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1 Overview

Some approaches [61, 107, 26] employ Over-Representation Analysis (ORA) in
order to understand the mode of actions (MoA) of drugs and their potential new
usages. The most recent approach [61], DGE-NET, is based on the hypothe-
sis that drugs with similar binding patterns (to a reference target protein) have
similar molecular activities. In step 1, drug-target interactions (drug-target sig-
natures) are predicted. DGE-NET ranks drugs that most likely bind to a given
target based on similarity scores between di↵erent drugs and the given target.
To do this, a modified version of Train, Match, Fit and Streamline (TMFS) [33]
is used. TMFS determines the binding potential of a protein-ligand complex in-
corporating docking, three-dimensional shape, and ligand physicochemical data.
For a given protein target, the top 40 drugs (1% of all drugs) are selected as
hits for the next step. In step 2, the associations between the drug-target sig-
natures on the one hand, and diseases, pathways, functions, and protein-protein
interactions on the other hand, are identified. To this end, a hypergeometric
test is applied at di↵erent biological levels: protein targets, protein-protein in-
teractions (PPIs), cell signaling pathways, and molecular functions. In this step,
gene expression data of the given disease is exploited to identify di↵erentially
expressed genes by comparing the expression values of two groups of samples:
normal and disease. DAVID [57, 56] and STRING analysis [38] is applied on the
list of di↵erentially expressed genes to indicate the associations at di↵erent levels
(by computing z-scores). The identified associations are validated based on the
current literatures and annotated databases. DGE-NET is applied to human dis-
ease gene expression datasets: rheumatoid arthritis, inflammatory bowel disease,
Alzheimer’s disease, and Parkinson’s disease to prioritize FDA-approved drugs
for repurposing purposes.

Another approach [107] performs the pathway enrichment analysis to inves-
tigate MoA and clinical functions of the FDA-approved drugs. First, it se-
lects sixteen FDA-approved drugs (with available target information) from Drug-
Bank [154]. Then, it retrieves primary and secondary targets of these drugs from
MMDB [87], PubChem [80] and GEO datasets [36]. And finally, it applies the
enrichment analysis based on a modified Fisher’s Test using the drug targets and
pathways data. Pathways are ranked based on the numbers of retrieved drug
targets involved in each pathway. Pathways with p-values <0.05 are chosen for
further investigations.

The third method using an ORA approach analyzes the associations among
drugs, targets and biological functions [26]. It assigns drugs into nine classes
based on their targets: (1) G protein-coupled receptors, (2) cytokine receptors,
(3) nuclear receptors, (4) ion channels, (5) transporters, (6) enzymes, (7) protein
kinases, (8) cellular antigens and (9) pathogens. Then, it employs an enrichment
analysis to identify the associations between the drugs and features including
GO terms [7] and KEGG (http://www.genome.ad.jp/kegg/) pathways. Thus,
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given the drug and the KEGG pathway (or GO term), an enrichment score is
computed as S KEGG (or S GO) based on the result of hypergeometric test (p-
value). Overall, 279 KEGG pathways and 17,904 GO terms are exploited to
obtain the enrichments scores. Each drug is represented by 279 S KEGG enrich-
ment scores and S GO 17,904 enrichment scores. Finally, the feature selection
minimum redundancy maximum relevance (mRMR) method [110] is used to ex-
tract the key features. Pathways and GO terms that are highly enriched by several
classes of drugs can be investigated for drug interaction predictions. For instance,
the neuroactive ligand-receptor interaction pathway is enriched with two classes:
GPCR and IC. This suggests that drugs with di↵erent targets may belong to
the same biological pathway, thus also suggesting a potential for synergistic drug
interactions.

The lack of a unifying analysis at system-level makes such ORA methods
limited.

In this study, we use: i) KEGG signaling pathways, ii) drug target data,
and iii) disease associated genes to construct a global network with genes spe-
cific to the drug and disease of interest (called drug-disease network, DDN). We
then measure gene perturbation signatures for drug-disease pairs by propagating
measured expression changes across the network topology.

Figure 1 shows the DDN network constructed for Sunitinib, the proposed
candidate for IPF. This network consists of 782 genes, including the Sunitinib
target genes: CSF1, FLT(1,3,4), KDR, LYN, PDGFR(↵,�), and IPF-associated
gene SRC. Figure 2 focused on four genes (CSF1, KDR, PDGFR↵, SRC) of this
network, among which KDR, PDGFR↵, SRC are also target genes of Nintedanib
(FDA-approved drug for IPF). CSF1 is a source node (indegree=0) associated to
18 downstream genes, including KDR and PDGFR↵ through PI3K-Akt signaling
pathway. Recent preclinical studies in IPF show that the antifibrotic e↵ect of
Nintedanib is associated with the inhibition of tyrosine phosphorylation on CSF1
receptor [145]. Another clinical study suggests the important role of CSF1 in the
pathogenesis of pulmonary fibrosis both in mice and in patients with IPF through
the contribution of mononuclear phagocytes and CCL2 production [9, 16]. In
total, there are 39 genes directly upstream of SRC, including KDR and PDGFR↵,
which are incorporated in calculating the amount of perturbation for SRC.

Methods based on protein-protein interactions that employ over-representation
analysis (ORA) are limited by the fact that each gene is analyzed independently
without a unifying analysis at a system level, while the proposed approach aims
to consider the system-level dependencies and interactions on the drug-disease-
specific network. One of the existing approaches for drug repurposing is based on
an over-representation analysis of various pathways, based on the genes targeted
by a given drug [61]. Based on this approach, a drug is first associated with
pathways based on its directly targeted genes. Using this approach, Sunitinib
can be associated to the following KEGG pathways: MAPK signaling pathway,
Cytokine-cytokine receptor interaction, VEGF signaling pathway, and Pathways
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Figure 1: The DDN network constructed for Sunitinib, the proposed drug candi-
date for IPF.

in cancer. Subsequently, Issa et al. expand the set of genes to include the genes
having direct interactions with the Sunitinib target genes using PPI data, and re-
calculated the pathways enriched in these “predicted targets”. Table 1 shows the
list of pathways that are significantly enriched in such predicted targets (FDR-
corrected p-values less than 0.05). Although this type of ORA analysis could
provide useful associations between Sunitinib and various pathways, extrapolat-
ing from pathways to diseases may not be optimal since there are many diseases
that might be relevant to these pathways. For instance, the KEGG pathway Path-
ways in cancer is associated with over 1,000 diseases according to CTD [90] (list
included in the supplementary files). This illustrates why this simple pathway-
based enrichment approach cannot be used for e↵ective drug repurposing and
explains why our system-level analysis is able to provide much more specific re-
sults.

In summary, the limitations of these methods can be summarized as follows:
i) the obtained target proteins might not be the exact target of a drug (for in-
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Figure 2: A subnetwork of DDN constructed for Sunitinib, the proposed drug
candidate for IPF. PDGFRA, KDR, SRC are target genes of both Sunitinib
and Nintedanib (FDA-approved drug for IPF), while CSF1 is targeted only by
Sunitinib. Recent preclinical studies in IPF show that the antifibrotic e↵ect of
Nintedanib is associated with the inhibition of tyrosine phosphorylation on CSF1
receptor [145]. Another clinical study suggests the important role of CSF1 in the
pathogenesis of pulmonary fibrosis both in mice and in patients with IPF through
the contribution of mononuclear phagocytes and CCL2 production [9, 16]. In
total, there are 39 genes directly upstream of SRC, including KDR and PDGFR↵,
which are incorporated in calculating the amount of perturbation for SRC.
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Table 1: A list of pathways that are significantly enriched in predicted target
genes for Sunitinib (FDR-corrected p-value < 0.05).

Pathway pORA.fdr

PI3K-Akt signaling pathway 1.08E-18
Cytokine-cytokine receptor interaction 1.11E-15
Focal adhesion 2.80E-14
Pathways in cancer 1.20E-12
Melanoma 1.75E-07
Prostate cancer 8.30E-07
mTOR signaling pathway 1.08E-06
Gap junction 1.29E-05
MAPK signaling pathway 3.73E-05
Glioma 3.73E-05
HIF-1 signaling pathway 3.73E-05
Endocytosis 0.00088
Pertussis 0.00093
Regulation of actin cytoskeleton 0.00093
Rheumatoid arthritis 0.00174
Transcriptional misregulation in cancer 0.00317
Amoebiasis 0.00468
Legionellosis 0.00638
Acute myeloid leukemia 0.00747
p53 signaling pathway 0.00904
Long-term potentiation 0.00943
Hepatitis B 0.00982
HTLV-I infection 0.01044
Hypertrophic cardiomyopathy (HCM) 0.01341
Progesterone-mediated oocyte maturation 0.01341
Calcium signaling pathway 0.01605
Oocyte meiosis 0.02104
Osteoclast di↵erentiation 0.04606
Amyotrophic lateral sclerosis (ALS) 0.04606
Insulin signaling pathway 0.04798
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stance, they can be indirectly associated to the drug because of down or upstream
proteins or cross-talk e↵ects); ii) the target(s) of a drug have a limited ability
to identify the pathways based on enrichment alone since one or a few genes on
a pathway are unlikely to constitute su�cient statistical evidence; iii) the drug
targets might be involved in variety of pathways that are not specifically related
to the drug primary target. Thus such methods may fail in identifying signifi-
cant pathways related to biological functions of the drug based on their target
information.

Although existing drug repurposing methods showed moderate success, they
are far from bringing critical advancements in the drug development pipeline.
Most of these approaches rely only on an analysis of a set of di↵erentially ex-
pressed genes. However, changes in genes expression are propagated in the sys-
tem through a complex gene signaling network and this fact is not captured by
approaches using only lists of DE genes [35, 95, 72].

It has been shown that many drugs exert their e↵ect through modulation of
several proteins rather than single targets [106, 54, 117, 106, 53]. Furthermore, the
analysis by [162] shows that not all drugs directly impact the proteins associated
with the root cause of a disease. These findings suggest that drug repurposing
may be more successful if it used novel paradigms, going beyond lists of genes.

2 Materials and methods

2.1 Drug gene expression data

The drug data come from two di↵erent sources: i) Connectivity map (CMap) [78]
ii) NIH’s Library of Integrated Network-based Cellular Signatures (LINCS) (http:
//www.lincsproject.org/). In order to avoid any bias, we had to use four in-
stances (with the highest number of DE genes) for any drugs that we consider
from LINCS. The LINCS signature profiles are derived from comparing expres-
sion values of a small molecule to the control profiles (z-score with respect to
vehicle control). For each gene, we calculate the p-value based on the z-score by
using the normal distribution. We eliminate datasets that had fewer than 1%
DE genes (FDR-corrected p-value < 0.05). In total, 260 datasets involving 65
distinct small molecules pass these criteria.

The CMap database has 6,100 gene expression profiles for 1,309 distinct small
molecules measured on di↵erent cell lines. In order to take advantage of cell line
diversity, in this work we used all cell lines. These profiles are pre-processed using
the Robust Multi-chip Average (RMA) method [60]. Then, for each gene we use
a moderated t-test [136] to calculate the p-value. We eliminate datasets that
had fewer than 1% DE genes (FDR-corrected p-value < 0.05). Various drugs are
represented by di↵erent number of instances. In order to avoid any bias related
to the number of instances available for each drug, and because we have several
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FDA-approved drugs for each condition, we select only instances with the highest
number of DE genes for each drug (at most two instances). In total, 170 drug
datasets involving 121 distinct small molecules pass these criteria.

We use two sources: i) Connectivity map (CMap) [78] for breast cancer and
prostate cancer, and ii) NIH’s Library of Integrated Network-based Cellular Sig-
natures (LINCS) for idiopathic pulmonary fibrosis (IPF) and non-small cell lung
cancer. We used two di↵erent data sources in order to show the approach is reli-
able and works independently of the source of the drug data. CMap database has
several of FDA-approved drugs for breast cancer and prostate cancer but none
for idiopathic pulmonary disease (IPF). So, for IPF we used LINCS database
that has several gene expression profiles for Nintedanib (an FDA-aproved drug
for IPF).

We chose to use LINCS for non-small cancer (NSCLC) rather than CMap for
two reasons. First, more FDA-approved drugs belong to this database. (four
drug instances for each of FDA-approved drugs: Gefitinib and Crizotinib). In
comparison, the only FDA-approved drug for NSCLC in CMap is Paclitaxel and
there is only one instance for this drug. Second, in LINCS, 123 out of 260 drug
instances are measured on the A549 cell line that is the human lung adenocarci-
noma epithelial cell line (a model For NSCLC). Since IPF is a chronic progressive
and ultimately fatal disease that did not have any e↵ective treatment until re-
cently, we were interested to see if our proposed approach is able to predict any
new treatments for this disease.

2.2 A systematic method to select the repurposing can-
didates

As we described in the manuscript, we used a systematic scoring and ranking
method in order to select repurposing drug candidates for a given indication.
As shown in Panel A of Figure 3, given a ranked-list of drugs (drug instances)
obtained by applying our approach on a disease dataset, a score for drug Drug

x

is defined as Score(Drug

x

) = a � b, where terms a and b denote the number of
already FDA-approved drugs (gold standards) that are ranked worse and better
than Drug

x

, respectively. Panel B in this figure shows the computed scores for
a number of top-ranked dugs from non-small cell lung cancer (NSCLC) results.
In total, there are 8 FDA-approved drugs for NSCLC in our drug input list.
For instance, the score assigned to GSM1740080 sunitinib for the GSE11969-
adenocarcinoma dataset is 6, as there is only one FDA-approved drug (highlighted
with green) ranked better than GSM1740080 sunitinib and there are 7 FDA-
approved drugs ranked below it (7-1=6). A score of 8 means that each candidate
ranked higher than all 8 instances of FDA-approved drugs.

Table II in Panel B summarizes the scores assigned to GSM1741743 sirolimus,
GSM1738326 mocetinostat, and GSM1740080 sunitinib using 4 NSCLC datasets.
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We then calculate an average score for each drug across di↵erent disease datasets,
and di↵erent instances, if there are multiple instances for that drug. This is shown
in Figure 4.

We select the top 5% of drugs ranked lists obtained by applying our approach
on disease datasets and rank such drugs based on the scores computed by the
systematic method, from highest to the lowest.
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Figure 3: A) Given a ranked-list of drugs (drug instances) obtained by applying our

approach on a disease dataset, a score is assigned to each drug indicating how better or

worse that drug is ranked in comparison to already FDA-approved drugs. The score for

Drug

x

is defined as Score(Drug

x

) = a�b, where a and b denote the number of already

FDA-approved drugs that are ranked worse and better than Drug

x

, respectively. B)

The non-small cell lung cancer (NSCLC): in total there are 8 drugs that are already

FDA-approved for treatment of NSCLC. Table I shows the lists of 10 top-ranked drugs,

results of the proposed approach using 4 NSCLC datasets: GSE11969-adenocarcinoma,

GSE11969-large cell carcinoma, GSE11969-squamous cell carcinoma, and GSE32863-

adenocarcinoma. The scores for GSM1741743 sirolimus, GSM1738326 mocetinostat,

and GSM1740080 sunitinib across NSCLC datasets are summarized in Table II. A score

of 8 means that each candidate ranked higher than all 8 instances of FDA-approved

drugs.
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Figure 4: A systematic method to select repurposing drug candidates. A) Given
a set of ranked lists of drugs (drug instances), we compute a score for each drug.
B) We then calculate an average score for each drug instance across di↵erent
lists (using disease datasets). C) Finally, we calculate an average score for each
distinct drug across the instances, in case there are multiple instances for that
drug.
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3 Results

Table 2 shows the proposed candidates for treatment of four human diseases: IPF,
NSCLC, prostate cancer, breast cancer, and preliminary evidences that support
the usefulness of those candidates in treatment of the given diseases.

Table 2: Preliminary support by preclinical or clinical studies showing the thera-
peutic potential of the proposed candidates. These candidates are currently FDA-
approved but for other indications.
Disease Proposed candidate Preclinical/clinical evidence ClinicalTrials.gov ID
IPF Sunitinib [48, 122, 75]

Dabrafenib [163, 104, 86]
Nilotinib [6, 52, 4, 18, 1, 24, 120, 47]

NSCLC Sunitinib [137, 101] NCT00372775,NCT00092001,NCT00864721,NCT00693992
Sirolimus [14, 130, 46, 37] NCT00923273
Everolimus [46, 138, 113] NCT01061788
Ponatinib [22, 23, 118, 39, 147, 41] NCT01813734

Prostate cancer Podophyllotoxin [44, 25, 74, 11, 29, 55, 84]
Acetylsalicylic acid [100, 49, 62, 128, 28, 135, 85,

13]
NCT02757365,NCT03103152,NCT02804815

Papaverine [45, 132, 58]
Mefloquine [42, 134, 158]
Vorinostat [15, 34, 19, 69] NCT00330161,NCT00589472
Sirolimus [20, 5, 116, 59] NCT00311623,NCT02565901

Breast cancer Captopril [125, 65, 68, 76, 129, 98] NCT00086723
Glibenclimiade [109, 2, 114, 161, 102, 124]
Fluorometholone [71, 81, 66]
Etoposide [8, 166, 165] NCT01492556,NCT00026949,NCT01589159
Colchicine [141]
Tretinoin [142, 17, 83, 108, 40]

3.1 Idiopathic pulmonary fibrosis (IPF)

The list of IPF datasets we used in our analysis is summarized in Table 3.

Table 3: Idiopathic pulmonary fibrosis (IPF) datasets
Dataset Source Samples

GSE1724 NCBI GEO [119] Treated (TGFbeta) vs untreated
GSE21369 NCBI GEO [27] Interstitial lung disease vs healthy
GSE24206-advanced NCBI GEO [94] Advance stage IPF vs healthy
GSE24206-early NCBI GEO [94] Early stage IPF vs healthy
GSE44723 NCBI GEO [111] Rapid progressing IPF vs healthy
LGRC Lung Genomics Research Consortium Interstitial lung disease vs healthy

Gold standard:Nintedanib is the only FDA-approved drug for IPF in our
drug input datasets (highlighted as green). It inhibits RTKs such as PDGFR (↵
, �), FGFR(1,2,3), VEGFR(1,2,3), and FLT3, among them, FGFR, PDGFR,
and VEGFR have been implicated in the pathogenesis of IPF. Additionally,
Nintedanib inhibits nRTKs such as Lck, Lyn and Src kinases [70, 115, 92, 140,
51, 155, 47].

We select the top 5% of drugs ranked lists obtained by applying the proposed
approach on 6 IPF datasets. As shown in Table 4, these drugs are ranked from
the highest to the lowest, based on their scores. The score assigned to Nintedanib
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Table 4: The top 5% drugs obtained from the result of our repurposing approach.
These drugs are ranked based on the scores generated by the systematic method.
The * denotes the drugs that are currently FDA-approved but for other indica-
tions. The score for Nintedanib, the FDA-approved drug for IPF, is 0. Drugs
with the same scores are sorted based on their average ranks.

Drug Score

Saracatinib 1.5
Nintedanib 0
Linifanib -0.67
Sunitinib * -1.42
Buparlisib -1.83
GDC-0941 -1.92
Alvocidib -2.58
Dabrafenib * -2.67
Nilotinib * -2.83
Gefitinib * -2.92
Idelalisib * -2.92
CH5424802 -3
Everolimus * -3
Dovitinib -3
Rucaparib * -3.08
Celastrol -3.08
NVP-BEZ235 -3.17
Selumetinib -3.17
Erlotinib * -3.58
Sirolimus * -3.58

is 0. Since we have four instances for Nintedanib, drugs scores range between -4
and 4. The largest negative score for a drug indicates that drug ranked worse
than all four instances of Nintedanib. Drugs with the same scores are sorted
based on their average ranks in drugs ranked lists.
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3.1.1 Drug-disease networks

We used chord diagrams to represent subnetworks of drug-disease networks (DDN)
for Nintedanib (Figure 5), Sunitinib (Figure 6), Linifanib (Figure 7), and Sara-
catinib (Figure 8). In order to obtain the subnetworks we use IPF-associated
genes belonging to the Pathways in cancer, the target pathway for Nintedanib.
The subnetwork S= (V,E) with the node set V and edge set E is represented as
follow:

S = (V,E) : (V ⇢ Path \ (Disease

t

[Drug

t

)) ^ (E ⇢ DDN) (1)

where Disease

t

= {x1, x2, ..., xn

}, Drug

t

= {y1, y2, ..., yn}, and Path denote the
disease-related genes, drug targets, and the genes on the Pathways in cancer,
respectively.

In the chord diagram, sectors represent the genes and the chords represent
the associations between various genes in the network we built. The red sectors
represent the genes known to be associated to IPF. The green sectors represent
the genes targeted by Nintedanib.

In addition to chord diagrams, we used the edge lists to represent the DDN
subnetworks we construct for the repurposing candidates. In this list, the asso-
ciation between the genes is represented as a tuple (e.g. FGFR1 - KRAS). Ta-
ble 5 shows the edge lists representing DDN subnetworks for repurposing drugs:
Nintedanib, Nilotinib, and Sunitinib. Table 6 shows the edge lists representing
DDN subnetworks for drugs: Linifanib and Saracatinib. These drugs are cur-
rently undergoing clinical trials for several indications (see detail in section 3.1
of the manuscript). Red entires represent genes known to be associated to IPF
disease. Entries representing the Nintedanib target genes are green.
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Figure 5: The chord diagram represents the subnetwork of DDN for Nintedanib,
the FDA-approved drug for IPF. In order to obtain this subnetwork, we used
IPF-associated genes that are included in KEGG’s Pathways in cancer (the target
pathway for Nintedanib). Sectors and chords represent the genes and associations
between the genes in the network, respectively. Red sectors represent genes known
to be associated to IPF disease. Sectors representing the Nintedanib target genes
are green.
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Figure 6: The chord diagram represents the subnetwork of DDN for Sunitinib,
the repurposing candidate for the treatment of IPF. In order to obtain this sub-
network, we used IPF-associated genes that are included in KEGG’s Pathways
in cancer (the target pathway for Nintedanib). Sectors and chords represent the
genes and associations between the genes in the network, respectively. Red sec-
tors represent genes known to be associated to IPF disease. Sectors representing
the Nintedanib target genes are green.
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Figure 7: The chord diagram represents the subnetwork of DDN for Linifanib. In
order to obtain this subnetwork, we used IPF-associated genes that are included
in KEGG’s Pathways in cancer (the target pathway for Nintedanib). Sectors and
chords represent the genes and associations between the genes in the network,
respectively. Red sectors represent genes known to be associated to IPF disease.
Sectors representing the Nintedanib target genes are green.
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Figure 8: The chord diagram represents the subnetwork of DDN for Saraca-
tinib. In order to obtain this subnetwork, we used IPF-associated genes that are
included in KEGG’s Pathways in cancer (the target pathway for Nintedanib).
Sectors and chords represent the genes and associations between the genes in the
network, respectively. Red sectors represent genes known to be associated to IPF
disease. Sectors representing the Nintedanib target genes are green.
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Table 5: The edge lists represent the subnetwork of DDN of drugs: Nintedanib,
Nilotinib, and Sunitinib. Nintedanib is the FDA-approved drug for IPF treat-
ment. Nilotinib and Sunitinib are the repurposing candidates for the treatment of
IPF. In this list, the association between two genes is represented as gene pairs. In
order to obtain the subnetworks, we used IPF-associated genes that are included
in KEGG’s Pathways in cancer (the target pathway for nintedanib). Red entires
represent genes known to be associated to IPF disease. Entries representing the
Nintedanib target genes are green.
Nintedanib Nilotinib Sunitinib
Gene1 ! Gene2 Gene1 ! Gene2 Gene1 ! Gene2 Gene1 ! Gene2 Gene1 ! Gene2 Gene1 ! Gene2
FGFR1 KRAS JUN VEGFA PDGFR↵ KRAS MYC VEGFA FGFR1 KRAS JUN VEGFA
FGFR1 MAPK1 KRAS MAPK1 PDGFR� KRAS NFKB1 BCL2 FGFR1 MAPK1 KRAS MAPK1
FGFR1 MAPK3 KRAS MAPK3 FGF2 PDGFR↵ NFKB1 BIRC2 FGFR1 MAPK3 KRAS MAPK3
PDGFR↵ KRAS MAPK1 CDKN1A FGF2 PDGFR� NFKB1 IL6 PDGFR↵ KRAS MAPK1 CDKN1A
PDGFR� KRAS MAPK1 IL6 HGF PDGFR↵ NFKB1 MMP9 PDGFR� KRAS MAPK1 IL6
FGF2 FGFR1 MAPK1 MMP9 HGF PDGFR� NFKB1 NFKBIA FGF2 PDGFR↵ MAPK1 MMP9
FGF2 FGFR2 MAPK1 MYC VEGFA PDGFR↵ NFKB1 TRAF2 FGF2 PDGFR� MAPK1 MYC
FGF2 FGFR3 MAPK1 NFKB1 VEGFA PDGFR� NFKB1 VEGFA HGF FGFR1 MAPK1 NFKB1
FGF2 PDGFR↵ MAPK1 RELA AKT1 NFKB1 RELA BCL2 HGF FGFR2 MAPK1 RELA
FGF2 PDGFR� MAPK1 TP53 AKT1 NFKBIA RELA BIRC2 HGF PDGFR↵ MAPK1 TP53
HGF FGFR1 MAPK3 CDKN1A AKT1 RELA RELA IL6 HGF PDGFR� MAPK3 CDKN1A
HGF FGFR2 MAPK3 IL6 BAX CASP9 RELA MMP9 VEGFA FGFR1 MAPK3 IL6
HGF FGFR3 MAPK3 MMP9 BAX CYCS RELA NFKBIA VEGFA FGFR2 MAPK3 MMP9
HGF PDGFR↵ MAPK3 MYC BIRC5 CASP9 RELA TRAF2 VEGFA FGFR3 MAPK3 MYC
HGF PDGFR� MAPK3 NFKB1 CASP9 CASP3 RELA VEGFA VEGFA PDGFR↵ MAPK3 NFKB1
VEGFA FGFR1 MAPK3 RELA CYCS CASP3 TGFB1 SMAD3 VEGFA PDGFR� MAPK3 RELA
VEGFA FGFR2 MAPK3 TP53 FOS VEGFA FGF2 FGFR1 MAPK3 TP53
VEGFA FGFR3 MYC MMP2 JUN VEGFA FGF2 FGFR2 MYC MMP2
VEGFA PDGFR↵ MYC MMP9 KRAS MAPK1 AKT1 BCL2 MYC MMP9
VEGFA PDGFR� MYC VEGFA KRAS MAPK3 AKT1 NFKB1 MYC VEGFA
AKT1 NFKB1 NFKB1 BCL2 MAPK1 CDKN1A AKT1 NFKBIA NFKB1 BCL2
AKT1 NFKBIA NFKB1 BIRC2 MAPK1 IL6 AKT1 RELA NFKB1 BIRC2
AKT1 RELA NFKB1 IL6 MAPK1 MMP9 BAX CASP9 NFKB1 IL6
BAX CASP9 NFKB1 MMP9 MAPK1 MYC BAX CYCS NFKB1 MMP9
BAX CYCS NFKB1 NFKBIA MAPK1 NFKB1 BIRC5 CASP9 NFKB1 NFKBIA
BIRC5 CASP9 NFKB1 TRAF2 MAPK1 RELA CASP9 CASP3 NFKB1 TRAF2
CASP9 CASP3 NFKB1 VEGFA MAPK1 TP53 CYCS CASP3 NFKB1 VEGFA
CYCS CASP3 RELA BCL2 MAPK3 CDKN1A FOS IL6 RELA BCL2
CYCS CASP9 RELA BIRC2 MAPK3 IL6 FOS MMP2 RELA BIRC2
FOS MMP2 RELA IL6 MAPK3 MMP9 FOS MMP9 RELA IL6
FOS VEGFA RELA MMP9 MAPK3 MYC FOS VEGFA RELA MMP9
JUN MMP2 RELA NFKBIA MAPK3 NFKB1 JUN IL6 RELA NFKBIA
JUN NFKB1 RELA TRAF2 MAPK3 RELA JUN MMP2 RELA TRAF2
JUN RELA RELA VEGFA MAPK3 TP53 JUN MMP9 RELA VEGFA
JUN VEGFA TGFB1 SMAD3 MYC MMP2 JUN NFKB1 SMAD3 CDKN1A
KRAS MAPK1 TRAF2 BIRC2 MYC MMP9 JUN RELA TGFB1 SMAD3

TP53 CDKN1A
TRAF2 BIRC2
TRAF2 NFKBIA
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Table 6: The edge lists represent the subnetwork of DDN of drugs: linifanib and
saracatinib. These drugs are currently undergoing clinical trials (for conditions
other than IPF) that can be considered for the treatment of IPF. In this list,
the association between two genes is represented as a tuple. In order to obtain
the subnetworks, we used IPF-associated genes that are included in KEGG’s
Pathways in cancer (the target pathway for nintedanib). Red entires represent
genes known to be associated to IPF disease. Entries representing the Nintedanib
target genes are green.

Linifanib Saracatinib
Gene1 ! Gene2 Gene1 ! Gene2 Gene1 ! Gene2
PDGFR� KRAS FGFR1 MAPK1 NFKB1 BIRC2
FGF2 PDGFR� FGFR1 MAPK3 NFKB1 IL6
HGF PDGFR� PDGFR↵ KRAS NFKB1 MMP9
VEGFA PDGFR� FGF2 PDGFR↵ NFKB1 NFKBIA
AKT1 NFKB1 FGF2 PDGFR� NFKB1 TRAF2
AKT1 NFKBIA HGF PDGFR↵ NFKB1 VEGFA
AKT1 RELA HGF PDGFR� RELA BCL2
BAX CASP9 VEGFA FGFR1 RELA BIRC2
BAX CYCS AKT1 NFKB1 RELA IL6
BIRC5 CASP9 AKT1 NFKBIA RELA MMP9
CASP9 CASP3 AKT1 RELA RELA NFKBIA
CYCS CASP3 BAX CASP9 RELA TRAF2
JUN VEGFA BAX CYCS RELA VEGFA
KRAS MAPK1 BIRC5 CASP9 TGFB1 SMAD3
KRAS MAPK3 CASP9 CASP3
MAPK1 CDKN1A CYCS CASP3
MAPK1 IL6 FGF2 FGFR1
MAPK1 MMP9 FOS IL6
MAPK1 MYC FOS VEGFA
MAPK1 NFKB1 HGF FGFR1
MAPK1 RELA JUN NFKB1
MAPK1 TP53 JUN RELA
MAPK3 CDKN1A JUN VEGFA
MAPK3 IL6 KRAS MAPK1
MAPK3 MMP9 KRAS MAPK3
MAPK3 MYC MAPK1 CDKN1A
MAPK3 NFKB1 MAPK1 IL6
MAPK3 RELA MAPK1 MMP9
MAPK3 TP53 MAPK1 MYC
MYC MMP2 MAPK1 NFKB1
MYC MMP9 MAPK1 RELA
MYC VEGFA MAPK1 TP53
NFKB1 BCL2 MAPK3 CDKN1A
NFKB1 BIRC2 MAPK3 IL6
NFKB1 NFKBIA MAPK3 MMP9
NFKB1 TRAF2 MAPK3 MYC
NFKB1 VEGFA MAPK3 RELA
RELA BCL2 MAPK3 TP53
RELA BIRC2 MYC MMP2
RELA NFKBIA MYC MMP9
RELA TRAF2 MYC VEGFA
RELA VEGFA NFKB1 BCL2
TGFB1 SMAD3 NFKB1 BIRC2
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3.1.2 Drug-drug networks

Figures 9 and 10 show the drug-drug networks we generated using the known
knowledge (target pathways and target genes) of Nintedanib (FDA-approved for
IPF treatment) and top-ranked candidates for IPF, where circles correspond to
drugs, and two drugs being connected if they share target pathways or target
genes, respectively. The target pathways and target genes of drugs (represented
by rectangles) are obtained from KEGG and Drugbank [154].

Figure 9: Drug-drug network is generated using the known knowledge of drugs
target genes, obtained from KEGG and Drugbank [154]. Circles and rectangles
correspond to drugs and target genes, respectively. Drugs are connected to each
other based on their common target genes. Nintedanib (shown with green circle)
is FDA-approved for treatment of IPF. VEGFR(1,2,3), PDGFR (↵,�), FGFR
(1,2,3), SRC, FLT3, and KIT are known to be target genes of Nintedanib [70,
115, 92, 140, 51, 155, 47].
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Figure 10: Drug-drug network is generated using the known knowledge of drugs
target pathways, obtained from KEGG. Circles and rectangles correspond to
drugs and target pathways, respectively. Drugs are connected to each other
based on their common target pathways. Nintedanib (shown with green circle) is
FDA-approved for treatment of IPF. Pathways in cancer is known as the target
pathway for Nintedanib.
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3.2 Non-small cell lung cancer

We obtained four non-small cell lung cancer (NSCLC) datasets from Gene Expres-
sion Omnibus (GEO): GSE32863 (adenocarcinoma) [133] and GSE11969 (sub-
types: adenocarcinoma, large cell carcinoma, squamous cell carcinoma) [144].
Adenocarcinoma (40% of lung cancers), squamous cell carcinoma (25% of lung
cancers), and large cell carcinoma (10% of lung cancers) are three main subtypes
of NSCLC.

Gold standards: Gefitinib and Crizotinib are the FDA-approved drugs for
treatment of NSCLC. These drugs are included in our list of input drugs from
LINCS. On all NSCLC datasets, three computational approaches were compared
in terms of their ability to highly rank the instances of Gefitinib and Crizotinib
that exist in the LINCS drug database.

Erlotinib is used as the maintenance treatment of locally advanced or metastatic
NSCLC patients with no progress in their disease after four cycles of platinum-
based first-line chemotherapy. It is also indicated after failure of at least one prior
chemotherapy regimen in patients with NSCLC. Since Erlotinib is limited to very
specific patients with NSCLC and none of our datasets fulfill such limitations,
we did not consider it as the gold standard. However, the proposed approach is
significantly better than the other two approaches even if Erlotinib were to be
included as the gold standard.

Tables 8–11 show the results obtained on four NSCLC datasets using: i) the
proposed approach, ii) the drug-disease approach, and iii) the anti-correlation
approach. The FDA-approved drugs for NSCLC are highlighted in green.

We selected the top 5% of drugs ranked lists obtained by applying the pro-
posed approach using 4 NSCLC datasets. As shown in Table 7, these drugs are
ranked according to the scores computed by the systematic method from the
highest to the lowest. The sum of the scores assigned to Gefitinib and Crizo-
tinib (the FDA-approved drugs for NSCLC) is 0. Drugs with the same scores are
sorted based on their average ranks in drugs ranked lists.

Proposed candidates: We propose the FDA-approved drugs: Sunitinib (p
= 0.0009), Sirolimus (p = 0.0009), Enzastaurin (p = 0.0009), Everolimus (p =
0.001), and Ponatinib (p = 0.004) as repurposing candidates for treatment of
NSCLC. Although Mocetinostat, Roscovitine, and Saracatinib are not approved
by FDA yet, they can be prioritized for further investigations.

As discussed earlier, Sunitinib is an oral, small-molecule that inhibits RTKs,
including VEGFR and PDGFR. Recent clinical trials have reported that Suni-
tinib has the provocative single-agent activity in previously treated patients with
recurrent and advanced NSCLC [137, 101]. Sunitinib has completed the phase
II of clinical trials for treatment of patients with NSCLC (ClinicalTrials.gov IDs:
NCT00372775, NCT00092001, NCT00864721). The phase III of clinical trials on
Sunitinib as a potential maintenance therapy in NSCLC patients has been com-
pleted. These patients had received four cycles of platinum-based chemotherapy
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Table 7: The top 5% of drugs obtained from the result of the proposed approach.
These drugs are ranked based on the scores generated by the systematic method.
The * denotes the drugs that are currently FDA-approved but for other indica-
tions. Gefitinib and Crizotinib, as highlighted with green, are FDA-approved for
the treatment of NSCLC. Drugs with the same scores are sorted based on their
average ranks in drugs ranked lists.

Drug Score

Sunitinib * 4.625
Mocetinostat 2.75
Gefitinib 1.75
Roscovitine -1
Sirolimus * -1
Enzastaurin * -1.75
Crizotinib -1.75
Everolimus * -2
Ponatinib * -2.25
Saracatinib -2.25
Rucaparib * -3.125
Dasatinib * -3.375
Linifanib -3.625
Mitoxantrone * -4.625

without disease progression. The result of the trials has not published yet (Clin-
icalTrials.gov ID: NCT00693992).

Sirolimus, also known as Rapamycin, is a potent immunosuppressant that
inhibits mammalian target of rapamycin (mTOR). The positive e↵ect of Sirolimus
in inhibiting the growth and progression of NSCLC is supported by several clinical
studies [37, 14, 130, 46]. The phase I/II clinical trials have been launched to test
the e�ciency of Sirolimus in combination with Pemetrexed for treating patients
with NSCLC (ClinicalTrials.gov ID: NCT01061788). The phase I clinical trials
of Sunitinib and Sirolimus confirm that this combination is well-tolerated and
warrants further investigation in advanced NSCLC [152](ClinicalTrials.gov ID:
NCT00555256).

Everolimus is a derivative of rapamycin (Sirolimus). It is approved by FDA
for treatment of several conditions, including breast cancer, advanced renal cell
carcinoma, renal angiomyolipoma, and tuberous sclerosis. It has shown antitu-
mor activity both as the single agent and in combination with other agents in
treatment of patients with NSCLC. Several clinical trials support the e�cacy
of Everolimus in treatment of NSCLC [113, 138, 46, 148] (ClinicalTrials.gov ID:
NCT00096486).

Increased levels of protein kinase C (PKC) and AKT are known to be asso-
ciated with the poor prognosis in NSCLC [32, 103]. Enzastaurin, an oral ser-
ine/threonine kinase inhibitor, suppresses PKC and protein kinase B/AK trans-
forming (AKT) signaling, induces tumor cell apoptosis, and inhibits the pro-
liferation and angiogenesis [103]. Enzastaurin is proven to inhibit the growth
of NSCLC cell lines [97, 146, 103]. The Phase II evaluation of Enzastaurin as
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the second-and third- line treatment for NSCLC has completed with promising
results (ClinicalTrials.gov ID: NCT00105092).

Fibroblast growth factor receptors (FGFRs) are known to be overexpressed in
NSCLC [131, 10]. Ponatinib is proven to be e↵ective against the FGFR1 kinase
in 8p11 myeloproliferative syndrome (EMS) [23]. In particular, It has been shown
that Ponatinib can suppress cell growth in NSCLC cell lines [118, 147]. Several
studies reported that RET fusions are viable targets in NSCLC [41, 39, 22]. The
phase II of the clinical trial (ClinicalTrials.gov ID: NCT01813734) is currently
evaluating the safety and the e↵ectiveness of the RET inhibitor Ponatinib in
treating patients with NSCLC.

It has been reported that HDAC inhibitor Mocetinostat may restore normal
cell function and reduce or inhibit the tumor growth [99]. A phase 1/2 clinical
trial of Mocetinostat, in combination with Durvalumab is currently ongoing in
treating patients with solid tumors and NSCLC to evaluate the safety and e�cacy
of this combination [50] (ClinicalTrials.gov IDs: NCT02805660). Another clinical
trial is currently undergoing to evaluate the clinical activity of Nivolumab in
combination with three separate drugs, Glesatinib, Sitravatinib, or Mocetinostat
in NSCLC (ClinicalTrials.gov ID: NCT02954991, phase II).

Roscovitine is an experimental drug in the class of pharmacological cyclin-
dependent kinase (CDK) inhibitors. Current clinical studies [105, 31] suggest
the combination of Roscovitine and Belinostat in treating patients with NSCLC.
The phase II study of Roscovitine as a single agent in previously-treated patients
with non-small cell lung cancer has terminated with no data reported (Clinical-
Trials.gov ID: NCT00372073).

Saracatinib is an inhibitor of SRC kinases that may improve NSCLC treat-
ment [126, 127, 167]. It is undergoing phase II of clinical trials in treatment of
patients with NSCLC. (ClinicalTrials.gov ID: NCT00638937).
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Table 8: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE11969-adenocarcinoma dataset (the top 10
drugs). The p-values for Wilcoxon rank sum test comparing the results of the
proposed approach with drug-disease and anti-correlation approaches are 0.01
and 0.005, respectively. Drugs highlighted with green are FDA-approved for the
treatment of NSCLC. The * denotes the drugs that are currently FDA-approved
but for other indications.

GSE11969-adenocarcinoma
Proposed Drug-disease Anti-correlation

GSM1741743 sirolimus* GSM1746780 erlotinib* GSM1737411 NVP-BGT226
GSM1741104 sunitinib* GSM1738326 mocetinostat GSM1739358 mocetinostat
GSM1738326 mocetinostat GSM1739358 mocetinostat GSM1741104 sunitinib*
GSM1739358 mocetinostat GSM1741104 sunitinib* GSM1740576 BI-2536
GSM1746613 enzastaurin GSM1745191 NVP-BEZ235 GSM1738326 mocetinostat
GSM1742552 linifanib GSM1745674 dovitinib GSM1740923 BI-2536
GSM1742645 gefitinib GSM1742797 palbociclib* GSM1737409 NVP-BGT226
GSM1740080 sunitinib* GSM1745194 NVP-BEZ235 GSM1742797 palbociclib*
GSM1737700 rucaparib* GSM1746864 radicicol GSM1737349 everolimus*
GSM1744393 gefitinib GSM1741767 vorinostat* GSM1745194 NVP-BEZ235

Table 9: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE11969-large cell carcinoma dataset (the top 10
drugs). The p-values for Wilcoxon rank sum test comparing the results of the
proposed approach with drug-disease and anti-correlation approaches are 0.001
and 0.0005, respectively. Drugs highlighted with green are FDA-approved for the
treatment of NSCLC. The * denotes the drugs that are currently FDA-approved
but for other indications.

GSE11969-large cell carcinoma
Proposed Drug-disease Anti-correlation

GSM1741743 sirolimus* GSM1745191 NVP-BEZ235 GSM1737411 NVP-BGT226
GSM1741104 sunitinib* GSM1738326 mocetinostat GSM1740576 BI-2536
GSM1739358 mocetinostat GSM1739358 mocetinostat GSM1740923 BI-2536
GSM1738326 mocetinostat GSM1745194 NVP-BEZ235 GSM1745191 NVP-BEZ235
GSM1740080 sunitinib* GSM1745149 GDC-0980 GSM1745194 NVP-BEZ235
GSM1741800 mitoxantrone* GSM1741767 vorinostat* GSM1739358 mocetinostat
GSM1744393 gefitinib GSM1737642 mocetinostat GSM1745149 GDC-0980
GSM1742645 gefitinib GSM1738308 entinostat GSM1737409 NVP-BGT226
GSM1746613 enzastaurin GSM1742797 palbociclib* GSM1737410 NVP-BGT226
GSM1742878 dasatinib* GSM1739435 belinostat* GSM1741767 vorinostat*
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Table 10: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE11969-large cell carcinoma dataset (the top 10
drugs). The p-values for Wilcoxon rank sum test comparing the results of the
proposed approach with drug-disease and anti-correlation approaches are 0.001
and 0.0003, respectively. Drugs highlighted with green are FDA-approved for the
treatment of NSCLC. The * denotes the drugs that are currently FDA-approved
but for other indications.

GSE11969-squamous cell carcinoma
Proposed Drug-disease Anti-correlation

GSM1741743 sirolimus* GSM1739358 mocetinostat GSM1737411 NVP-BGT226
GSM1741104 sunitinib* GSM1738326 mocetinostat GSM1740576 BI-2536
GSM1740080 sunitinib* GSM1746780 erlotinib* GSM1745149 GDC-0980
GSM1738326 mocetinostat GSM1742797 palbociclib* GSM1745194 NVP-BEZ235
GSM1746613 enzastaurin GSM1737642 mocetinostat GSM1739358 mocetinostat
GSM1739358 mocetinostat GSM1742706 alvocidib GSM1741767 vorinostat*
GSM1744393 gefitinib GSM1745912 neratinib* GSM1737410 NVP-BGT226
GSM1742878 dasatinib* GSM1737967 entinostat GSM1737409 NVP-BGT226
GSM1740081 sunitinib* GSM1738308 entinostat GSM1745191 NVP-BEZ235
GSM1740917 saracatinib GSM1737624 entinostat GSM1741769 sirolimus*

Table 11: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE32863 dataset (the top 10 drugs). The p-values
for Wilcoxon rank sum test comparing the results of the proposed approach with
drug-disease and anti-correlation approaches are 0.007 and 0.007, respectively.
Drugs highlighted with green are FDA-approved for the treatment of NSCLC. The
* denotes the drugs that are currently FDA-approved but for other indications.

GSE32863-adenocarcinoma
Proposed Drug-disease Anti-correlation

GSM1741743 sirolimus* GSM1738326 mocetinostat GSM1738326 mocetinostat
GSM1738326 mocetinostat GSM1739358 mocetinostat GSM1739453 decitabine*
GSM1741104 sunitinib* GSM1743209 nintedanib* GSM1746780 erlotinib*
GSM1740080 sunitinib* GSM1746780 erlotinib* GSM1739358 mocetinostat
GSM1739358 mocetinostat GSM1746881 mitoxantrone* GSM1742878 dasatinib*
GSM1742878 dasatinib* GSM1746893 radicicol GSM1743210 nintedanib*
GSM1744393 gefitinib GSM1742797 palbociclib* GSM1742797 palbociclib*
GSM1740301 ponatinib* GSM1740576 BI-2536 GSM1742706 alvocidib
GSM1740081 sunitinib* GSM1740298 ponatinib* GSM1744393 gefitinib
GSM1742552 linifanib GSM1741767 vorinostat* GSM1740576 BI-2536
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3.3 Prostate cancer

We use three di↵erent prostate cancer datasets. The first dataset is obtained by
comparing gene expression levels between prostate tissues from 6 prostate cancer
samples with 6 healthy samples using A↵ymetrix Human Genome U133 Plus2.0
Array. This dataset is available via GEO (GSE26910) [112]. GSE6919 is the
second dataset that compares 65 primary prostate cancer samples with 18 healthy
samples using A↵ymetrix Human Genome U95A Version 2 Array [164, 21]. The
third dataset is the result of comparing gene expression levels between 69 prostate
cancer patients and 18 normal patients using A↵ymetrix Human Genome U133A
2.0 Array. This dataset is available in GEO (GSE6956) [150].

Gold standard: Nilutamide is the FDA-approved drug for the treatment of
prostate cancer. This antiandrogen drug is included in our list of input drugs
from Connectivity Map. Prostate cancer mostly depends on the androgen for
the growth and survival. Nilutamide is known to block the action of androgens
of adrenal and testicular origin that stimulate the growth of the normal and
malignant prostatic tissue [67].

Tables 13–15 show the results obtained on 3 prostate cancer datasets using: i)
the proposed approach, ii) the drug-disease approach, and iii) the anti-correlation
approach.

We selected the top 5% drugs from the drugs ranked lists obtained by applying
the proposed approach on 3 prostate cancer datasets. As shown in Table 12, these
drugs are ranked according to the scores computed by the systematic method from
the highest to the lowest. The score assigned to Nilutamide is 0. Drugs with the
same scores are sorted based on their average ranks in drugs ranked lists.

Proposed candidates: In this case study, we chose Podophyllotoxin (p =
0.2), Acetylsalicylic acid (p = 0.2), Papaverine (p = 0.01), Mefloquine (p = 0.03),
Vorinostat (p = 0.1), and Sirolimus (p = 0.06) for further evaluations.

Podophyllotoxin is a natural product found in podophyllin resin from the
roots of podophyllum plants. Podophyllotoxin and its derivatives, including De-
oxypodophyllotoxin, are reported to have significant anti-tumor e↵ects in a num-
ber of cancers [84, 11, 29, 25, 74, 44]. A recent study demonstrated that Deoxy-
podophyllotoxin inhibits the cell proliferation and induces the cell apoptosis in
human prostate cancer cells through the Akt/p53/Bax/PTEN signaling pathway,
suggesting that Deoxypodophyllotoxin could be used as a novel chemotherapeutic
drug for human prostate cancer [55].

Acetylsalicylic acid (Aspirin) is a nonsteroidal anti-inflammatory drug
that is used for the temporary relief of di↵erent forms of pain, and the inflam-
mation associated with various conditions. It is also indicated to decrease the
risk of death and myocardial infarction in patients with chronic coronary artery
disease. Recent findings confirm that the long duration regular Aspirin use mod-
estly reduces the risk of prostate cancer [85, 135, 128, 49, 100, 62, 28]. Aspirin
is also reported to a↵ect the proliferation, apoptosis, resistance and metastasis
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Table 12: The top 5% drugs obtained from the result of our repurposing ap-
proach. These drugs are ranked based on the scores generated by the systematic
method. The * denotes the drugs that are currently FDA-approved but for other
indications. The score for Nilutamide, the FDA-approved drug for prostate can-
cer, is 0. Drugs with the same scores are sorted based on their average ranks in
drugs ranked lists.

Drug Score

Podophyllotoxin * 0.33
Nilutamide 0
Acetylsalicylic acid * -0.33
Papaverine * -0.33
Mefloquine * -0.33
Vorinostat * -0.33
Sirolimus * -0.33
Alprostadil * -0.33
Glibenclamide * -0.33
Oxyphenbutazone (discontinued/withdrawn) -0.33
Phenelzine * -0.33
Methylergometrine * -0.33
Parthenolide -0.33
Primaquine * -0.33
Phenoxybenzamine * -0.67
Etoposide * -0.67
Captopril * -0.67
Trichostatin A -0.67
Fluorometholone * -1

of prostate cancer cell lines, suggesting the further evaluation of the signaling
cascades activated by Aspirin in order to improve diagnosis, prognosis and treat-
ment of prostate cancer [13]. According to these findings, Aspirin can be used
for both prevention and treatment purposes in prostate cancer (ClinicalTrials.gov
IDs: NCT02757365, NCT03103152, NCT02804815).

Papaverine is a nonxanthine phosphodiesterase inhibitor that is indicated
for the relief of the cerebral and peripheral ischemia. It induces morphologic dif-
ferentiation and suppresses the proliferation of human prostate cancer cell [45].
Papaverine is reported to have antitumor e↵ects in prostate cancer by induc-
ing significant, highly selective and dose-dependent cytotoxic e↵ects in cancer
cells [58, 132].

Mefloquine (MQ) is a prophylactic anti-malarial drug which acts as a blood
schizonticide and can be a potential treatment for prostate cancer. Recent find-
ings indicate that MQ has anticancer e↵ects in PC3, which is the most commonly
used prostate cancer cell line [158, 159]. MQ has been reported to be potent in
killing cancer cells in vitro, suggested as the chemotherapeutic agent for treat-
ment of glioblastoma and breast cancer cells [42, 134].

Vorinostat is a histone deacetylase (HDAC) inhibitor approved by FDA for
the treatment of patients with cutaneous T-cell lymphoma (CTCL). Inhibition
of the HDAC has resulted in decreasing the tumor growth and reducing cell
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Table 13: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE26910 dataset (the top 10 drugs). The ranks
of Nilutamide, the FDA-approved drug for prostate cancer, in the proposed ap-
proach, drug-disease and anti-correlation approaches results are 9, 13, and 63 ,
respectively. Drug highlighted with green is FDA-approved for the treatment of
prostate cancer. The * denotes the drugs that are currently FDA-approved but
for other indications.

GSE26910
Proposed Drug-disease Anti-correlation

mefloquine 5724 * luteolin 3041 vorinostat 6179 *
mefloquine 2210 * etoposide 1626 * parthenolide 5530
podophyllotoxin 2540 vorinostat 6939 * parthenolide 2885
vorinostat 6179 * phenoxybenzamine 5248 * tanespimycin 2666
phenoxybenzamine 5613 * puromycin 3310 phenoxybenzamine 5248 *
oxyphenbutazone 6844 ciclopirox 2456 * phenoxybenzamine 5613 *
parthenolide 2885 vorinostat 6179 * doxazosin 3024 *
parthenolide 5530 anisomycin 1304 * mycophenolic acid 2857 *
nilutamide 5362 lycorine 3808 etoposide 3241 *

proliferation in prostate cancer, suggesting that Vorinostat could be a potential
drug for treatment of prostate cancer [69, 15, 19, 34] (ClinicalTrials.gov IDs:
NCT00330161, NCT00589472).

The initial preclinical and clinical studies show that the mTOR inhibition
Sirolimus can be useful in treating patients with prostate cancer [30, 59, 116, 20,
5]. Sirolimus and its combination with other drugs are undergoing clinical trials in
treatment of patients with prostate caner (ClinicalTrials.gov IDs: NCT00311623,
NCT02565901).
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Table 14: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE6919 dataset (the top 10 drugs). The ranks
of Nilutamide, the FDA-approved drug for prostate cancer, in the proposed ap-
proach, drug-disease and anti-correlation approaches results are 7, 81, and 129,
respectively. Drugs highlighted with green are FDA-approved for the treatment
of prostate cancer. The * denotes the drugs that are currently FDA-approved
but for other indications.

GSE6919
Proposed Drug-disease Anti-correlation

papaverine 1755 * alvespimycin 1638 doxorubicin 3291 *
vorinostat 6179 * daunorubicin 4983 * doxorubicin 5671 *
etoposide 3241 * tanespimycin 986 daunorubicin 4983 *
alprostadil 2938 * doxorubicin 5671 * mitoxantrone 3232 *
podophyllotoxin 2540* alvespimycin 993 rifabutin 3873 *
methylergometrine 1607 mitoxantrone 3232 * alvespimycin 1638
nilutamide 5362 etoposide 3241 * alvespimycin 993
fluorometholone 6247 * parthenolide 5530 oxyphenbutazone 6844
colchicine 1598 * ciclopirox 3317 * mitoxantrone 5354 *
acetylsalicylic acid 1042 * mitoxantrone 5354 * vorinostat 6939 *

Table 15: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE6956 dataset (the top 10 drugs). The ranks
of Nilutamide, the FDA-approved drug for prostate cancer in the proposed ap-
proach, drug-disease and anti-correlation approaches results are 15, 141, and 90,
respectively. The * denotes the drugs that are currently FDA-approved but for
other indications.

GSE6956
Proposed Drug-disease Anti-correlation

acetylsalicylic acid 1042 * phenelzine 4360 * phenelzine 4360 *
captopril 1988 * rifabutin 4349 * rifabutin 4349 *
sirolimus 1080 * trichostatin A 5017 primaquine 4845 *
glibenclamide 1546 * captopril 1988 * norfloxacin 7283 *
phenelzine 4360 * ambroxol 6719 * flunixin 2552
sirolimus 987 * metaraminol 2298 * captopril 1988 *
trichostatin A 5017 sirolimus 1080 * sirolimus 987 *
primaquine 4845 * picrotoxinin 2161 * trichostatin A 5017
paclitaxel 6720 cyproheptadine 6740 * calmidazolium 906
ajmaline 1749 * primaquine 4845 * ambroxol 6719 *
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3.4 Breast cancer

We obtained six breast cancer datasets, GSE1299 [93] and GSE28645 [151], and
GSE65194 (subtypes: Her2, luminalA, luminalB, triple negative) [89, 88, 91]
from Gene Expression Omnibus (GEO). Datasets GSE1299 and GSE65194 (Her2,
luminalA, luminalB, triple negative) consist of two groups of samples such as
disease and control, while the dataset GSE28645 is a gene expression dataset
that consists of two groups of samples: treated (by tamoxifen) and untreated. It
is well-known that choices of the treatment and the ultimate success for breast
cancer highly depend on its specific type [43], that is categorized as:

• Hormone receptor positive (estrogen and/or progesterone receptor positive)
or hormone receptor negative (estrogen and/or progesterone receptor neg-
ative)

• Human epidermal growth factor receptor (HER2/neu) positive or HER2/neu
negative

• Triple negative (all estrogen receptor, progesterone receptor, and HER2/neu
are negative)

Other factors that a↵ect the prognosis and treatment options include: stage
of the cancer, levels of estrogen receptor, progesterone receptor, or HER2/neu in
the tumor tissue, the growth rate of the tumor, the recurrence rate, patient’s age,
and menopausal status.

Gold standard: Fulvestrant, Paclitaxel, Methotrexate are FDA-approved
drugs for the treatment of breast cancer. These drugs are included in our list of
input drugs from Connectivity Map. Table 16 represents the target genes and
activity of these drugs, obtained from KEGG and Drugbank [154]. Tables 18–
23 show the results obtained on 6 breast cancer datasets using: i) the proposed
approach, ii) the drug-disease approach, and iii) the anti-correlation approach.

We selected the top 5% drugs from the drugs ranked lists obtained by applying
the proposed approach on 6 breast cancer datasets. These drugs are ranked
according to the scores computed by the systematic method from the highest to
the lowest. Table 17 shows the rank-ordered list of such drugs according to their
score.

Proposed candidates: For this disease, we propose Captopril (p = 0.001),
Glibenclimiade (p = 0.0009), Fluorometholone (p = 0.005), Etoposide (p = 0.01),
Colchicine (p = 0.001), and Tretinoin (p = 0.0009) as repurposing candidates for
treatment of breast cancer.

Captopril is indicated for treatment of hypertension, congestive heart failure,
and kidney problems caused by diabetes. Recent clinical studies confirm the
potential antineoplastic e↵ect of Captopril in cancer [129, 76, 68, 125, 65]. The
phase I/II clinical trial (ClinicalTrials.gov ID: NCT00086723) evaluates the ac-
tivity of Captopril and the tissue plasminogen activator (a blood factor/protein
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orchestrating the breakdown of blood clot) in treating patients with progressive
metastatic cancer. Specifically, Captopril is proven to play a role in prevention
and regression of the tamoxifen-induced resistance of breast cancer cell line MCF-
7 [98], suggesting that it can be used in combination with Tamoxifen to overcome
such resistance.

Glibenclimiade is an antidiabetic drug that is used as an adjunct to diet
and exercise for treatment of patients with type 2 diabete. Glibenclamide is
proven to be a tumor growth inhibitor [124, 161, 114, 2, 109]. It is considered
as a promising antitumor drug in several cancers, including breast cancer. In
particular, the cytostatic e↵ect of Glibenclimiade by inducing G0/G1 arrest has
been clearly demonstrated in MDA-MB-231 cells. Additionally, the study of its
e↵ect in combination with Doxorubicin suggests the novel role of Glibenclimiade
as an adjuvant in breast cancer treatment [102].

Fluorometholone and Clobetasol are in the family of glucocorticoids (GCs).
GCs have shown some modest benefits in treatment of breast cancer. However,
their underlying mechanism in breast cancer is not well-understood [81, 71, 66].
GCs are also used as an adjuvant during chemotherapy or radiotherapy to reduce
the side e↵ects in cancer treatment [156].

Etoposide is approved by FDA for the treatment of refractory testicular tu-
mors, and usually used in combination with other chemotherapeutic agents. It is
also used as the first line treatment in small cell lung cancer patients. The positive
therapeutic e↵ect of Etoposide in patients with breast cancer is experimentally
validated by clinical studies [8, 166] (ClinicalTrials.gov identifiers: NCT01492556,
NCT00026949, and NCT01589159).

The histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) is another
drug we suggest for treatment of breast cancer. It is used as an antifungal an-
tibiotic that is found to be useful both as the single agent and in combina-
tion with other agents in cancer treatment [96, 73, 143, 79, 123, 63, 64]. Cur-
rent studies confirm the potent antitumor activity of TSA against breast can-
cer [157, 121, 3, 149, 160].

Colchicine is found in crocuses and primarily indicated to treat gout. It
has been also used for treatment of familial mediterranean fever. A 12-year
study in male patients with gout shows that patients who used Colchicine had a
significantly lower risk of cancers than patients who never used Colchicine [77].
Another study in mice models shows that Colchicine can induce immunogenic cell
death in tumor cells, suggesting the future clinical evaluation for Colchicine as a
cancer vaccine [153]. Colchicine is reported to have an anticancer e↵ect on human
gastric cancer cell lines [82]. In particular, a recent study indicates that it can
inhibit proliferation of the breast cancer MCF-7 cells and induce cell apoptosis,
where the intensity of the e↵ect depends on the time and dosage [141].

Tretinoin, all-trans-retinoic acid (ATRA), is the FDA-approved drug for the
treatment of acne, photodamaged skin, and keratinization disorders. It is also
used to treat acute promyelocytic leukemia (APL). The usefulness of ATRA in
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treatment of breast cancer has been independently validated in study by Bhat-
Nakshatri et al. [12]. Moreover, anti-proliferative, cyto-di↵erentiating and apop-
totic e↵ects of ATRA are demonstrated in [40, 17, 142], suggesting the e↵ec-
tiveness of ATRA in treatment of breast cancer tumors with high retinoic acid
receptor alpha (RAR↵) / retinoic acid receptor gamma (RAR�) ratios. Estrogen
receptor-positive and Her2/neu-positive breast cancers are two subtypes of breast
cancer that can be optimal targets for ATRA [83, 108].

Table 16 represents the target genes and activity of these drugs, obtained
from KEGG and Drugbank [154].

Table 16: The FDA-approved drugs for breast cancer
Drug Target genes Activity

Fulvestrant ESR (1,2) Estrogen receptor antagonist
Methotrexate DHFR Antimetabolite
Paclitaxel BCL2, TUBB1, NR1I2, MAP (2,4), MAPT Tubulin depolymerization inhibitor

Tables 18–23 show the results obtained on 6 breast cancer datasets using: i)
the proposed approach, ii) the drug-disease approach, and iii) the anti-correlation
approach. The FDA-approved drugs for breast cancer are highlighted in green.
Interestingly, all two instances of Fulvestrant that are all exposures of the same
cell line (MCF7) (with the same dosage) are highly ranked by our approach in
all datasets. MCF7 cell line is an ideal model for hormone therapy that was
established in 1973 at the Michigan Cancer Foundation [139].

We selected the top 5% drugs from the drugs ranked lists obtained by applying
the proposed approach on 6 breast cancer datasets. These drugs are ranked
according to the scores computed by the systematic method from the highest to
the lowest. Table 17 shows the rank-ordered list of such drugs according to their
score.
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Table 17: The top 5% drugs obtained from the result of our repurposing ap-
proach. These drugs are ranked based on the scores generated by the systematic
method. The * denotes the drugs that are currently FDA-approved but for other
indications. Fulvestrant, Paclitaxel, and Methotrexate highlighted with green,
are FDA-approved for the treatment of breast cancer. The sum of the scores
assigned to these drugs is 0. Drugs with the same scores are sorted based on
their average ranks in drugs ranked lists.

Drug Score

Fulvestrant 1.33
Paclitaxel 0
Captopril * -0.33
Methotrexate -1.33
Glibenclamide * -2
Fluorometholone * -2.33
Clobetasol -2.67
Trichostatin A -2.83
Etoposide * -3.33
Colchicine * -3.67
Tretinoin * -3.67
Alvespimycin -3.67
Resveratrol -3.67
Methylergometrine -4

Table 18: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE65194-Her2 dataset(the top 10 drugs). The p-
values for Wilcoxon rank sum test comparing the results of the proposed approach
with drug-disease and anti-correlation approaches are 0.01 and 0.02, respectively.
Drugs highlighted with green are FDA-approved for the treatment of breast can-
cer. The * denotes the drugs that are currently FDA-approved but for other
indications. Such drugs can be used o↵-label.

GSE65194-Her2
Proposed Drug-disease Anti-correlation

captopril 1988 * glibenclamide 1546 glibenclamide 1546
paclitaxel 6720 danazol 2038 * cimetidine 1884 *
fulvestrant 1630 cimetidine 1884 * danazol 2038 *
fulvestrant 985 domperidone 2655 ajmaline 1749 *
etoposide 3241 * trichostatin A 5017 domperidone 2655
captopril 4585 * ipratropium bromide 1769 ipratropium bromide 1769
ipratropium bromide 1769 etoposide 3241 * acepromazine 1777
metoclopramide 2353 * ajmaline 1749 * nilutamide 5362
domperidone 2655 methotrexate 5000 genistein 5232
methotrexate 5000 resveratrol 841 * captopril 1988 *
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Table 19: A comparison between the results of three approaches: proposed,
drug-disease, anti-correlation using GSE65194-LuminalA dataset (the top 10
drugs).The p-values for Wilcoxon rank sum test comparing the results of the
proposed approach with drug-disease and anti-correlation approaches are 0.03
and 0.04, respectively. Drugs highlighted with green are FDA-approved for the
treatment of breast cancer. The * denotes the drugs that are currently FDA-
approved but for other indications. The proposed approach was the only one
who was able to rank the FDA-approved drugs in the top 10.

GSE65194-LuminalA
Proposed Drug-disease Anti-correlation

fulvestrant 985 glibenclamide 1546 * domperidone 2655
fulvestrant 1630 domperidone 2655 glibenclamide 1546 *
captopril 1988 * cimetidine 1884 * cimetidine 1884 *
fluorometholone 6247 * danazol 2038 * ipratropium bromide 1769
glibenclamide 1546 * ipratropium bromide 1769 danazol 2038 *
captopril 4585 * trichostatin A 5017 nilutamide 5362
paclitaxel 6720 nilutamide 5362 * ajmaline 1749 *
vorinostat 6939 * ethosuximide 1433 * genistein 5232
cimetidine 1884 * ajmaline 1749 * acepromazine 1777
trichostatin A 5017 genistein 5232 ethosuximide 1433 *

Table 20: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE65194-LuminalB dataset (the top 10 drugs).
The p-values for Wilcoxon rank sum test comparing the results of the proposed
approach with drug-disease and anti-correlation approaches are 0.02 and 0.01,
respectively. Drugs highlighted with green are FDA-approved for the treatment
of breast cancer. The * denotes the drugs that are currently FDA-approved but
for other indications.

GSE65194-LuminalB
Proposed Drug-disease Anti-correlation

fulvestrant 985 glibenclamide 1546 * glibenclamide 1546 *
fulvestrant 1630 cimetidine 1884 * cimetidine 1884 *
paclitaxel 6720 danazol 2038 * danazol 2038 *
captopril 1988 * ajmaline 1749 * ajmaline 1749 *
trichostatin A 5017 trichostatin A 5017 domperidone 2655
phenelzine 4360 * domperidone 2655 ipratropium bromide 1769
fluorometholone 6247 * etoposide 3241 * fluorometholone 6247 *
valproic acid 2700 * ipratropium bromide 1769 sirolimus 1080 *
etoposide 3241 * sirolimus 1080 * acepromazine 1777
glibenclamide 1546 * methotrexate 5000 nilutamide 5362
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Table 21: A comparison between the results of three approaches: proposed,
drug-disease, anti-correlation using GSE65194-Triple Negative dataset (the top
10 drugs). The p-values for Wilcoxon rank sum test comparing the results of the
proposed approach with drug-disease and anti-correlation approaches are 0.03
and 0.007, respectively. Drugs highlighted with green are FDA-approved for the
treatment of breast cancer. The * denotes the drugs that are currently FDA-
approved but for other indications.

GSE65194-Triple Negative
Proposed Drug-disease Anti-correlation

captopril 1988 * glibenclamide 1546 * glibenclamide 1546 *
paclitaxel 6720 danazol 2038 * danazol 2038 *
etoposide 3241 * cimetidine 1884 * ajmaline 1749 *
clobetasol 6835 ajmaline 1749 * cimetidine 1884 *
methotrexate 5000 methotrexate 5000 ipratropium bromide 1769
fulvestrant 985 resveratrol 841 * domperidone 2655
glibenclamide 1546 * ipratropium bromide 1769 acepromazine 1777
fulvestrant 1630 trichostatin A 5017 etoposide 3241 *
captopril 4585 * acepromazine 1777 nilutamide 5362
domperidone 2655 wortmannin 1023 * methotrexate 5000

Table 22: A comparison between the results of three approaches: proposed,
drug-disease, anti-correlation using GSE28645 dataset (the top 10 drugs). The p-
values for Wilcoxon rank sum test comparing the results of the proposed approach
with drug-disease and anti-correlation approaches are 0.05 and 0.07, respectively.
Drugs highlighted with green are FDA-approved for the treatment of breast can-
cer. The * denotes the drugs that are currently FDA-approved but for other
indications.

GSE28645
Proposed Drug-disease Anti-correlation

fulvestrant 985 paclitaxel 6720 phenelzine 4360 *
fulvestrant 1630 captopril 1988 * valproic acid 1181 *
methylergometrine 1607 phenelzine 4360 * paclitaxel 6720
alvespimycin 993 fluphenazine 6954 * rosiglitazone 4457 *
colchicine 1598 * clomipramine 4487 * captopril 1988 *
captopril 1988 * rosiglitazone 4457 * troglitazone 4456 *
vorinostat 6939 * genistein 5232 quercetin 2499
captopril 4585 * astemizole 6807 * hyoscyamine 1424 *
sirolimus 1080 * chlorpromazine 5074 * clomipramine 4487 *
trichostatin A 5017 cimetidine 1884 * genistein 1176
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Table 23: A comparison between the results of three approaches: proposed, drug-
disease, anti-correlation using GSE1299 dataset (the top 10 drugs). The p-values
for Wilcoxon rank sum test comparing the results of the proposed approach with
drug-disease and anti-correlation approaches are 0.007 and 0.02, respectively.
Drugs highlighted with green are FDA-approved for the treatment of breast can-
cer. The * denotes the drugs that are currently FDA-approved but for other
indications.

GSE1299
Proposed Drug-disease Anti-correlation

methotrexate 5419 etoposide 3241 * etoposide 3241 *
resveratrol 841 * ciclopirox 3317 * valproic acid 1181 *
methotrexate 5000 resveratrol 841 * rifabutin 4349 *
fulvestrant 985 valproic acid 1181 * methotrexate 5419
tretinoin 6170 * rifabutin 4349 * resveratrol 841 *
phenelzine 4360 * ivermectin 2213 * rifabutin 3873 *
fulvestrant 1630 oxyphenbutazone 6844 ciclopirox 3317 *
tretinoin 1548 * methotrexate 5419 prochlorperazine 5212 *
troglitazone 4456 * rifabutin 3873 * vorinostat 6939 *
rosiglitazone 4457 * wortmannin 1023 * phenelzine 4360 *
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