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Supplementary Discussion 

 

Our modeling results show that adaptive choice behavior at longer timescales can be reproduced by a 

dynamic normalization circuit, providing a potential circuit mechanism for adaptive value coding. An 

unresolved question at this time is how slow temporal dynamics are biophysically implemented in 

neural circuits. One possibility is that these changes result from long term plasticity within decision 

circuits, akin to proposals for adaptation in the visual system1. Another possibility is that pooling the 

integrated output of value based activity and recurrent feedback may underlie this phenomenon. In our 

modeling efforts, we purposefully refrained from linking our model stages with particular brain areas; 

however our estimated slow temporal integration timescales match well with previous 

electrophysiological studies of adaptation in orbitofrontal cortex and our rapidly adapting stage relates 

well to data from parietal area LIP2,3. However, it is possible that fast and slow timescale functions are 

served by a number of brain areas; alternatively, both timescales may be part of a single network 

capable of operating at a range of multiple timescales. Recent evidence of large-scale dynamical 

models based on connectivity data from tract-tracing experiments suggests a hierarchy of integrative 

timescales with sensory systems exhibiting brief transient responses and persistent long term activity in 

associative cortex4,5. These findings suggest an unknown circuit mechanism that establishes long 

temporal receptive windows within prefrontal and temporal areas6. One potential explanation for these 

differences can be regional differences in electrochemical composition of synapses7. It is unclear if 

these synaptic changes are driven primarily within cortical regions or if potential thalamo-cortical 

projections regulate temporal integration8, a potential mechanism underlying many theories of learning 

signals9. Mechanistically, we note that our model is more closely aligned to variance adaptation 

effects10 than to findings exhibiting range adaptation11-13. 

 

While the adaptation-induced changes in choice stochasticity in this experiment are relatively small, it 

is important to consider the small dynamic range in which our animals operate. In total, our animals 

perform hundreds of trials choosing between relatively low magnitude outcomes; larger reward 

magnitude variations may drive analogously larger effects in choice behavior. One of the limitations of 

the current experiment is the block nature of the design, which limits the number of different testable 

reward environments; future experiments will be required to test whether and how adaptive choice 

generalizes to different statistical changes representing more complex distributional parameters. It will 
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also be important to determine whether these adaptation effects generalize over different good 

categories (i.e. different juice types or good categories). In our block design, neither our experimental 

animals nor our model required an overt cue or indication of the statistical change in the reward 

environment. However, it is possible that the monkeys learned to detect changes in environmental 

statistics and changed their decision behavior between contexts in a top-down manner. We note, 

however, that such a mechanism could not easily explain the across-session variability in the observed 

adaptation effect. Our data suggests a very high degree of sensitivity to the precise stochastic 

sequences of choices offered to the subjects, rather than to the block structure per se. Our shuffle 

analysis of the reward magnitudes within blocks further supports a continuous, rather than a change 

point-style process; it also indicates that the precise sequence of rewards and not the general identity of 

the blocks or statistics are the underlying driver for the adaptation effect we observed. 
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Supplementary Figure 1. Adjusted intertrial interval distributions. Top and middle panels, histograms of 

the distribution of adjusted intertrial intervals (ITIs) experienced over all testing days in each animal. Adjusted 

ITIs account for both assigned ITI durations and any timeouts following aborted trials; adjusted ITIs for 

sequentially aborted trials combine all durations together. Note that the periodicity reflects the timeout duration; 

inset panels show magnifications of long duration adjusted ITIs associated with aborted trials. Bottom panel, 

comparison of long duration adjusted ITIs in both animals (same data as insets in top and middle panels). 

Consecutive aborted trials result in longer durations between successive correct trials. One animal (Monkey B) 

exhibited more long duration adjusted ITIs.  
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Supplementary Figure 2. Reinforcement learning model results. In this standard RL model, the value of 

each juice type is learned via prediction error as a function of the sequence of experimental rewards, with 

choice implemented via a softmax choice function. Two parameters were thus fitted using fmincon in 

Matlab: alpha (the unitary learning rate) as well as beta (the temperature of the softmax function). Parameters 

were optimized for each individual testing day. The best fitting parameter combination was then used to 

predict individual choices, and choice curves were fit using the same procedures used in our behavioral and 

normalization data analyses. (a) Scatterplot of the normalized slope differences obtained from the behavioral 

data versus the normalized slope differences of the reinforcement learning model. For both animals, learning 

rate (alpha) as well as softmax inverse temperature (beta) were fit independently for each testing day. (b) 

Reinforcement learning model performance at different fixed learning rates. Dashed lines, correlation 

between normalization model predictions and empirical observations of adaptation effects (as shown in Fig. 

5 in the main text). None of the RL model correlations are statistically significant (all p>0.3). (c) Boxplots of 

goodness of fit (log likelihood) of the reinforcement learning for fixed learning rates. The center line 

indicates the median, bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. 

The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 

individually using the '+' symbol Changing the learning rate does not change the ability of the model to 

predict monkey choices, suggesting that a reinforcement learning process is not the primary driver of 

monkey behavior in this task. 
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