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Supplementary Methods 

 

Detailed Computing Procedure 

 

BART predicts functional transcription factors (TFs) that bind at genomic cis-regulatory regions 

to regulate gene expression, given a query gene set or a ChIP-seq dataset. BART leverages 3485 

publicly available TF ChIP-seq datasets in human and 3055 in mouse.  Detailed procedure is as 

follows: 

 

1. Generate cis-regulatory profile. If the input is a gene set (“geneset” mode), MARGE (MARGE-

express v1.0, with default parameters) (S. Wang et al., 2016) is used to generate a cis-regulatory 

profile, in which a score is given to each UDHS. The higher the score is, the more likely that this 

DHS is bound by transcription factors that regulate the input gene set. If the input is a ChIP-seq 

dataset (“profile” mode), a RPKM value is calculated on a 1kb-wide region surrounding each 

UDHS (500bp upstream and downstream from UDHS center) to generate the cis-regulatory 

profile. All UDHSs are decreasingly ranked by MARGE scores or RPKM values for the next step. 

 



2. Find transcription factors whose binding profile best match the cis-regulatory profile. A TF 

binding profile is a binary list indicates whether this TF binds on (value 1) each UDHS or not 

(value 0). A receiver-operating characteristic (ROC) curve is generated to evaluate the 

performance of predicting the TF binding profile from the ranked cis-regulatory profile, using 

highly-ranked UDHS in the cis-regulatory profile as positive prediction and bound/unbound TF as 

true or false. The area under the ROC curve (AUC) value is calculated for each TF binding profile. 

Among the over 3,000 TF profiles, those with higher AUC values are better associated with the 

cis-regulatory profile.  

 

3. Statistical tests for each TF on AUC values. Most TFs have multiple ChIP-seq datasets in the 

data compendium of over 3,000 ChIP-seq datasets. Although datasets for the same TF may come 

from different cell types or experimental conditions with different qualities, their collected binding 

patterns have better statistical power of prediction than individual datasets. For each TF, the 

Wilcoxon rank sum test (Wilcoxon, 1945), a non-parametric statistical test, is conducted to 

compare the AUC values of this TF with AUC values of all TF datasets, and a Wilcoxon statistic 

score and a p-value are calculated and assigned to this TF.  

 

4. Standardization of statistic scores using public data compendium. Analysis of Wilcoxon statistic 

scores of all TFs on gene sets over a broad range of biological functions shows that different TFs 

usually have different genome-wide binding distribution patterns. Some TFs tend to have higher 

AUC scores and some have lower. In order to correct this bias and to standardize the significance 

assessment, 505 gene sets from Molecular Signature Database (MSigDB) (Liberzon et al., 2011), 

each of which has at least 200 genes, were collected as human gene set compendium, while 



366/267 H3K27ac profiles were collected for human or mouse data profile compendium, 

respectively. BART analysis was performed on the data compendium and a Wilcoxon statistic 

score was generated for each TF on each gene set and each H3K27ac profile. For each TF 𝑖, we 

calculate a standard score  

𝑍# = (𝑋# − 𝜇#)/𝜎#, 

where 𝑋# is the Wilcoxon statistic score of TF 𝑖 calculated from the query data, 𝜇# and 𝜎# are mean 

and standard deviation of Wilcoxon statistic scores of TF 𝑖  across all datasets from the 

compendium.  

 

5. Rank summarization of all TFs. The average rank of standard Z-score (decreasing), Wilcoxon 

P-value (increasing), and maximum AUC value (decreasing) is calculated as the summary rank in 

the TF prediction output. For each TF, the maximum AUC value is obtained from all AUC values 

of this TF’s ChIP-seq datasets. In the final output result, all TFs are ranked by this average rank 

score and higher ranked TFs are predicted as higher possible functional TFs.  

 

Union DNaseI Hypersensitive Sites 

 

We use a collection of union DNaseI hypersensitive sites (UDHS) as all candidate cis-regulatory 

regions in the genome. UDHS were derived from 468 human and 116 mouse DNase-seq datasets, 

which include 2,723,010 unique non-overlapping DNase-seq peaks in human (hg38) and 

1,529,448 in mouse (mm10), each DHS with a minimum length of 50 bp. 

 

Public Transcription Factor Binding Profiles 



 

We collected 3485 public transcription factor ChIP-seq datasets in human and 3055 in mouse from 

various cell types and tissues from Cistrome Data Browser (Mei et al., 2017). For each dataset, TF 

binding sites (ChIP-seq peaks) were identified using MACS2 with default parameters and peaks 

with fold enrichment of at least 5 were retained. For each TF ChIP-seq dataset, a TF binding binary 

profile is generated on the UDHS. A UDHS is assigned as bound (score 1) if the UDHS region is 

overlapped with a TF ChIP-seq narrow peak, otherwise assigned as unbound (score 0).  

 

Public Data Compendium for Standardization 

 

Two datasets were collected as compendium for the analysis of human datasets. For gene set input, 

505 gene sets with at least 200 genes were selected from chemical and genetic perturbation sets of 

molecular signature database (MSigDB): http://software.broadinstitute.org/gsea/msigdb. For 

ChIP-seq dataset input, 366 H3K27ac profiles from various cell lines were collected. For the 

analysis of mouse datasets, 267 H3K27ac profiles were used for both geneset and ChIP-seq input.  

Wilcoxon statistic scores of all TFs across compendium were calculated and used for the 

standardization of statistic score for each TF for each input.  

 

Test Gene Sets 

 

Six gene sets were used as examples to test the prediction performance of BART. These gene sets 

were derived from differentially expression analysis and can be treated as target genes of known 

transcription factors. These gene sets include: up-regulated genes upon activation of the estrogen 



receptor ESR1 in breast cancer cell line MCF7 (Carroll et al., 2006); up-regulated genes upon 

activation of the androgen receptor AR in prostate cancer cell line LNCaP (Q. Wang et al., 2007); 

up-regulated genes upon activation of the glucocorticoid receptor NR3C1 in lung cancer cell line 

A549 (Muzikar et al., 2009); induced genes during adipogenesis regulated by the peroxisome 

proliferator-activated receptor gamma (PPARG) (Mikkelsen et al., 2010); gamma secretase 

inhibitor (GSI) sensitive genes as NOTCH1 targets in leukemia cell line CUTLL1 (H. Wang et al., 

2014); and down-regulated genes upon shRNA knock-down of POU5F1 in human embryonic stem 

cell line H1 (Kunarso et al., 2010). 
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Supplementary Figure S1. Distribution of the fraction of peaks overlapping with UDHS for
each human ChIP-seq dataset. For most transcription factors (81%), more than 80% of
peaks in their ChIP-seq profiles are overlapped with UDHS.



Supplementary Figure S2. Genome-wide transcription factor binding specificity compared
with tissue/cell-type specificity. For each transcription factor with more than 50 ChIP-seq
datasets among the 3485 collected human datasets, the Yule distance between each pair of
datasets from different tissue types was calculated (orange). For each tissue type with more
than ChIP-seq 50 datasets, the Yule distance between each pair of datasets of different
factors was calculated (blue). Higher Yule distance indicates less similarity. P=0.0004, by
one-side Mann Whitney U test.



Supplementary Figure S3. Global distribution of transcription factors on UDHS.
(A) X-axis represents the mean value of Wilcoxon statistic scores in all 505 MSigDB datasets
for each of the 454 TFs in human, and y-axis the mean value of Wilcoxon statistic scores in
H3K27ac datasets. Spearman rank correlation of these two sets of data is 0.95.
(B) Distribution of mean Wilcoxon statistic score of each TF across all 505 MSigDB gene
sets.
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Supplementary Figure S4. BART prediction of functional TFs on six differentially expressed
gene sets, which were collected from perturbation of AR, ESR1, NOTCH1, NR3C1, PPARG
and deletion treatment of POU5F1. The red dot in the box plot represents the relative rank of
target TF in the final results, and the cumulative distribution plot compares the distribution of
AUC scores from target TF with AUC scores of all datasets. BART accurately predicted most
target TF as most functional associated TF in these 6 gene sets.
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Supplementary Figure S5. Distribution of the Rank of the true transcription factor in the
BART prediction results for the 6 test gene sets, using each of the 30 MARGE outputs. AR,
NOTCH1, POU5F1, and PPARG are robustly ranked on top, indicating the BART prediction
is robust to the randomness of MARGE results.



Tool name Search space from 
gene TSS Promoter/enhancer Sequence 

motif
ChIP-seq
data Reference

ENCODE 
ChIP-Seq 
Significance 
Tool

[ - 5kb, TTS + 5kb ] Promoter + proximal 
enhancer √ Auerbach et al., 

2013

HOMER [ - 2kb, + 2kb ] Promoter √ Heinz et al., 2010

iRegulon [ - 10kb, + 10kb ] Promoter + proximal
enhancer √ √ Janky et al., 2014

Pscan [ - 1kb, 0 ] Promoter √ Zambelli et al., 
2009

BART [ - 100kb, + 100kb ], 
genome-wide Promoter + enhancer √

Supplementary Table 1: Methodology comparison between 4 existing tools and BART.



AR ESR1 NR3C1 NOTCH1 POU5F1 PPARG

ENCODE ChIP-Seq 
Significance Tool NA NA 1/61 NA NA NA

HOMER 4/364 221/364 2/364 NA 14/364 28/364

iRegulon 43/62 NA 1/45 NA 1/65 NA

Pscan 97/579 490/579 153/579 NA 244/579 29/579

BART 1/454 2/454 47/454 1/454 1/454 1/454

Supplementary Table 2: Performance comparison between 4 existing tools and BART. For
each case study, the same gene set is used as query. For each prediction result, the rank of
the true transcription factor is shown as the numerator, and the total number of transcription
factors included in each prediction result is shown as the denominator. NA, the tool is not
able to identify the true factor.


