

SUPPLEMENTAL FIGURE 1. Relative contribution to West Nile virus (WNV)–infected *Culex* species across the United States (US), 2004–2009. Columns show average fraction of WNV-positive pools attributed to each mosquito species (all US, N = 821), shown with and without adjustment for county human population sizes.

SUPPLEMENTAL FIGURE 2. Culex pipiens mosquito abundance and distance to rice fields. Culex pipiens abundance (mosquitoes per New Jersey light trap-week) in California between June and September, plotted against distance to nearest rice field (N = 388). In contrast to Culex tarsalis, we observed no significant relationship (P = 0.74) between distance to rice field and abundance of *C. pipiens*.

SUPPLEMENTAL FIGURE 3. Rice-growing areas of the world. Map showing the percent contribution of each country to total rice area in the world. Estimated rice area for each country based on mean rice-growing region from years 2010–2014 (Food and Agriculture Organization of the United Nations 2017).

SUPPLEMENTAL TABLE 1
List of predictor and response variables, transformations, and sources

Variables	Transformations	Source
WNV incidence	Log ₁₀ (WNV incidence + 0.1)	CDC cases by county 2004–2015
Irrigated (not-rice)	Log_{10} (irrigated + 0.1)	USGS MODIS: 2012, 250 m resolution (minus rice areas)
Developed	Log ₁₀ (developed)	Cropland: NASS: 2008–2014, 30 m resolution
Open water	Log_{10} (open water + 0.05)	Cropland: NASS: 2008–2014, 30 m resolution
Wetland	Log_{10} (wetland + 0.05)	Cropland: NASS: 2008–2014, 30 m resolution
Forest	None	Cropland: NASS: 2008–2014, 30 m resolution
Rice	Log ₁₀ (rice)	Cropland: NASS: 2008–2014, 30 m resolution
County area	Area, used to normalize	US Census Bureau: 2010
Mean rainfall	Log ₁₀ (rain)	CDC Wonder NLDAS mean 2003–2011
Mean temperature	None	CDC Wonder NLDAS mean 2003–2011: 2 m above ground
Human population	Used to calculate WNV	US Census Bureau: 2010
Mean Culex tarsalis	Log ₁₀ (C. tarsalis mean + 1)	NJLT data 2000–2015, Calsurv vector control data

CDC = Centers for Disease Control and Prevention; NASS = National Agricultural Statistics Service; NJLT = New Jersey light trap; NLDAS = North America Land Data Assimilation System; MODIS = moderate resolution imaging spectroradiometer; US = United States; WNV = West Nile virus.

SUPPLEMENTAL TABLE 2

Output from generalized least squares model predicting human West Nile virus incidence on a county scale using land cover and climate predictors across California

Predictors	Coefficient/intercept	SE	P value
Irrigation (non-rice)	0.236	0.137	0.0943
Developed land	0.255	0.214	0.2419
Wetland	-0.304	0.150	0.0494
Open water	0.089	0.146	0.5458
Forest	0.001	0.006	0.9128
Rice fields	0.132	0.046	0.0072
Mean temperature	0.023	0.031	0.478
Mean rainfall	-0.403	0.649	0.5383
Intercept	-0.762	0.731	0.304

Model includes exponential spatial autocorrelation, N = 46.

SUPPLEMENTAL TABLE 3

Output from generalized least squares model predicting human West Nile virus incidence on a county scale using land cover and climate predictors across rice-growing areas in the rest of the US (excluding California)

,			
Predictors	Coefficient/intercept	SE	P value
Irrigation (non-rice)	-0.01116	0.05282	0.8328
Developed land	0.534014	0.116767	< 0.0001
Wetland	0.035156	0.072197	0.6266
Open water	-0.12248	0.062228	0.0497
Forest	-0.0026	0.002292	0.2575
Rice fields	0.029085	0.025097	0.2472
Mean temperature	0.009563	0.025579	0.7087
Mean rainfall	0.812468	0.775813	0.2956
Intercept	-1.223	0.882	0.1664

US = United States. Model includes exponential spatial autocorrelation, N = 413.