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Supplementary Note 1 

Jags model code. Monitored variables (highlighted in red font) were mB, a matrix of 

standardized effect sizes of the explanatory variables; mP, a selection matrix indicating 

whether an explanatory variable has been selected or not; and rSq, marginal and conditional 

variance explained by the models. Comments (#) are highlighted in blue font. 
model { 
  for (k in 1:nP) {# k = structural equation models [1:nP] 
    ############################################################################ 
    # Indicator model selection with random effect following O’Hara & Sillanpää1 
    # - global shrinkage parameter tauB is estimated by the model 
    # - the prior on the inclusion probability (gamma) is fixed at 0.5 
    ############################################################################ 
    # Priors 
    sigB[k] ~ dunif(0, 20) 
    tauB[k] <- pow(sigB[k], -2) 
    for (j in 1:nY) {# j = response variables (Y) [1:nY] 
      ##### fixed effects 
      # intercepts 
      betaT[1, j, k] ~ dnorm(0, 1e-4) 
      gamma[1, j, k] <- 1 
      beta[1, j, k] <- gamma[1, j, k] * betaT[1, j, k] 
      # coefficients for main predictors 
      for (x in 2:(nX[j] + 1)) {# x = predictor variables (X) [1:nX] 
        gamma[x, j, k] ~ dbern(0.5) 
        betaT[x, j, k] ~ dnorm(0, tauB[k]) 
        beta[x, j, k] <- gamma[x, j, k] * betaT[x, j, k] 
      } 
      ##### random effects 
      for (r in 1:nRE) {# r = random effects (RE) [1:nRE] 
        tau[r, j, k] <- pow(sig[r, j, k], -2) 
        sig[r, j, k] ~ dunif(0, 20) 
      } 
      for (s in 1:nSite) {# s = random effect levels for site (siteRE) [1:nSite] 
        siteRE[s, j, k] ~ dnorm(0, tau[1, j, k]) 
      } 
      for (t in 1:nType) {# t = random effect levels for type (typeRE) [1:nType] 
        typeRE[t, j, k] ~ dnorm(0, tau[2, j, k]) 
      } 
      ##### Residual variance 
      tau[3, j, k] <- 1/psiStar[j, j, k] 
      ##### Explained variance 
      # 1.) Variance explained by fixed effects 
      # 2.) Variance explained by random effects 
      rSq[1, j, k] <- pow(sd(mum[, j, k]), 2) / 
        (pow(sd(mum[, j, k]), 2) + sum(pow(tau[, j, k], -1))) 
      rSq[2, j, k] <- sum(pow(tau[1:nRE, j, k], -1)) / 
        (pow(sd(mum[, j, k]), 2) + sum(pow(tau[, j, k], -1))) 
      for (i in 1:nObs) {# i = observations [1:nObs] 
        # Linear regressions 
        mu[i, j, k] <- 
          inprod(X[i, 1:(nX[j] + 1), k], beta[1:(nX[j] + 1), j, k]) + 
          lambda[j, k] * eta[i, nE[j], k] +  
          siteRE[RE[i, 1], j, k] + typeRE[RE[i, 2], j, k] 
        # likelihood 
        Y[i, j, k] ~ dnorm(mu[i, j, k], tau[3, j, k]) 
        # marginal predictions based on fixed effects 
        mum[i, j, k] <- 
          inprod(X[i, 1:(nX[j] + 1), k], beta[1:(nX[j] + 1), j, k]) + 
          lambda[j, k] * eta[i, nE[j], k] 
      } 
    } 
    ##### Latent variables for covariance terms 
    for (i in 1:nObs) { 
      eta[i, 1, k] ~ dnorm(0, 1) 
      eta[i, 2, k] ~ dnorm(0, 1) 
    } 
    ############################################################################ 
    # Parameter assignments & equality constraints for covariance terms 
    # Code for implementing covariance terms is taken from R package 'blavaan' 
    # (Merkle and Rosseel)2 
    ############################################################################ 
    lvRho[1, 2, k] <- -1 + 2 * covPars[5, k] 



    lvRho[3, 4, k] <- -1 + 2 * covPars[6, k] 
    psiStar[1, 1, k] <- psi[1, 1, k] - (sqrt(abs(lvRho[1, 2, k]) * psi[1, 1, k]))^2 
    psiStar[2, 2, k] <- psi[2, 2, k] - ((-1 + 2 * step(lvRho[1, 2, k])) * 
                                          sqrt(abs(lvRho[1, 2, k]) * psi[2, 2, k]))^2 
    psiStar[3, 3, k] <- psi[3, 3, k] - (sqrt(abs(lvRho[3, 4, k]) * psi[3, 3, k]))^2 
    psiStar[4, 4, k] <- psi[4, 4, k] - ((-1 + 2 * step(lvRho[3, 4, k])) * 
                                          sqrt(abs(lvRho[3, 4, k]) * psi[4, 4, k]))^2 
    lambda[1, k] <- sqrt(abs(lvRho[1, 2, k]) * psi[1, 1, k]) 
    lambda[2, k] <- (-1 + 2 * step(lvRho[1, 2, k])) * 
      sqrt(abs(lvRho[1, 2, k]) * psi[2, 2, k]) 
    lambda[3, k] <- sqrt(abs(lvRho[3, 4, k]) * psi[3, 3, k]) 
    lambda[4, k] <- (-1 + 2 * step(lvRho[3, 4, k])) * 
      sqrt(abs(lvRho[3, 4, k]) * psi[4, 4, k]) 
    # Inferential covariances 
    psi[1, 2, k] <- lambda[1, k] * lambda[2, k] 
    psi[3, 4, k] <- lambda[3, k] * lambda[4, k] 
    # Priors 
    for (j in 1:nY) { 
      psi[j, j, k] <- pow(covPars[j, k], -1) 
      covPars[j, k] ~ dgamma(1, .5) 
    } 
    covPars[5, k] ~ dbeta(1, 1) 
    covPars[6, k] ~ dbeta(1, 1) 
    ############################################################################ 
    # output for pathmodel 
    ############################################################################ 
    # matrix with coefficients 
    for (j in 1:nY) { 
      mB[1:nX[j], j + 3, k] <- beta[2:(nX[j] + 1), j, k] 
    } 
    mB[5, 4, k] <- psi[1, 2, k] 
    mB[4, 5, k] <- mB[5, 4, k] 
    mB[6, 7, k] <- psi[3, 4, k] 
    mB[7, 6, k] <- mB[6, 7, k] 
    # matrix with selection probabilities 
    for (j in 1:nY) { 
      mP[1:nX[j], j + 3, k] <- gamma[2:(nX[j] + 1), j, k] 
    } 
    mP[5, 4, k] <- 1 
    mP[4, 5, k] <- mP[5, 4, k] 
    mP[6, 7, k] <- 1 
    mP[7, 6, k] <- mP[6, 7, k] 
  } 
} 



Supplementary Table 1. Correlation of plant and animal traits with the first and second RLQ axes. 

Mutualism Animal trait r n P   Plant trait r n P 

Matching traits ~ RLQ axis 1; Moran's test: P = 8.5 × 10−5 
Bird–fruit bill width -0.26 85 0.0004  fruit diameter -0.26 63 0.0003 
Bird–flower bill length 0.19 24 0.083  corolla depth 0.19 26 0.15 
Insect–flower proboscis length -0.21 183 0.0031  corolla depth -0.16 131 0.026 

          
Energy traits ~ RLQ axis 1; Moran's test: P = 1.8 × 10−6 
Bird–fruit body mass -0.24 85 0.0003  crop mass -0.11 63 0.078 
Bird–flower body mass -0.25 24 0.033  number of flowers -0.23 26 0.048 
Insect–flower head width -0.15 183 0.014  flowers per inflorescence 0.15 131 0.024 

          
Foraging traits ~ RLQ axis 1; Moran's test: P = 0.031 
Bird–fruit kipp's index -0.045 85 0.42  plant height -0.10 63 0.20 
Bird–flower kipp's index -0.10 24 0.39  plant height -0.27 26 0.018 
Insect–flower forewing index 0.13 183 0.012  plant height -0.033 131 0.66 

          
Matching traits ~ RLQ axis 2; Moran's test: P = 0.74 
Bird–fruit bill width -0.043 85 0.53  fruit diameter -0.067 63 0.26 
Bird–flower bill length 0.033 24 0.77  corolla depth 0.023 26 0.77 
Insect–flower proboscis length 0.029 183 0.72  corolla depth 0.016 131 0.84 

          
Energy traits ~ RLQ axis 2; Moran's test: P = 0.74 
Bird–fruit body mass 0.026 85 0.68  crop mass 0.10 63 0.079 
Bird–flower body mass 0.018 24 0.84  number of flowers -0.0092 26 0.96 
Insect–flower head width 0.0094 183 0.90  flowers per inflorescence 0.028 131 0.72 

          
Foraging traits ~ RLQ axis 2; Moran's test: P = 0.23 
Bird–fruit kipp's index 0.11 85 0.043  plant height 0.071 63 0.38 
Bird–flower kipp's index 0.016 24 0.87  plant height 0.024 26 0.85 
Insect–flower forewing index 0.058 183 0.27   plant height 0.053 131 0.47 

We used the fourth-corner permutation test (model 6 with 9,999 permutations)3 to assess which of the different 

trait types (matching, energy and foraging traits) were correlated with each of the first two RLQ axes. As we 

aimed at generalizing our results across mutualisms, we mainly compared the absolute magnitude of correlations 

(Pearson’s r) between matching, energy and foraging traits and the RLQ axes across the three mutualisms. In 

addition to the significance of individual correlations, we assessed the overall support for the hypotheses that 

matching, energy and foraging traits are related to the first and second RLQ axes across the three mutualisms. To 

do so, we used the equation given by Moran4 (see Methods), based on a Bernoulli process, to calculate the 

probability, P, of obtaining a given number of significant tests from a given number of trials just by chance. The 

rationale behind this equation is that the evidence against the null hypothesis from a given number of statistical 

tests increases with the number of significant tests4. Previous work has shown that the sequential approach 

(permutation model 6) for statistical testing of the ‘fourth-corner problem’ has good power (0.88) with large 

numbers of species (100), reasonable power (0.60) for 50 species and some power (0.40) for 30 species5. As the 

number of species in two of our datasets is relatively small, the statistical power of the permutation test is low. 

For instance, although the magnitude of the absolute correlations between matching traits and RLQ axis 1 in the 

bird–flower mutualism is similar to those in the bird–fruit and insect–flower mutualisms, the permutation test is 

not significant at α = 0.05 (Supplementary Table 1; Supplementary Fig. 1). Therefore, the statistical tests we 

conducted can be considered highly conservative with respect to Type I errors. Correlations that are significant 

at α = 0.05 are highlighted in boldface. 



Supplementary Table 2. Summary of the stochastic variable selection in the Bayesian hierarchical 

structural equation models. 

    (a) Niche Breadth (ID = eH)   (b) Niche partitioning (ID = d') 

X Y Effect (95% CI) P BF PSRF Neff   Effect (95% CI) P BF PSRF Neff 

Effect of X on Y 
LU FDp 0 (-0.18, 0.11) 0.3 -1.7 1.001 4197  0 (-0.2, 0.11) 0.32 -1.5 1.003 3891 
MAP FDp 0.19 (0, 0.47) 0.77 2.4 1.001 3875  0.19 (0, 0.47) 0.78 2.5 1.003 4237 
MAT FDp 0 (-0.22, 0.17) 0.31 -1.6 1.003 4175  0 (-0.21, 0.16) 0.33 -1.4 1.003 4336 
LU FDa 0 (-0.064, 0.23) 0.31 -1.6 1.001 4067  0 (-0.06, 0.24) 0.35 -1.3 1.004 4147 
MAP FDa 0 (-0.12, 0.24) 0.34 -1.3 1.007 4231  0 (-0.12, 0.24) 0.35 -1.3 1.001 4435 
MAT FDa 0.2 (0, 0.43) 0.81 2.9 1.002 4042  0.19 (0, 0.42) 0.81 2.9 1.002 4215 
LU IDp 0 (-0.23, 0.042) 0.34 -1.3 1.002 4025  0 (-0.037, 0.19) 0.33 -1.4 1.003 3796 
MAP IDp 0 (-0.16, 0.14) 0.29 -1.8 1.002 3929  0 (-0.11, 0.16) 0.29 -1.8 1.001 4124 
MAT IDp 0.086 (0, 0.33) 0.62 0.94 1.003 4000  0.37 (0.2, 0.55) 1 13 1.003 3816 
FDp IDp 0 (-0.044, 0.15) 0.24 -2.3 1.003 3879  0 (-0.22, 0.013) 0.39 -0.88 1.001 3978 
FDa IDp 0.4 (0.26, 0.54) 1 Inf 1.002 4554  0.25 (0.093, 0.39) 0.99 8.9 1.004 4103 
LU IDa -0.011 (-0.31, 0.0077) 0.54 0.29 1.001 3874  0 (-0.12, 0.1) 0.25 -2.2 1.002 4160 
MAP IDa 0 (-0.2, 0.11) 0.31 -1.6 1.002 3879  0 (-0.14, 0.15) 0.29 -1.8 1.002 4000 
MAT IDa -0.27 (-0.47, 0) 0.95 5.9 1.003 3909  0.29 (0.045, 0.46) 0.98 7.7 1.004 3764 
FDp IDa 0.36 (0.2, 0.51) 1 17 1.002 4408  0.19 (0, 0.35) 0.92 4.8 1.000 4150 
FDa IDa 0 (-0.22, 0.015) 0.39 -0.9 1.000 4090  0 (-0.18, 0.031) 0.32 -1.5 1.002 4289 
Residual covariance 
FDp FDa 0.19 (0.046, 0.36) - - 1.003 4337  0.19 (0.05, 0.36) - - 1.001 4384 
IDp IDa 0.11 (-0.0066, 0.24) - - 1.002 3945   0.26 (0.15, 0.41) - - 1.002 3783 

Structural equation models for interaction niches of plants and animals (IDp and IDa) in terms of (a) niche 

breadth (partner diversity, eHp and eHa) and (b) niche partitioning (complementary specialization, d'p and d'a). 

LU, land use; MAP, mean annual precipitation, MAT, mean annual temperature; FDp and FDa, functional 

diversity of plants and animals (measured as functional dispersion). Given are pairs of predictor (X) and 

response (Y) variables along with effect sizes (with shrinkage) and 95% confidence intervals (CI), selection 

probabilities (P), 2loge(Bayes factor) (BF), the potential scale reduction factor (PSRF) and effective sample size 

(Neff)6. Values of BF < 2 indicate no support; values between 2 and 6 indicate positive support; values between 6 

and 10 indicate strong support; and values > 10 indicate decisive support. Paths with BF > 2 are highlighted in 

boldface type. Values of PSRF < 1.1 indicate that MCMC chains have converged on the same posterior 

distribution. Neff indicates approximate sample size of posterior samples after accounting for temporal 

autocorrelation between posterior samples. Residual covariance terms were kept fixed during the model 

selection. Sample sizes are nobs = 126 observations, nsite = 53 study sites and nmutualism = 3 mutualisms. 



 
Supplementary Figure 1. Absolute correlation of different plant and animal trait types with RLQ axes in 

different types of plant–animal mutualistic networks. Absolute correlation coefficients (Pearson’s r) of 

matching, energy and foraging traits with (a) the first RLQ axis and (b) the second RLQ axis. The first 

ordination axis explained most of the cross-covariance between plant and animal trait spaces (range across the 

three mutualisms: 90—99%), whereas the second axis explained only a minor proportion (range: 0.75—9.3%). c 

Relationship between the absolute correlation coefficient and the P-value of the permutation test in the fourth-

corner analysis. Note that although the magnitude of the absolute correlations between matching traits and RLQ 

axis 1 in the bird–flower mutualism is similar to those in the bird–fruit and insect–flower mutualisms (a), the 

permutation test is not significant at α = 0.05 (dotted line in c). This is due to a lack of statistical power owing to 

the relatively small number of species in the bird–flower mutualism (26 plant and 24 bird species, respectively; 

see Supplementary Table 2)5. In a,b raw data (grey circles, bird–fruit; blue circles, bird–flower; red circles, 

insect–flower mutualism) and mean ± s.e.m. are shown. Note the logarithmic scale for the y-axis in c. 
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Supplementary Figure 2. Initial path model that was the basis for the variable selection. We fitted two 

separate structural equation models, one including eHp and eHa (partner diversity) and the other including d'p and 

d'a (complementary specialization) as measures of the interaction niches of plant and animal communities on 

each study site (represented by IDp and IDa in the model). In these structural equation models, we treated mean 

annual temperature (MAT, °C), mean annual precipitation (MAP, mm yr−1) and land use (LU, binary variable) as 

exogenous predictor variables. We treated functional diversity (FDp and FDa) as well as metrics of interaction 

niches (IDp and IDa) as endogenous variables. The models included all potential direct effects of MAT, MAP 

and LU on FDp and FDa, as well as on IDp and IDa, respectively. Moreover, the models included the effects of 

FDp and FDa on IDp and IDa, respectively. We also included covariance terms between FDp and FDa, as well as 

between IDp and IDa to account for correlated errors due to common unmeasured sources of variance. 
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Supplementary Figure 3. Partial residual plots of the indirect ‘functional diversity’-mediated effects of 

abiotic factors on niche breadth and partitioning in plant–animal mutualistic networks. Plots a–f visualize 

partial relationships indicated by the path analysis in Fig. 3. a Effect of mean annual precipitation (MAP, 

mm yr−1) on plant functional diversity (functional dispersion, FDp). b,c Bottom-up effects of FDp on niche 

breadth (partner diversity, eHa) and partitioning of animals (complementary specialization, d'a). d Effect of mean 

annual temperature (MAT, °C) on animal functional diversity (FDa). e,f Top-down effects of FDa on niche 

breadth (eHp) and partitioning of plants (d'p). All variables were scaled to zero mean and unit variance before 

analysis. Units on the y-axes are standardized residual deviations from predicted partial scores after conditioning 

on all predictor variables except for the one shown on the x-axis and after conditioning on the two random 

effects (study site and mutualism type). The colours of the circles represent the three mutualisms (grey, bird–

fruit; blue, bird–flower; red, insect–flower). The blue lines depict the partial regression slopes. Sample sizes are 

nobs = 126 observations, nsite = 53 study sites and nmutualism = 3 mutualisms. 
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Supplementary Figure 4. Structural equation models testing for trait-specific bottom-up and top-down effects of 

functional diversity on the assembly of plant–animal mutualistic networks. The Bayesian hierarchical structural equation 

models in a-f tested for direct and indirect ‘functional diversity’-mediated effects of mean annual temperature (MAT, °C), 

mean annual precipitation (MAP, mm yr−1) and land use (LU, binary variable) on (a,c,e) niche breadth (partner diversity, eH) 

and (b,d,f) niche partitioning (complementary specialization, d’) of plants and animals in the mutualistic networks via 

functional diversity of plant and animal communities (functional dispersion, FD; subscripts p and a for plants and animals, 

respectively). The structural equation models are based on (a,b) matching traits, (c,d) energy traits or (e,f) foraging traits, 

respectively (see Methods). Only paths that were supported by the Bayesian variable selection (2loge(Bayes factor) > 2) are 

shown. Path colours depict bottom-up mediated (blue), top-down mediated (red) and direct abiotic effects (grey) on network 

structure. Grey double-headed arrows depict covariance terms that account for correlated errors due to common unmeasured 

sources of variance and due to reciprocal effects of functional diversity in each trophic level on competitive exclusion in the 

other trophic level. Path widths are proportional to standardized effect sizes. The values near the endogenous variables depict 

the marginal (rm
2) variance explained by fixed factors only and the conditional (rc

2) variance explained by fixed and random 

factors combined (see Methods). Sample sizes are nobs = 126 observations, nsite = 53 study sites and nmutualism = 3 mutualisms. 
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