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Section S1. Determination of magnetic phase diagram for MnSi thin plate 

 

We determined the magnetic phase diagram for MnSi thin plate from the measurements 

of longitudinal resistivity (𝜌𝑥𝑥) and planar Hall resistivity (𝜌PHE), both of which are 

widely employed as the sensitive probes of magnetic transitions in MnSi (8, 32). The 

helical-ordering temperature (Tc) at the zero magnetic field is determined as the 

temperature where the xx-T curve exhibits an inflection (fig. S2A). The helical-to-conical, 

helical/conical-to-skyrmion, and conical-to-ferromagnetic transitions are determined 

from the kinks in B-dependence of 𝜌PHE (fig. S2 B-E).  

Section S2. Relationship between nonreciprocal nonlinear Hall effect and second-

harmonic resistivity 

In this section we describe the relationship among (1) the nonreciprocal nonlinear Hall 

effect, which is discussed on the basis of a symmetry argument, (2) the second-harmonic 

resistivity, which we experimentally measured as shown in the main text and (3) the DC 

limit of nonreciprocal nonlinear Hall resistivity, which we calculated theoretically.  

From the viewpoint of symmetry, the finite nonreciprocal nonlinear Hall voltage 𝑉𝑧
 Non in 

MnSi can appear in the experimental setup of Fig. 1A in the main text, and is described in 

the following expression 

 

𝑉𝑧
 Non 

= 𝐸𝑧
 𝑑 =  𝛼( 𝑗𝑥, 𝐵𝑧)𝑗𝑥d     

 

The 𝛼( 𝑗𝑥, 𝐵𝑧) is the nonreciprocal nonlinear Hall coefficient, being pseudo-scalar and an 

odd function of both 𝑗𝑥 and 𝐵𝑧. Here d is distance between voltage terminals (see also Fig. 

1A in the main text for the definition of the x-y-z coordinate). 



The relationship between the nonreciprocal nonlinear Hall effect and experimentally-

observed second harmonic Hall resistivity is derived as follows. When we input sine-

wave current 𝑗𝑥 = 𝑗0𝑥sin(2𝜋𝑓𝑡), the nonreciprocal nonlinear Hall voltage 𝑉𝑧
 Non can be 

described by a series of cos(2π𝑛𝑓𝑡) and sin(2π𝑛𝑓𝑡) 

 

𝑉𝑧
 Non = 𝛼( 𝑗𝑥, 𝐵𝑧)𝑗𝑥𝑑 =  ∑[𝐴n(𝑗0𝑥, 𝐵𝑧)cos(2π𝑛𝑓𝑡)

𝑛=0

+ 𝐵n(𝑗0𝑥, 𝐵𝑧)sin(2π𝑛𝑓𝑡)]𝑑 

 

Here, the coefficients of cos(4𝜋𝑓𝑡) and sin(4𝜋𝑓𝑡) are real and imaginary parts of second 

harmonic Hall voltage (Re𝑉𝑧
2𝑓 

and Im𝑉𝑧
2𝑓 

), respectively. We therefore obtain 

 

Re𝑉𝑧
2𝑓 

= 𝐴2(𝑗0𝑥, 𝐵𝑧)𝑑 

 

Im𝑉𝑧
2𝑓 

= 𝐵2(𝑗0𝑥, 𝐵𝑧)𝑑 

 

We define the real and imaginary parts of second harmonic resistivity as 

 

Re𝜌𝑧𝑥
2𝑓

=
Re𝑉𝑧

2𝑓 

𝑗0𝑥 𝑑
=  𝐴2(𝑗0𝑥, 𝐵𝑧)/𝑗0𝑥 

 

Im𝜌𝑧𝑥
2𝑓

=
Im𝑉𝑧

2𝑓 

𝑗0𝑥 𝑑
=  𝐵2(𝑗0𝑥, 𝐵𝑧)/𝑗0𝑥 

 

In the theoretical part, we calculate the DC limit of nonreciprocal nonlinear Hall 

resistivity [∝ 𝐴0(𝑗0𝑥, 𝐵𝑧)], not second harmonic Hall resistivity [∝ 𝐴2(𝑗0𝑥, 𝐵𝑧)]. Here we 

note 𝐴2(𝑗0𝑥, 𝐵𝑧) should asymptotically approach 𝐴0(𝑗0𝑥, 𝐵𝑧) in the low-frequency limit.  



Section S3. Current dependence of nonlinear Hall effect measured by using square-

wave current 

 

As mentioned in the main text, in order to avoid increase in the sample temperature due 

to the Joule heating, we controlled the cooling power based on the feedback from the 

simultaneous monitoring of the longitudinal resistivity. However, there is a possibility 

that temporal change of the sample temperature occurs due to the sine-wave input current. 

As illustrated in fig. S3A, when sine-wave current 𝑗𝑥sin (2𝜋𝑓𝑡) is applied, the Joule 

heating is proportional to sin2(2𝜋𝑓𝑡). If the thermal relaxation time of samples is much 

faster than one cycle of sine-wave current, the sample temperature decreases around the 

nodes of the sine-wave current.  

To rule out the influence of temporal temperature change, we additionally measured 

current dependence of nonreciprocal nonlinear Hall effect by using a square-wave current, 

which generates time-independent Joule heating (see fig. S2B). When a square-wave 

current applied, the nonlinear Hall voltage appears as a constant DC voltage 𝑉𝑧
DC parallel 

to magnetic field. Here we define nonreciprocal nonlinear Hall resistivity measured by 

using the square-wave current as 𝜌𝑧𝑥
square

=  𝑉𝑧
DC/(𝑗𝑥𝑑). As in the case of the 

measurement using the sine-wave current, we estimated the sample temperature from the 

longitudinal resistivity, and adjusted the temperature of the heat bath of PPMS to control 

the cooling power. As shown in fig. S3C the sample temperature stays almost constant. 

As shown in fig. S3D, the current dependence of 𝜌𝑧𝑥
square

 in the skyrmion phase exhibits a 

profile almost similar to that of second harmonic Hall resistivity measured by using the 

sine-wave current (Fig. 3B in the main text). This result rules out the possibility that the 

non-monotonous current dependence of second-harmonic Hall resistivity measured by 

using the sine-wave current results from the possible temporal temperature change. 

  



Section S4. Frequency dependence of skyrmion velocity 

 

In this section, we discuss the dependency of skyrmion velocity (𝒗Sk) on driving current 

frequency by using the Thiele’s equations (33, 34) 

 

𝑚
𝑑𝒗Sk

𝑑𝑡
+ 𝑮 × (𝒗Sk − 𝒗e) + 𝐷𝛼𝒗Sk = 0 

 

Here, m, D, 𝛼 and 𝒗e are effective mass of skyrmion, dissipative force constant, the 

Gilbert damping coefficient, and drift velocity of electrons, respectively. We have 

neglected the so-called 𝛽 term, which describes non-adiabatic effect, since the magnitude 

of 𝛽 is small in MnSi (11). In addition, the skyrmion velocity almost independents of the 

magnitude of 𝛽 (13). The gyromagnetic coupling vector G is given by 𝑮 = (0,0, 𝐺) with 

𝐺 = 4𝜋𝑁Sk being proportional to skyrmion number 𝑁Sk . In the moving regime, we can 

treat the impurity potential perturbatively. We ignore a pinning force in Thiele equation 

to keep the leading-order contribution because we measured the frequency dependence of 

second-harmonic resistivity with relatively large current density compared to the critical 

current density (j ~ 2jc) for moving skyrmions. The frequency dependence of skyrmion 

velocity along the current direction (𝑣Sk
𝑥  ) is derived as follows 

 

𝑣Sk
𝑥 (𝑓) =  

𝐺
𝐺2 + (𝐷𝛼)2

1 + 2𝜋𝑖
2𝑚𝐷𝛼

𝐺2 + (𝐷𝛼)2 𝑓
𝑣e 

 

Here because the skyrmion velocity perpendicular to the current direction (𝑣Sk
𝑦

) is smaller 

than 𝑣Sk
𝑥 , we ignore 𝑣Sk

𝑦
; when we ignore the 𝛽 term, the ratio between 𝑣Sk

𝑥  and 𝑣Sk
𝑦

 is 

described as 𝑣sk
𝑥 𝑣sk

𝑦
= ⁄ 𝐺/α𝐷 (13). Using the typical parameter in metals: α =

 0.04, 𝐷 = 5.57π, 𝐺 = 4π (13), we obtain 𝑣Sk
𝑥 𝑣Sk

𝑦
= ⁄ 𝐺/α𝐷 = 18.0. Therefore the 

skyrmion velocity is almost parallel to the current direction. As shown in fig. S4, the real 



part of 𝑣Sk
𝑥 (𝑓) begins to decrease around 𝑓 =

𝐺2+(𝐷𝛼)2

4𝜋𝑚𝐷𝛼
, and the imaginary part of 𝑣Sk

𝑥 (𝑓) 

exhibits the peak at 𝑓 =
𝐺2+(𝐷𝛼)2

4𝜋𝑚𝐷𝛼
. This is because skyrmions motion cannot follow the 

driven AC current with frequency above 𝑓 =
𝐺2+(𝐷𝛼)2

4𝜋𝑚𝐷𝛼
. The frequency profile of skyrmion 

velocity resembles that of second-harmonic resistivity (Fig. 3D in the main text), which 

supports the relationship of nonreciprocal nonlinear Hall signal to translational motion of 

SkL.  

Section S5. Calculation of nonreciprocal nonlinear Hall responses to AC 

While the DC component becomes finite only for the fourth-order contribution with 

respect to impurity potentials, the AC component can be finite already for the second-

order term of impurity potentials. However, this quantity is not relevant to the one 

observed in experiments. To see this, let us first look at the explicit form of the 

expression. Here, for simplicity of theoretical expressions, we take the random-Ising 

magnetic field for the impurity potential: 𝐻imp = ∫
𝑑𝒓

ℓ3 𝑉(𝒓)𝑛𝑧, whose conclusion is 

applied also to the random anisotropy considered in the main text. Under the AC current, 

the position of skyrmion crystal has the form 𝑹(𝑡) = 𝑹0 sin 𝜔0𝑡, and we then derive  

 

𝐸𝑧
AC(𝑡) = ∫

𝑑𝒓

Ω
𝑃𝑒𝑧(𝒓, 𝑡) 

=
2𝑃𝑏𝑧𝑉imp

2 𝑎6

3𝑄2ℓ3
∑ ∫

𝑑𝒒

(2𝜋)3
∑ 𝐸𝑖𝑗𝑀𝜔0𝑞𝑧

∞

𝑀,𝑁=−∞𝑖𝑗𝑘

[1 + (−1)𝑀+𝑁]𝑒−𝑖(𝑀+𝑁)𝜔0𝑡 

   × 𝐽𝑀(𝑸𝑘 ⋅ 𝑹0)𝐽𝑁(𝑸𝑘 ⋅ 𝑹0)𝐺𝑖𝑘(𝒒, 𝑀𝜔0)𝐺𝑗𝑘(−𝒒, 𝑁𝜔0) + 𝑂(𝑉imp
4 ) 

 

where 𝐽𝑁(𝑥) is the Bessel function of the first kind. We note that the contribution from 

emergent magnetic field perpendicular to external field vanishes in the uniform limit. 

From this expression it is clear that 𝐸𝑧
AC(𝑡) has only the components with the frequency 

𝜔 = 0, ±2𝜔0, ±4𝜔0, ⋯. However, this is an irrelevant contribution to the quantity 

measured by experiments, since 𝐸𝑧
AC(𝑡) has finite value only when the frequency ℏ𝜔0 is 



comparable to 
𝐷2

𝐽
, which is the characteristic energy scale for chiral magnets and is the 

order of gigahertz. In the experiments, the used frequency 𝜔0 (= 2𝜋𝑓) is much lower 

than this value (𝑓 ≃ 10Hz), and even in the DC case the signal has been captured. 

Furthermore, a fast oscillation of the electrical current cannot be followed by the motion 

of spin texture, as shown in Fig. 3D of main text. Thus the contribution from second-

order of impurity potentials is likely to be dropped from experimental observations, and 

we need to consider the higher-order terms as discussed in main text. 

Section S6. Calculation of current-induced dynamics of a single skyrmion string 

As described in the main text, for an intuitive understanding of the dynamics of the 

skyrmion string, we focus on dynamics of a single skyrmion string. In this section, we 

describe the detailed calculation method of dynamics of a skyrmion string and emergent 

electromagnetic field. The position 𝑹(𝑧, 𝑡) of a flowing single skyrmion string along 

magnetic field direction (z) is described by 𝑹 = 𝒗Sk𝑡 + 𝑧�̂� + 𝒖 where the vector 

𝒖(𝑧, 𝑡) = (𝑢𝑥, 𝑢𝑦, 0) and 𝒗Sk (∥ �̂�) are the displacement field and the skyrmion velocity, 

respectively. The emergent magnetic and electric fields are then written as (30) 

 

𝒃 =
𝑏1𝜕𝑧𝑹

|𝜕𝑧𝑹|
=

𝑏1(𝜕𝑧𝑢𝑥, 𝜕𝑧𝑢𝑦, 1)

√1 + (𝜕𝑧𝑢𝑥)2 + (𝜕𝑧𝑢𝑦)
2

                                     (S1) 

𝒆 = −𝜕𝑡𝑹 × 𝒃       (S2) 

 

where 𝑏1 is an emergent magnetic flux density for the single skyrmion string. 

We describe a bending of the skyrmion string as a wave packet constructed by 

superposition of eigenmodes of the dispersion of the low-energy excitation 𝜖(𝒒) 

 

𝑢𝑥(𝑧, 𝑡) = 𝐶1 [∫ 𝑑𝑞𝑧𝑒−(𝑞𝑧−𝑞1)𝟐/𝜎2
 +  ∫ 𝑑𝑞𝑧𝑒−(𝑞𝑧−𝑞2)𝟐/𝜎2

 ] cos(𝜔𝑡 − 𝑞𝑧𝑧)𝑒−𝑔𝑡 (S3) 

 



𝑢𝑦(𝑧, 𝑡) = 𝐶2 [∫ 𝑑𝑞𝑧𝑒−(𝑞𝑧−𝑞1)𝟐/𝜎2
 +  ∫ 𝑑𝑞𝑧𝑒−(𝑞𝑧−𝑞2)𝟐/𝜎2

 ] sin(𝜔𝑡 − 𝑞𝑧𝑧)𝑒−𝑔𝑡 (S4) 

 

Here, ℏ𝜔 is equal to 𝜖(𝒒) , and  𝑞1 and 𝑞2 are solutions of the equation 𝜖(𝒒) =  𝜖0 , 

where 𝜖0 is the energy of driving electric current (see also Fig. 4A). The 𝑔 and 𝜎 are a 

damping for the skyrmion string and a standard deviation of the Gaussian function. The 

constants 𝐶1 and 𝐶2 describe the magnitude of bending of skyrmion strings. We 

calculated emergent magnetic and electric filed by inserting Eq. S3 and S4 into Eq. S1 

and S2. (See Fig. 4. D, E, G, H in the main text for the result of calculations). 

We note that, in the case of the single string picture, the nonreciprocal nonlinear Hall 

electric field in the spatially uniform and DC-limit is given by 

 

𝐸𝑧
DC,string

=
𝑃𝑏1

2
∑ 𝜖𝜇𝜈𝑧

𝜇𝜈𝜌

lim
𝑇→∞

∫
𝑑𝑡

2𝑇
 ∫

𝑑𝑧

𝐿𝑧
[−(𝒗𝑒 − 𝒗Sk)𝜇 + 𝜕𝑡𝑢𝜇]𝜕𝑧𝑢𝜈(𝜕𝑧𝑢𝜌)

2
𝑇

−𝑇

 

 

with a system size 𝐿𝑧 along z-direction. Here we have kept the leading-order 

contributions for 𝐸𝑧
DC. As in the case of DC limit calculated in SkL (see the main text and 

the method section), the leading-order contribution of 𝐸𝑧
DC,   string  

 is also third- and 

fourth-order terms with respect to the internal deformation field variables. 

 

 



 

Fig. S1. Functional forms of the dimensionless functions fb(λ) and fe(λ). The wave-

vector integrals to evaluate 𝑓𝑏,𝑒(𝜆) have been performed by the Monte Carlo method, and 

the error bars represent a standard error.  

  



 

Fig. S2. Temperature dependence of longitudinal resistivity and magnetic field 

dependence of planar Hall resistivity. (A) Temperature (T) dependence of longitudinal 

resistivity (𝜌𝑥𝑥). We determined the helical-ordering temperature as the inflection point 

of the 𝜌𝑥𝑥 − 𝑇 curve (the black triangle). (B-E) Magnetic-field (B) dependence of planar 

Hall resistivity (𝜌PHE) at various temperatures. We assigned the kinks in B-dependence of 

𝜌PHE to the helical-to-conical transition (the blue triangle), helical/conical-to-skyrmion 

transition (the red triangles), and conical-to-ferromagnetic transition (the green triangles). 

The letters H, C, SkL, and F represent helical, conical, skyrmion-lattice, and 

ferromagnetic phases, respectively. 



 

Fig. S3. Current dependence of nonreciprocal nonlinear Hall effect measured by 

using square-wave current. (A and B) Schematic illustrations of time profiles of the 

sine-wave (A) and square-wave (B) input currents, and those of their corresponding Joule 

heating. (C and D) The current dependence of sample temperature estimated from the 

longitudinal resistivity measurement (C) and nonlinear Hall effect measured using 

square-wave current (D).  



 
 

Fig. S4. Frequency dependence of skyrmion velocity. The real part (red) and imaginary 

part (blue) of frequency-dependent skyrmion velocity derived from Thiele’s equation. 

The vertical and horizontal axes are normalized by the velocity at zero frequency and 
𝐺2+(𝐷𝛼)2

4𝜋𝑚𝐷𝛼
, where G, D, 𝛼 and m are gyromagnetic coupling, dissipative force, the 

coefficients for Gilbert damping, and effective mass of skyrmion, respectively. 
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