable responses of the channels (conductiv-
ity, lifetime, and likelihood of dimerization) to changes in
the membrane elastic properties allow using gA as a molec-
ular sensor of elastic forces (44). Previously, only deforma-
tions induced by conductive gA dimers were taken into
account in the analysis of the influence of the elastic
properties of the lipid bilayer on the parameters of the
channels in the framework of different continuum theories
(26–28,42); in any other configuration, the membrane was
deemed undeformed. The following expression was used
to calculate the energy of deformations induced by the
conductive dimer (44):

DGdef ¼ HB

�
lp--d0

�2 þ HX

�
lp--d0

�
c0--HCc

2
0; (14)

where HB, HX, and HC are certain coefficients depending on
the elastic properties of the lipid bilayer; d0 is the bilayer
thickness; lp is the length of the dimer; and c0 is the mono-
layer spontaneous curvature. Generally, the quadratic form
of the expression Eq. 14 is a direct consequence of the linear
Biophysical Journal 115, 478–493, August 7, 2018 489
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elasticity theory, i.e., of Hooke’s law. As demonstrated in
(43), the term quadratic in the spontaneous curvature occurs
only under specific conditions imposed on the shape of the
monolayer surface at the gA boundary. In the framework of
our model, the quadratic dependence on spontaneous curva-
ture occurs when the boundary director is not fixed, as is the
case with conductive dimer configuration (Fig. 4, green
curve). In the configurations of an isolated monomer and a
pair of monomers, the director at the gA boundary had a
fixed value of n0, and the energies of these configurations
linearly depended on the spontaneous curvature (Fig. 4,
red and blue curves). In general, our model is more inclusive
because we take into account the membrane deformations
induced not only by the conductive dimer but also by indi-
vidual monomers and pairs of juxtaposed monomers, and
these deformations are factored into the calculated energy
barriers. However, because the elasticity theory we use is
also linear, the general quadratic form of the membrane
deformation energy, Eq. 14, is maintained for all the
cylindrically symmetric configurations of the peptides.
The energy barriers are determined by the differences of
the energies of the states, and hence, their values are also
quadratic, similar to Eq. 14.

Eq. 14 does not include the membrane lateral tension. Ac-
cording to the results of (26), application of the lateral ten-
sion to a membrane increases both the probability of
formation of conductive dimers and their lifetime, which
was explained by a decrease in the membrane thickness, ac-
cording to the following equation (in our notation):

Dh

h
¼ � s

Ka

; (15)

where Dh is the change of the monolayer thickness caused
by the applied lateral tension. Within the framework of
our model, this contribution is reflected by the term a0 of
spontaneous stretching of the monolayer subjected to the
lateral tension (see Eq. 1). The lateral tension was shown
to activate gA channels in relatively thick membranes,
e.g., made from diC20:1 lipid (45). This effect was attrib-
uted to the thinning of the membrane in accordance with
Eq. 15, leading to better matching of the dimer length and
the bilayer thickness. Moreover, in this work, it is demon-
strated that the application of the lateral tension to relatively
thin membranes (e.g., made from diC18:1 lipid) leads to
inactivation of the channels, as the membrane becomes
too thin, and the dimer formation again requires overcoming
of substantial elastic stress as the membrane has to stretch at
the dimer boundary (45). The experimental setup utilized in
this work does not allow for control of the lateral tension, so
the change of the membrane thickness cannot be determined
quantitatively. However, the effect of switching of the
tension-induced activation and inactivation of gA channels
depending on the membrane thickness is physically
reasonable. Our continuum elastic model qualitatively pre-
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dicts the activation of the channels in the membrane, whose
hydrophobic thickness exceeds the length of the dimer
(2h> 2hp) (Fig. 3, A and B), and inactivation of the channels
in thin membranes (2h < 2hp) (Fig. 3, C and D) upon appli-
cation of the lateral tension.

However, usually Ka >> s, and the main effects of the
lateral tension on the membrane are associated with the
fact that membrane deformations always increase the area
of the neutral surface of the monolayer in comparison
with its area in the planar nondeformed state. The additional
area has to be pulled out of a lipid reservoir, which requires
mechanical work to be performed against the lateral tension.
Thus, under identical boundary conditions, the larger the
lateral tension that is applied to the membrane, the more
elastic energy of the membrane will be achieved. Earlier,
we have demonstrated that the application of lateral tension
leads to an increase in the line tension of an edge of trans-
membrane pore (23,24,52) as well as the line tension of
the boundary of ordered membrane domains (rafts) due to
the mismatch of the thickness of the raft and the bulk mem-
brane (53–55). This effect is equally applicable to the
formally inextensible membrane (Ka / N) because in
this case, it is associated with an increase in the monolayer
surface area by drawing additional lipid from a reservoir
rather than due to the expansion of the membrane. Accord-
ing to Eq. 15, the change in the monolayer thickness caused
by lateral tension tends toward zero at Ka/N. An increase
in the probability of formation of conductive dimers due to
a change in monolayer thickness was vividly shown by in-
vestigations of gA behavior in the membranes under electro-
striction (14). If the membrane is considered as a capacitor
with a finite compressibility module, the application of
transmembrane potential should cause the attraction of the
capacitor ‘‘plates’’ and hence a decrease in the membrane
thickness. It was demonstrated in (14) that the application
of transmembrane potential indeed increased the probability
of conductive dimer formation. For the membranes formed
without organic solvent or with the use of ‘‘heavy’’ solvents
such as squalene, the change in the bilayer thickness caused
by transmembrane voltage is described by Eq. 15 with the
substitution 2s ¼ 2s0 þ CmU

2/2, where U is the applied
transmembrane voltage, s0 is the lateral tension of the
membrane monolayer at zero transmembrane voltage,
and Cm is the membrane-specific capacity (56,57). If the
membranes are formed with the use of ‘‘light’’ solvents
such as decane in addition to the replacement 2s ¼ 2s0 þ
CmU

2/2, an effective modulus characterizing the compres-
sion of the bilayer containing inclusions of organic solvent
has to be substituted into Eq. 15 instead of the lateral
compression/stretch modulus Ka.

Besides the cylindrically symmetric configurations of
peptides, we also considered a general case of arbitrary rela-
tive positions of two dimers (Fig. 5 A) and two monomers
(Fig. 5, B and C) in the membrane and calculated the depen-
dence of the membrane deformation energy on the distance
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between the gA molecules. The energy profile for two ap-
proaching dimers allows prediction of strong aggregation,
as the elastic energy in the case of contacting dimers is
�8 kBT lower than the energy of deformation induced by
two infinitely separated dimers (Fig. 5 A). Our calculated
profile qualitatively agrees with the profile of approaching
gA dimers in the membrane made from diC16:0 lipid ob-
tained by MD (50). In this work, the clustering of gA dimers
is indeed observed even at the relatively low dimer/lipid
ratio of 1:72.

For monomers, the energy interaction profile allows pre-
diction of gA clustering when the surface density exceeds
Ccrit ¼ 0.025 nm�2. From the energy profiles in Fig. 5, B
and C, it is clear that the distance between the particles in
equilibrium should be �6 nm. This rough estimation gives
approximately one particle per 36 nm2 corresponding to
the critical concentration of �0.028 nm�2, which is very
close to the value Ccrit ¼ 0.025 nm�2 obtained from integra-
tion in Eq. 10. The only advantage of using Eq. 10 is taking
into account the depth of the energy well under the condi-
tion of the finite temperature T.

Earlier, based on the analysis of dipalmytoylphosphatidyl-
choline (diC16:0) monolayer compression isotherms (58),
the conclusion was made that gA clustering occurs at a gA
molar ratio of several mole percent, with the clustering-asso-
ciated energy gain being maximal at a ratio of about�5 mol
%. Assuming the average area per lipid molecule to be
�0.7 nm2, it can be estimated that the critical concentration
Ccrit ¼ 0.025 nm�2 corresponds to the mole ratio of
�2mol%, which is in good agreement with the published re-
sults (58). In a recent publication, Chistyulin and colleagues
(59) observed clustering of a gA derivative having the first
valine residue replaced by glutamine. Lateral clustering of
gA detected with the aid of x-ray scattering was also
described by Harroun and colleagues (25). However, in
(25), the experiments were performed on lipid membranes
with gA incorporated at a molar ratio of 1:10, which corre-
sponds to gAmonomers surrounded by a single layer of lipids
or gA dimers surrounded by �1.5–2 layers of lipid. Our
model should not be applied to such high gA concentrations
because triple interactions become highly probable. Never-
theless, the model predicts the formation of clusters in a
certain range of concentrations and demonstrates that at rela-
tively high surface densities of the peptide, the diffusion flow
effectively vanishes, i.e., the clusters cease to dissolve. Thus,
our model allows for explanation of the results presented in
(15), where gA-mediated ionic conductivity of the mem-
brane was shown not to decay on the timescale of tens of mi-
nutes after fusion of small (�100 nm) gA-containing vesicles
with a planar lipid bilayer of a large area. If gA clusters were
dissolving, the probability of formation of the transmem-
brane conductive dimer would have been decreasing with
time, resulting in rapid decay of membrane conductivity.
Jones and colleagues (15) also performed experiments with
the fusion of gA-containing vesicles with a bilayer contain-
ing gM, differing from gA in the channel properties. The
gA-gMheterodimers formed extremely rarely in these exper-
iments, i.e., only in 45 3% of cases, whereas in the case of
simultaneous incorporation of gA and gM into vesicles at a
ratio of 1:1, heterodimers were observed in 385 22% cases
after fusion with a lipid bilayer. Based on these data, Jones
and colleagues (15) concluded that the conductive dimers
almost never exchange dimerization partners, i.e., the dimers
never fully dissociate. Our model offers an alternative expla-
nation for these results.We suggest that in the case of prelim-
inary incorporation of gM into the lipid bilayer, it forms
clusters with high surface density of gM and large areas of
practically pure lipid bilayer. Upon subsequent fusion of
gA-containing vesicles with the bilayer, gA also forms clus-
ters. According to our calculations, the diffusion flux from
the clusters with high concentration of the peptides is almost
equal to zero, and hence, gA and gMcan almost nevermeet to
form heterodimers. It was reported recently in (20) that ves-
icles could exchange gA with the bilayer without complete
fusion, and therefore, the long-termpersistence of conductiv-
ity after fusion of several gA-containing vesicles with the
bilayer could be explained by continuous inflow of new gA
molecules from free vesicles. However, the results presented
in (20) do not explain the extremely low probability of gA-
gMheterodimerization after the fusion of gA-containing ves-
icles with the gM-containing bilayer (15), whereas ourmodel
explains it by a specific profile of interaction energy of gram-
icidin molecules caused by membrane deformations.

To conclude, in this work, we developed a continuum
elastic model based on the theory of elasticity of liquid crys-
tals adapted to lipid membranes (31). In the framework of
the model, the energy of membrane deformations induced
by gA monomers and dimers was considered. The analysis
allowed us to obtain the dependence of the energy barrier
of the conducting dimer formation and its lifetime on
the membrane lateral tension, hydrophobic thickness, and
spontaneous curvature. The dependence is in qualitative
agreement with the available experimental data. The elastic
energy profile obtained for two approaching conducting di-
mers allows us to predict a strong aggregation of the chan-
nels even at low dimer:lipid ratios, in agreement with MD
modeling (50). For gA monomers, a weak aggregation is ex-
pected upon exceeding the critical surface concentration of
the monomers. This allows us to explain the results of (15)
without assumption of the internal gating of gA channels.
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Minimization of the elastic energy functional 

 

 We assume that the energy of elastic deformations is additive, i.e. the energy of the bilayer 

membrane is given as the sum of elastic energies of two monolayers. Let us introduce a certain 

reference plane parallel to the undeformed membrane (Fig. S1), and designate one of the 

monolayers as the upper, and the other — as the lower. The membrane shape will be characterized 

by three functions: 1) distance from the reference plane to the neutral surface of the upper 

monolayer measured along the normal to the reference plane, Hu; 2) distance from the reference 

plane to the neutral surface of the lower monolayer measured along the normal to the reference 

plane, Hd; 3) distance from the reference plane to the intermonolayer surface measured along the 

normal to the reference plane, M (Fig. S1). In this notation, the local thicknesses of the upper (hu) 

and the lower (hd) monolayers are obtained as follows: hu = Hu – M and hd = M – Hd. Thus, 

substituting the local thicknesses of monolayers into the Eq. 3 we obtain a system of equations 

expressing the local volumetric incompressibility conditions for the upper and the lower 

monolayers: 
2

2

div ,
2

div ,
2

cu u u u

cd d d d

hh H M h h

hh M H h h

α

α

= − = − −

= − = − −

n

n
                                             (S1) 

where the subscripts “u” and “d” designate the values associated with the upper and the lower 

monolayers, respectively. With the required accuracy, normal vectors are given by: Nu = grad Hu, 

Nd = –grad Hd. Expressing Hu and Hd from Eq. S1, we obtain the fields of tilt vectors as follows: 
2

2

  div ,
2

  div
2

u u u u u u u u

d d d d d d d

hH M h

hH M h

α

α

≈ − = − = − + +

≈ − = + = + + +d

t n N n grad n grad grad n grad

t n N n grad n grad grad n grad
             (S2) 

for the upper and the lower monolayers, respectively. Substitution of Eqs. S2 into expression for the 

elastic deformation energy, Eq. 1, yields for the bilayer: 
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     (S3) 

The first integral corresponds to the deformation energy of the upper monolayer, and the integration 

is carried out over its neutral surface. In the second integral, the integration is over the neutral 

surface of the lower monolayer; and the integral corresponds to its elastic energy. 

 

Special cases. The elastic energy functional Eq. S3 is of the second order in deformations. 

However, generally, the corresponding Euler-Lagrange equations are linear equations in partial 

derivatives, and the boundary conditions, Eqs. 4, 5, do not allow solving the problem analytically 

even for the case of two gA molecules at a finite distance. Analytical solution is only possible in 

several special cases when the system has an additional symmetry and the problem becomes 

effectively unidimensional. In these cases, the Euler-Lagrange equations become ordinary 

differential equations. Three configurations of peptides can be considered under assumption of 

cylindrical symmetry of the system: 1) a single peptide (Fig. S1A); 2) a pair of peptides one under 

the other in the opposite monolayers of the membrane (Fig. S1B); and 3) a conductive dimer 

formed by two peptides located in the opposite monolayers (Fig. S1C). 

 

 
Figure S1. Cylindrically symmetrical configurations of peptides. A — isolated gramicidin monomer; B — a 
pair of monomers coaxially located in two opposite monolayers; C — conductive dimer. The red dotted lines 
illustrate the channel pore lumen. The black dotted lines designate the rotational symmetry axes of the 
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configurations. Gray arrows illustrate director n, normal N, and tilt-vector t at a given point of the neutral 
surface (shown by dotted line). Blue arrows illustrate the orientation of the director, n0, at the boundary of 
the gramicidin molecule. Cylindrical coordinate system Ozr is introduced in some arbitrary reference plane, 
parallel to the surface of the undeformed membrane. Shapes of the monolayer interface (shown as dashed 
line), the neutral surface of the upper monolayer (with respect to the reference plane), and the neutral surface 
of the lower monolayer are characterized by functions M, Hu, Hd, respectively. 
 

Let us introduce a polar coordinate system Orz with the origin on the reference plane, Oz axis 

perpendicular to the plane and coinciding with the axis of the rotational symmetry; Or axis lying in 

the plane. All vectors can be replaced with their projection onto the Or axis: n → nr = n, and the 

director divergence can be replaced as follows: divn = dn/dr + n/r. Two terms in the expression for 

the divergence correspond to meridional (dn/dr) and equatorial (n/r) curvatures of the neutral 

surface of the monolayer. Thus, the elastic energy functional Eq. S3 can be rewritten as: 
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    (S4) 

Here r0 is gA molecule radius (we assume r0 = 1 nm); the primed characters denote derivatives with 

respect to r. As follows from the Gauss-Bonnet theorem, which is explicitly verifiable in our case, 

the contribution of Gaussian curvature is reduced to the term WG = KG(nd(r0)2 + nu(r0)2). Similarly, 

the energy term associated with the spontaneous curvature integrates in quadratures, yielding WS = 

–πr0BJ0(nd(r0) + nu(r0)). Obviously, these two terms depend only on the boundary conditions (the 

boundary director values) and do not factor into the Euler-Lagrange equations. Therefore, these 

terms remain constant as long as the boundary conditions remain unchanged. 

The condition of zero variation of functional Eq. S4 with respect to nu(r), nd(r), αu(r), αd(r) 

and M(r) functions yields five Euler-Lagrange equations: 
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where ( )
1
2

tl B K=  ≈ 1 nm, ( )
1
2

a a tl K K=  ≈ 1.73, lσ = σ/Kt ≈ 0.1. Let’s consequently enumerate the 

equations in Eq. S5 from E1 to E5. In order to solve the equations we proceed to new variables: nsum 

= nu + nd; ndiff = nu – nd; αsum = αu + αd; αdiff = αu – αd, and transform the system Eq. S5 as follows: 

E1 + E2; E3 + E4; E1 – E2; E3 – E4; E5 thus obtaining at all five equations: 
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respectively. The first two equations contain only nsum(r) and αsum(r); the last three equations 

contain only ndiff(r), αdiff(r), and M(r). Thus, the system of five equations Eq. S5 decomposes to two 

independent subsystems of two and three equations. From the last two equations it immediately 

follows that αdiff = 0, i.e. αu = αd. Each subsystem by the linear transformations can be traced down 

to the linear equation (with variable coefficients) of a higher order. The equation is solved by the 

standard ansatz of cylindrical functions. The final solution of the Eq. S6 is the following: 

( ) 1
2 1 3 1 ,

1 1diff
l lx r rn r x I x K

r l l l l
σ σ

σ σ

   
= + +      + +   

 

( ) ( ) ( ) ( ) ( )4 1 1 5 1 1 6 1 2 7 1 2 ,sumn r x Y r x J r x Y r x J rλ λ λ λ= + + +  

( ) 10 4 1 1 5 1 1 6 2 1 7 21 12 22 ( ) ( ) ( ) ( ),sum r x g Y r x g J r x g Y r x g J rλ λ λ λα α= + + + +                 (S7) 

( ) 0,diff rα =  
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Here I1, K1, Y1, J1 are corresponding Bessel functions of the 1st order; I0, K0 are corresponding 

Bessel functions of the 0th order; x0, x1, x2, x3 are real coefficients, x4, x5, x6, x7 are complex 

coefficients, which should be determined from boundary conditions. For “usual” values of elastic 

parameters (introduced in the paragraph “System parameters” in the “Results” section of the main 

text) the inverse characteristic lengths of deformations, λ1 and λ2, are complex; the characteristic 

lengths of deformations are approximately equal to: 

( ) ( )1,2 1,2

11 22.1 nm; 8.7 nm; 20 nm.
Im Redecay osc relax

ll l l l
l

σ

σ

π
λ λ

+
= ≈ = ≈ = ≈            (S9) 

ldecay corresponds to the decay of deformations in a lipid monolayer; losc — to the oscillation of 

deformations of the monolayer; lrelax — to the relaxation of the intermonolayer surface to the 

horizontal plane. The requirement that director projections should be real at any real value of r 

yields: 

Re(x7) = Re(x5), Im(x7) = –Im(x5), Re(x6) = Re(x4), Im(x6) = –Im(x4),                    (S10) 

where Re and Im are real and imaginary parts, respectively. The requirement that all functions 

should be finite at any r > 0 results in the conditions: 

Im(x5) = –Re(x4), Re(x5) = Im(x4), x1 = x2 = 0.                                    (S11) 

Additionally, in the case of a single peptide located in the upper monolayer (Fig. S1A) we set the 

condition on the director at the peptide boundary: 

nu(r = r0) = n0.                                                            (S12) 

In the case of a pair of juxtaposed peptides (Fig. S1B), the following boundary conditions apply to 

the director: 

nu(r = r0) = n0,                                                            (S13) 

nd(r = r0) = n0. 

Eqs. S12-S13 directly follow from the boundary condition of Eq. 4. Both monomer and a pair of 

juxtaposed monomers fix the boundary director due to lipid tails incompressibility condition, Eq. 

S1, and mutual membrane and peptide thickness mismatch leading to lipid tail reorientation at the 

gramicidin boundary. The transversal distance between monomers in a pair of juxtaposed 

monomers is not fixed, so we do not impose conditions on the local membrane thickness. In the 
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case of a conductive dimer (Fig. S1C), we apply the symmetric boundary condition to the 

membrane thickness: 

hcu(r = r0) = hp,                                                           (S14) 

hcd(r = r0) = hp. 

The dimer fixes the membrane thickness, because in the conducting state the opposing monomers 

are constantly arranged close to each other, forming head-to-head contact (13). Hence, the 

membrane thickness at the dimer boundary is fixed at twice the length of the hydrophobic part of 

the monomer, i.e. (hcu + hcd) = 2hp. We do not explicitly set the director at the dimer boundary as its 

value is determined by the complex interplay between the detailed molecular shape of the peptide, 

the length of the dimer, and the bilayer hydrophobic thickness. Our continuum model seems to be 

too rough to accurately take this into account, so we determine the director at the dimer boundary 

from the condition of the minimum of the total elastic energy. 

 The boundary conditions Eqs. S10-S14 allow determining part of the coefficients x0, ... x7. 

The remaining coefficients are obtained from the minimum condition of the total elastic energy.  

 

General case. Due to analytical difficulty of minimization of the elastic energy functional Eq. S3 

under the boundary conditions Eqs. 4, 5 in the absence of an additional symmetry, we resorted to 

numeric minimization of the functional using a finite difference scheme. Let us introduce a 

Cartesian system of coordinates Oxy in the reference plane. If we designate the coordinates of two 

gA molecules as (L, 0) and (–L, 0), the condition L > r0 applies if the peptides are in the same 

monolayer, whereas for the peptides in different monolayers L > 0 can be arbitrary. Since any 

numerical scheme operates with a finite number of points, whereas integration in the functional Eq. 

S3 is performed over an infinite region, it is expedient to apply the following non-linear 

transformation of coordinates (x, y) → (x′, y′): 

0

0 0

0

0

arctan arctan ,

2 arctan .

r x L x Lx
r r

r yy
r

π

π

    − +′ = +         
 

′ =  
 

                                     (S15) 

Substitution Eq. S15 allows taking into consideration the points unlimitedly distant from the 

peptides, while sampling the area in their vicinity at a high level of details. Thus, the function 

domain is reduced to the square 2r0×2r0; at the cost of functional Eq. S3 becoming significantly 

more complex. Let us introduce a grid with the step of 0

1
r

P
δ =

+
 (P ∈ N, we used P = 150), 

breaking down each side of the square domain into (2P + 3) segments. Then we use the nodes of the 
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constructed grid to generate a difference scheme, i.e., replace all the derivatives with finite 

differences as follows: 

[ ] [ ] [ ]

[ ] [ ] [ ]

, 1, 1,
,

2
, , 1 , 1

, etc.
2

u u u

u u u

n i j n i j n i j
x

n i j n i j n i j
y

δ

δ

∂ + − −
=

′∂
∂ + − −

=
′∂

                                   (S16) 

Since the energy does not include the second and higher order derivatives of the functions M, αu, 

αd, the use of symmetric difference scheme Eq. S16 is expedient, but, on the other hand can cause 

instability of the difference scheme since the grid effectively disjoins into two independent subgrids 

with even and odd indices. In order to ensure stability of the scheme, a regularizing term of the 

form: 
2 222 2 22 2

2 2
2 2 2 2

2 222 2 22 2
2 2

2 2 2 2

1 1
2 2 2 2 2

1 1
2 2 2 2

t u u

d d

K x M h y M h
x x x y y y

x M h y M h
x x x y y y

σ α αζ δ δ

α αδ δ

 ′ ′    + ∂ ∂∂ ∂ ∂ ∂ ⋅ − + − +      ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂      
′ ′    ∂ ∂∂ ∂ ∂ ∂  + − + −      ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂       

,       (S17) 

is added to the energy density, where ζ is a regularizing parameter, similar to Tikhonov 

regularization process (60). 

We exclude from the grid the areas occupied by peptides, and impose the boundary 

conditions Eq. 5 on their perimeter. We take into account that interactions can induce a tilt of a 

peptide as a whole, so that another term is added to the director at all points on the peptide 

boundary, i.e.: 

,)(,)( ,00,00 yyyxxx nnrnnnrn ∆+=∆+=                                         (S18) 

where ∆nx and ∆ny are shifts of the projections n0,x and n0,y at the director boundary. Ultimately, the 

system energy can be expressed in the form of a finite difference scheme on the nodes of the above 

defined grid as a function of nu[i, j], nd[i, j], M[i, j], αu[i, j], αd[i, j], ∆nx, ∆ny and fixed parameters of 

the system. This sum can be minimized with respect to the variables listed above for each fixed 

distance between the peptides, 2L, using Newton method (61). The calculated dependences of the 

system elastic energy upon the distance between dimers, as well as the monomeric peptides located 

in the same monolayer and between the peptides in the opposing monolayers are shown in Fig. 5 in 

the “Results” section. 
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