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Supplemental Table S1: PTSD-related phenotypes in animal models of PTSD – Effects in males 
 

Model Hyperalgesia General avoidance Avoidance of 
trauma-specific cues 

Increased fear learning Reduced 
fear 

extinction 

Arousal Depression/ 
Anhedonia 

Memory deficits 
(hippocampal function) 

Inescapable 
foot shocks  

Thermal hyperalgesia 
(hot-plate test) (1wk) (1) 

­ avoidance (EPM) (1-56 
days) (1-3); ¯ social behavior 
(SIT) (1-56 days) (2; 4); ­ 
avoidance of conspecific or 
open spaces (10 days) (4) 

­ freezing 
(situational 
reminder) (1-56 
days) (5; 6) 

N/A N/A ­ startle (4 wks) (7) ­ immobility 
(FST) (31 days) 
(8) 

¯ spatial learning 
(MWM) (1 wk) (1); ¯ 
short-term memory 
(NORT) (9) 

Predator 
scent/stress 

­ thermal nociception 
(Hargreaves) (5 days) 
(10) 

­ avoidance (EPM, LD) (1 
wk-3 months) (11-16); ¯ social 
behaviors (SIT) (4 wks) (17) 

­ avoidance in 
trauma reminder 
test (9-14 days) (15; 
18); ­ freezing 
(situational reminder) 
(1-4 wks) (17) 

­ freezing in contextual 
fear memory (3 months) 
(12; 13) 

¯extinction 
(3 wks-3 
months) 
(12; 13) 

­ startle and 
startle habituation 
(1 wk-3 months) 
(11; 12; 17); ¯ PPI 
(9 days) (19); 
NE in mice 

N/A ¯ object recognition 
memory; ¯ spatial 
memory (RAWM) (3 
wks-3 months) (13; 20) 

Single 
prolonged 
stress 

­ mechanical 
hyperalgesia (von Frey 
test) (1 wk) (21) 

­ avoidance (OF, EPM, LD) 
(1-3 wks) (21-26) 

N/A ­ context and cue fear 
recall (1 wk)  (26-31) 

¯extinction 
recall (1-
2wks) (23; 
27; 32-34) 

­startle (1-2 wks) 
(25; 28); ¯ PPIm (1-
2 wks) (35) 

­ immobility 
(FST) (1 wk) (25); 
anhedonia (SP) (1-
3 wks) (23; 24) 

¯spatial learning and 
memory (MWM, 
RAWM) (1-2 wks) (24; 
28; 36); ¯cognitive 
flexibility (1 wk) (37) 

IMO/ 
restraint 
stress 

N/A ­ avoidance (EPM, LD) (10-14 
days) (38-43) 

N/A ­ cue fear recall (1wk) 
(38; 44); ­ generalization 
(10 days) (41); ¯ context 
fear (10-35 days) (41; 45) 

¯extinction 
(10 days) 
(41; 44) 

­ startle (7-12 days) 
(42; 46) 

­ immobility 
(FST) and 
anhedonia (SP) (5 
wks) (45) 

¯ spatial memory 
(MWM) (9-11 days) (38; 
47) 

UVS ­ thermal hyperalgesia 
(hot plate test or acetone 
test); ­ licking behavior 
(formalin test) (5 wks) 
(48) 

­ avoidance (EPM, OF, 
novelty-suppressed feeding 
test, MB) (1-3 wks) (49-56); ­ 
avoidance (avoidance/escape 
task) (2 wks) (57); no changes 
in inhibitory avoidance task (1-
7 days) (55) 

N/A ­ contextual freezingm (1 
wk) (58) 

¯extinction 
(1 wk) (58) 

­ startle (54; 55) ­ immobility 
(FST, TST) (1-10 
wks) (50; 54; 59; 
60); ­ anhedonia 
(SP) (1-3 wks) 
(49; 50; 52; 59) 

¯ spatial memory (EPM, 
NORT, MWM) (1-2 wks) 
(59; 61-63); ¯ working 
memory (T-maze) (1 wk) 
(64); ¯ memory in 
passive avoidance (65) 

Social 
defeat 

­ thermal analgesia 
(hot plate test) (66); ­ 
hyperalgesia 
(mechanical) (4-10 days) 
(67) 

­ avoidance (EPM, OF) (1d-
4wk) (68; 69) 

­ social avoidance 
(SAAT, SIT) (4-10 
days) (70) 

Inconsistent data on cue 
and context fear (2-21 
days) (71-74) 

­ extinction  
(2-5 days) 
(75-77) 

­ startle (1-4 days) 
(78-80) 

­anhedonia (SP, 
ICSS, PRT) (3-21 
days) (81-85) 

¯working memory (T 
maze); ¯ spatial memory 
(MWM); ¯ recognition 
memory (NORT) (5-20 
days) (68; 86-88) 

meffect reported only in mice; EPM, elevated plus maze; FST, forced swim test; ICSS, intracranial self-stimulation; IMO, immobilization; LD, light-dark box; MWM, Morris water 
maze; MB, marble burying; NE, no effect; NORT, novel object recognition task; OF, open field; PPI, prepulse inhibition of acoustic startle; PRT, probabilistic reward task; 
RAWM, radial arm water maze; SAAT, social approach-avoidance test; SIT, social interaction test; SP, sucrose preference; TST, tail suspension test; UVS, unpredictable variable 
stress. In bold: most robust and reproduced findings. N.B.: The studies describing several PTSD-like phenotypes are not exclusive to this table, most comprehensive and 
robust findings as well as recency were used to prioritize addition of citation to the table. 
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Supplemental Table S2: PTSD-related phenotypes reproduced in animal models of PTSD – Effects in females 
 

Model Hyperalgesia General avoidance Avoidance of trauma-specific cues Increased fear 
learning 

Reduced fear 
extinction 

Arousal Depression/ 
Anhedonia 

Memory deficits 
(hippocampal 

function) 
Inescapable foot 
shocks  

N/A No changes in avoidance (OF) 
(10 days) (89) 

­ avoidance to open spaces (90); ­ 
freezing (situational reminder) (10 
days) (89) 

N/A N/A N/A N/A N/A 

Predator 
scent/stress 

N/A ­ avoidance (EPM) (1 wk) (91); 
­ avoidance (composite of 
OF/LD) (1 wk) (92) 

­ avoidance in trauma-reminder test 
(2 wks)  (92) 

N/A N/A ­ or - startle 
(1 wk) (91; 
92) 

N/A No changes in spatial 
memory (MWM) (91) 

Single prolonged 
stress 

N/A N/A N/A ­ context and cue 
fear recall (1 wk) 
(31) 

N/A N/A N/A N/A 

IMO/restraint 
stress 

N/A N/A N/A N/A N/A N/A N/A N/A 

UVS N/A ­ avoidance (OF) (93) N/A N/A N/A N/A ­ immobility (FST, 
TST) (60; 93) 

N/A 

Social defeat N/A N/A ­ social avoidance (SAAT, SIT) (4-
10 days) (94) 

N/A N/A N/A ­ anhedonia (SP) 
(3-21 days) (95) 

N/A 

EPM, elevated plus maze; MWM, Morris water maze; OF, open field; REM, rapid eye movement; SAAT, social approach-avoidance test; SIT, social interaction test; SP, sucrose 
preference; TST, tail suspension test; UVS, unpredictable variable stress. 
 
 
 
Supplemental Table S3: PTSD-related biological phenotypes reproduced in animal models of PTSD – Effects in females 
 

Model Fear circuit dysfunctions 
(PFC-Amygdala) 

HPA axis function Peripheral vs. Central 
inflammation 

Hippocampal structure/morphology Sleep disturbances Reversed by SSRIs 

Inescapable 
foot shocks 

N/A Plasma: No changes in basal 
CORT (10 days) (89) 
Brain: N/A 

Plasma: N/A 
Brain: N/A 

N/A N/A N/A 

Predator 
scent/stress 

N/A Plasma: ­ basal CORT (1 wk) 
(91) 
Brain: N/A 

Plasma: N/A 
Brain: N/A 

N/A N/A N/A 

Single 
prolonged 
stress 

N/A Plasma: N/A 
Brain: N/A 

Plasma: N/A 
Brain: N/A 

¯ LTP/LTD (1 wk) (31) N/A N/A 

IMO/Restraint 
stress 

N/A Plasma: N/A 
Brain: N/A 

Plasma: N/A 
Brain: N/A 

Mild or no change compared to males 
(96; 97), but stronger decrease of 
neurogenesis (98) 

Mild or no change in 
NREM & REM (1 day) 
(99; 100) 

N/A 

UVS ¯ cFos-positive cells (PFC) and 
­¯ c-Fos-positive cells (Amy) 
(93) 

Plasma: N/A 
Brain: N/A 

Plasma: N/A 
Brain: N/A 

N/A N/A N/A 

Social defeat N/A Plasma: ­ basal CORT (12 
days) (101) 
Brain: N/A 

Plasma: N/A 
Brain: N/A 
 

N/A ¯ REM; ­ NREM (1-28 
days) (101) 

N/A 

Amy, amygdala; CORT, corticosterone; HPA, hypothalamic-pituitary-adrenal; LTP/LTD, long-term potentiation/depression; NREM, non-rapid eye movement; PFC, prefrontal 
cortex; REM, rapid eye movement; SSRIs, selective serotonin reuptake inhibitors; UVS, unpredictable variable stress. 
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Supplemental Table S4. Additional tools to probe gene pathways and circuits implicated in PTSD pathophysiology 
 

Manipulation Schematic representation Description References 
Conditional, cell-type 

specific modulation of gene 
expression  

 

Regulate gene expression in specific cell types 
to selectively manipulate PTSD-relevant 
signaling pathways in specific circuits at 
various time-points before and after stress 
manipulations 

(92; 102-
104) 

Optogenetic approach 

 

High resolution and dynamic control of 
excitability of neurons in PTSD-relevant 
circuits and cell types (via activation of light-
gated ion channels) 

(105-107) 

Chemogenetic approach:  
DREADD 

 

Express mutated GPCRs (Gi, Gs, Gq) 
selectively activated by otherwise inert drugs 
(e.g. CNO); enables acute and chronic 
modulation of cell function via activation of 
select second messenger cascades in specific 
cell types and circuits.    

(108-110) 

CNO, Clozapine-N-oxide; DREADD, Designer Receptors Exclusively Activated by Designer Drugs; GPCRs, G-protein coupled receptors. The figures presented 
in the table were created on the Mind the Graph platform www.mindthegraph.com. 
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Box S1. Model organisms for studying PTSD pathology and its treatment: future directions 

Numerous well-established and robust paradigms that induce specific patterns of enduring PTSD-relevant behavioral and biological phenotypes are now available. 

The focus in future will be to refine these models as clinical studies of PTSD pathology and treatment response mature. 

What is urgently needed to understand the validity of current PTSD models? Characterize (1) effects in females, (2) sensitivity of these paradigms to early-

life stress, and (3) identify behavioral and biological risk factors that predict individual response variance across models. 

How can we enhance translation of treatments to clinical trials? Incorporate biological measures that are homologous across-species (e.g. peripheral 

biomarkers, imaging, physiology) to (1) identify predictors of individual risk that also measurable in clinic and (2) provide biological outcome measures to 

complement behavioral measures of stress response. Clinical studies should also incorporate homologous biological measures to inform model validity. 

What tools are on the horizon? Optogenetic and DREADD technologies support testing of complex circuit models of PTSD etiology. Once validated, they could 

provide circuit-based models of PTSD pathology that will complement current stress manipulation models.  
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