
S1 Model Details. Our model represents subunits as rigid bodies comprised of
pseudoatoms arranged to capture the directional attractions and shape of
microcompartment pentamer and hexamer oligomers. In comparison to earlier studies
with patchy spheres (e.g. [A1–A3],[94]), multi-pseudoatom subunits better describe the
subunit excluded volume shape [A4,A5],[48], which we find to be important for
representing assembly around many-molecule cargoes. See Ref. [67] for a comparison of
these approaches.

In our model, all potentials can be decomposed into pairwise interactions. Potentials
involving shell subunits further decompose into pairwise interactions between their
constituent building blocks – the excluders, attractors, ‘Top’, and ‘Bottom’
pseudoatoms. It is convenient to state the total energy of the system as the sum of
three terms, involving shell-shell (USS), cargo-cargo (UCC), and shell-cargo (USC)
interactions, each summed over all pairs of the appropriate type:

U =
∑

shell i

∑
shell j<i

USS +
∑

cargo i

∑
cargo j<i

UCC +
∑

shell i

∑
cargo j

USC (S1.1)

where
∑

shell i

∑
sub j<i is the sum over all distinct pairs of shell subunits in the system,∑

shell i

∑
cargo j is the sum over all shell-cargo particle pairs, etc.

Shell-shell interaction potentials. The shell-shell potential USS is the sum of
the attractive interactions between complementary attractors, and geometry guiding
repulsive interactions between ‘Top’ - ‘Top’, ‘Bottom’ - ‘Bottom’, and ‘Top’ - ‘Bottom’
pairs. There are no interactions between members of the same rigid body. Thus, for
notational clarity, we index rigid bodies and non-rigid pseudoatoms in Roman, while the
pseudoatoms comprising a particular rigid body are indexed in Greek. For subunit i we
denote its attractor positions as {aiα} with the set comprising all attractors α, its ‘Top’
position ti, ‘Bottom’ position bi and, for the case of subunits with no spontaneous
curvature, the ‘M’ pseudoatom at the center of the subunit in the plane of the
attractors, as mi.

The shell-shell interaction potential between two subunits i and j is then defined as:

USS({aiα}, ti,aj , tj) = εangle  L (|ti − tj | , σt,ij)
+ εangle  L (|bi − bj | , σb)

+ εangle  L (|bi − tj | , σtb) IH(i)IH(j)

+  L (|mi −mj | , σm)FH

+

Nai,Naj∑
α,β

εHHM
(
|aiα − ajβ | , r0, %, rattcut

)
(S1.2)

The function  L is defined as the repulsive component of the Lennard-Jones potential
shifted to zero at the interaction diameter:

 L(x, σ) ≡ θ(σ − x)

[(σ
x

)12
− 1

]
(S1.3)

with θ(x) the Heaviside function. The function M is a Morse potential:

M(x, r0, %, rcut) = θ(rcut − x)×[(
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]
(S1.4)

with Vshift(rcut) the value of the (unshifted) potential at rcut.
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The parameter εHH sets the strength of the shell-shell attraction at each attractor
site, Nai is the number of attractor pseudoatoms in subunit i, and εangle scales the
repulsive interactions that enforce the geometry. The function IH(i) is 1 if subunit i is a
hexamer and 0 if a pentamer; thus the term IH(i)IH(j) specifies that we only enforce
Top-Bottom interactions between pairs of hexamers. We included this factor because we
found that Top-Bottom interactions between hexamers and pentamers slow the process
of pentamers filling in holes in hexamer shells (see the main text), and
pentamer-pentamer interactions are irrelevant. The factor FH = 0 for subunits with
T=3 preferred curvature and FH = 1 for subunits with zero spontaneous curvature, so
that the ‘M’ pseudoatoms are included only for the latter case. As mentioned above, the
‘M’ pseudoatoms were only needed in the limit of small κs, which we only considered for
subunits without spontaneous curvature.

Shell-shell interaction parameter values. Attractors: The strength of
attractive interactions is parameterized by the well-depth εHH for a pair of attractors on
hexamers as follows. Hexamer-Hexamer edge attractor pairs (A2-A6, A3-A5, and
A5-A6) have a well-depth of εHH. Because vertex attractors (A1, A4) have multiple
partners in an assembled structure, whereas edge attractors have only one, the
well-depth for the vertex pairs (A1-A4 and A4-A4) is set to 0.5εHH. Similarly, for
pentamer-hexamer interactions, the well-depth for edge attractor pairs (A2-A5, A3-A6)
is εPH, while the vertex interaction pairs (A1-A4 and A4-A4) have 0.5εPH. We set the
ratio εPH/εHH=1.3 so that simulations without cargo form T=3 shells, or shells close in
size to T=3 (see Fig. 4) for the parameter ranges we consider with cargo. Note that we
cannot compare exact parameter ranges with and without cargo, since we focus on
conditions for which the cargo is required for shell nucleation. Therefore, we performed
our empty shell simulations with higher subunit-subunit interaction strengths,
εHH = 2.6, but maintaining the ratio εPH/εHH=1.3. Interestingly, complete shells at the
low stoichiometric ratio ρp/ρh = 0.3 incorporated excess hexamers during assembly, but
these were eventually shed resulting in complete shells with 12 pentamers and 20
hexamers.

Repulsive interactions: The ‘Top’ and ‘Bottom’ heights, or distance out of the
attractor plane, are set to h = 1/2rb, with rb = 1 the distance between a vertex
attractor and the center of the pentagon. For simulations of shells with T=3 preferred
curvature, σtb = 1.8rb is the diameter of the ‘Top’ - ‘Bottom’ interaction (this prevents
subunits from binding in inverted configurations [51]), and σb = 1.5rb is the diameter of
the ‘Bottom’ - ‘Bottom’ interaction. In contrast to the latter parameters, σt,ij the
effective diameter of the ‘Top’ - ‘Top’ interaction, depends on the species of subunits i
and j; denoting a pentagonal or hexagonal subunit as ‘p’ or ‘h’ respectively,
σt,pp = 2.1rb, σt,hh = 2.4rb, and σt,ph = 2.2rb. The parameter r0 is the minimum
energy attractor distance, set to 0.2rb, % = 4rb determines the width of the attractive
interaction, and rattcut = 2.0rb is the cutoff distance for the attractor potential. Since the
interactions just described are sufficient to describe assembly of the shell subunits, we
included no excluder-excluder interactions and FH is zero for simulations of shells with
preferred curvature. For flat subunits, the diameter of the ‘Top’ - ‘Top’ interaction is
equal to the diameter of ‘Bottom’ - ‘Bottom’ interaction, σt,hh = σb = 2.226rb,
σtb = 2.0rb, and σm = 2.026rb is the effective diameter of the middle excluders ‘M’.
Attractor parameters are the same as for T=3 subunits.

Cargo-cargo interactions. The interaction between cargo particles is given by

UCC({li}, {lj}) =

Nl∑
i<j

εCCL (|li − tj | , σC, rccut) (S1.5)
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with L the full Lennard-Jones interaction:

L(x, σ, rcut) =θ(x− rcut)×{
4

[(x
σ

)1
2−

(x
σ

)6]
− Vshift(rcut)

}
(S1.6)

and εCC is an adjustable parameter which sets the strength of the cargo-cargo
interaction, Nl is the number of LJ particles, the cargo diameter is σC = rb and the
cutoff is rccut = 3σC.

Shell-cargo interactions. The shell-cargo interaction is modeled by a short-range
repulsion between cargo-excluder and cargo-‘Top’ pairs representing the excluded
volume, plus an attractive interaction between pairs of cargo particles and hexamer
‘Bottom’ pseudoatoms. (We do not consider pentamer-cargo attractions because there is
no experimental evidence for them.) For subunit i with excluder positions {xiα} and
‘Bottom’ psuedoatom bi, and cargo particle j with position Rj , the potential is:

USC({xiα},Rj) =

Nx∑
α

 L (|xiα −Rj |, σex) (S1.7)

+

Nt∑
α

 L (|tiα −Rj |, σt) (S1.8)

+

Nb∑
α

εSCM
(
|ciα −Rj | , r0, %SC, rSCcut

)
IH(i)

where εSC parameterizes the shell-cargo interaction strength, Nx, Nt, and Nb are the
numbers of excluders, ‘Top’, and ‘Bottom’ pseudoatoms on a shell subunit, σex = 0.5rb
and σt = 0.5rb are the effective diameters of the Excluder - cargo and ‘Top’ - cargo
repulsions, rSC0 = 0.5rb is the minimum energy attractor distance, the width parameter
is %SC = 2.5rb, and the cutoff is set to rSCcut = 3.0rb. Finally, the term IH(i) specifies
that only hexamers have attractive interactions with cargo.
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