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Supplementary Information 

1. Extended Methods 

1.1 Geometry of the model 

We used a realistic model of the human heart embedded in a torso model based on a voxel-

based, finite-element (FE) method. These models were used in our previous studies, and the 

details are described in those papers (Okada et al., 2011, 2015). The geometry of the model was 

based on multidetector computed tomography data of a subject without cardiac dysfunction 

collected with informed consent after approval of study by the institutional ethics committee. 

 Heart model: We analyzed only the ventricles, which consist of 244,187,136 voxel 

elements (mesh size 0.2 mm) (SFig. 1.1A). We mapped previously reported human data on the 

spatial orientation of the myocyte (fiber orientation) 

(http://gforge.icm.jhu.edu/gf/project/dtmri_data_sets) to this model of ventricles so the fiber 

orientation changed gradually from an endocardial to an epicardial surface [left ventricular (LV) 

free wall −90° to 60°; interventricular septum −90° to 70°, right ventricular (RV) free wall 

−60° to 60°] (SFig. 1.1B). Anisotropy of action potential propagation was introduced by setting 

the conductivity in the longitudinal (fiber) direction as greater than that in the transverse 

direction. To each voxel element, we implemented the ionic current model of human ventricular 

myocytes according to O'Hara et al. (O'Hara et al., 2011), which models three types of 

ventricular myocytes with different action potential durations (APDs)—i.e., endocardial cells, 

mid-myocardial (M-cells), and epicardial cells. We located M-cells in 20–64% of the wall 

volume from the endocardial side because we found that the physiological shape of T-waves 

could be reproduced with this distribution (Okada et al., 2011) (SFig. 1.1C). We modeled the 

conduction system, including the Purkinje system, using the network of one-dimensional 

elements with specific electrophysiological properties (Stewart et al., 2009) (SFig. 1.1D). Sites 

of the earliest activation (junctions of branches of bundles and the Purkinje network) were 

determined in our previous study (Okada et al., 2011) (SFig. 1.1E). With these settings we could 

reproduce the previously reported isochronal maps (Durrer et al., 1970) and body surface voltage 

maps (De Ambroggi et al., 1976; Taccardi, 1966). 

 Torso model: Mesh size of the voxel model of torso was 1.6 mm. We modeled major 

organs and applied specific conductivity to each of them (SFig. 1.1F; STable 1.1).  

 



 

SFig. 1.1 Heart and torso models. A: Morphology of the ventricular model. B: Fiber 

orientation. Color indicates angles relative to the equatorial plane. C: Transmural distribution of 

endocardial cells (green), M-cells (red), and epicardial cells (blue). D: Conduction system. E: 

Earliest activation sites, where the Purkinje system is coupled to the myocardium (white dots), 

and activation sequences are seen from the anterior wall (top panel) and posterior wall (bottom 

panel). Color indicates the local activation time. F: Torso model: body surface with 

electrocardiographic electrodes (top panel) and major organs (bottom panel)  

  



 

STable 1.1 Tissue conductivity  

 

Ventricle (intracellular 
fiber direction) 

6.2 [mS/cm] 
(Keldermann et al., 2009) 

Ventricle (intracellular 
fiber normal direction) 

2.0 [mS/cm] 
(Keldermann et al., 

2009) 

Ventricle (extracellular 
fiber direction) 

4.0 [mS/cm] (Panescu, 
Webster, Tompkins & 
Stratbucker, 1995) 

Ventricle (extracellular 
fiber normal direction) 

2.0 [mS/cm] 
(Panescu, Webster, 
Tompkins & 
Stratbucker, 1995) 

Blood 7.8[mS/cm] (Camacho, 
Lehr & Eisenberg, 1995) Atrium 

3.0 [mS/cm] 
(Panescu, Webster, 
Tompkins & 
Stratbucker, 1995) 

Muscle 
2.56 [mS/cm] (Panescu, 
Webster, Tompkins & 
Stratbucker, 1995) 

Lung 
0.83[mS/cm] 
(Panescu, Webster, 
Tompkins & 
Stratbucker, 1995) 

Artery, vein 
7.0 [mS/cm] (Panescu, 
Webster, Tompkins & 
Stratbucker, 1995) 

Esophagus 
2.0 [mS/cm] 
(Panescu, Webster, 
Tompkins & 
Stratbucker, 1995) 

Stomach, bowel 
2.0 [mS/cm] (Panescu, 
Webster, Tompkins & 
Stratbucker, 1995) 

Lien, liver 
1.67 [mS/cm] 
(Panescu, Webster, 
Tompkins & 
Stratbucker, 1995) 

Bone 0.1 [mS/cm] (Camacho, 
Lehr & Eisenberg, 1995) Kidney 

1.67 [mS/cm] 
(Panescu, Webster, 
Tompkins & 
Stratbucker, 1995) 

Fat 
0.5 [mS/cm] (Panescu, 
Webster, Tompkins & 
Stratbucker, 1995) 

Skin, body surface  40.0 [mS/cm] 
(model fit) 

 

  



1.2 Formulation of the propagation of excitation 

We defined three domains in the body (SFig. 1.2). The propagation of excitation in the body was 

formulated differently in these domains.  

 

SFig. 1.2 Domains in the model. H: heart domain; B: blood domain; T: tissue domain. ∂H: 

boundary of heart domain; ∂B: boundary of blood domain; ∂T: boundary of tissue domain.  

 

The excitable behavior of cardiac tissue (domain H) can be modeled as a continuous system 

using the following bi-domain equations: 
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where ∅ூ  and ∅ா  are the intracellular and extracellular potentials, respectively; 𝑉௠ = ∅ூ − ∅ா 

is the transmembrane voltage; β is the surface-to-volume ratio of the tissue (= 2000 cm-1) (Ten 

Tusscher et al., 2004); Cm is membrane capacitance (= 1 𝜇𝐹 𝑐𝑚ଶ) ⁄ (O'Hara et al., 2011); t is 

time; 𝐺௜௝
ூ  and 𝐺௜௝

ா  are the extracellular and intracellular conductivity tensors, respectively, 

accounting for the anisotropy of cardiac tissue; Istim is the stimulation current; Iion is the sum of 

ionic transmembrane currents describing the excitable behavior of individual ventricular cells; 

and indices i and j vary from 1 to 3. In the torso (T) and blood (B) domains, Laplace’s equation 

was solved.  
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where ∅் , ∅஻ is the potential; 𝐺௜௝
் , 𝐺௜௝

஻ is the isotropic conductivity at each point. In the torso 

domain, we assigned distinct values of 𝐺௜௝
்  for each organ adopted from the literature. On the 

boundaries of each domain, the following conditions were imposed, including the electrical 

coupling between the extracellular space of the heart domain and the torso domain (𝜕𝐻) or the 

blood domain (𝜕𝐵). 
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Conductivities are listed in STable 1.1. 

 

1.3 FE element discretization 

By applying the divergence theorem to the weak form of equations (S1) and (S2), we obtain 
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Note the second terms of the right-hand side of (S9) becomes zero from (S6). The FE 

discretization of (S9) and (S10) using 

𝑉௠ = 𝑁௔𝑉௠,௔, 𝛿𝑉௠ = 𝑁௔𝛿𝑉௠,௔ ,  

∅ூ = 𝑁௔∅ூ,௔, 𝛿∅ூ = 𝑁௔𝛿∅ூ,௔, (S11) 

∅ா = 𝑁௔∅ா,௔, 𝛿∅ா = 𝑁௔𝛿∅ா,௔,  

leads to the following matrix representation. 

β{𝐼௠} = −[𝐾ூ]{∅ூ}, (S11) 

β{𝐼௠} = −{𝐹ா} + [𝐾ா]{∅ா}, (S12) 
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By subtracting (S12) from (S11) and with the relation {𝑉௠} = {∅ூ} − {∅ா}, we obtain 

ൣ[𝐾ூ] + [𝐾ா]൧{∅ா} = {𝐹ா} − [𝐾ூ]{𝑉௠}, S13) 

Equations (S3) and (S4) are discretized similarly to give 

[𝐾்]{∅்} = {𝐹்}, (S14) 

[𝐾஻]{∅஻} = {𝐹஻}, (S15) 
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From (S5), (S7), and (S8), the fluxes and potentials on each boundary satisfy the following 

conditions. 

{𝐹ா} = {𝐹்} , {∅ா} = {∅்}, 𝑜𝑛 𝜕𝐻, (S16) 



{𝐹ா} = {𝐹஻} , {∅ா} = {∅஻}, 𝑜𝑛 𝜕𝐵, (S17) 

{𝐹 } = 0, 𝑜𝑛 𝜕𝑇. (S18) 

With the FE method, the continuity of the potential and the conservation of nodal current are 

satisfied by sharing the degrees of freedom on the boundary. Finally, the matrix form describing 

the whole system can be obtained as 
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(S19) 

The algorithm for time evolution is shown in SFig.1.3. Time steps used for the calculation of 

excitation propagation were 0.01 and 1.0 ms for the ECG calculation. Model parameters and the 

definition of the model are summarized in STable 1.2 and STable 1.3, respectively. 

  



 

SFig. 1.3 Algorithm for calculating the propagation of excitation and ECG 

 

  



STable 1.2 Model parameters 

Parameters Values 

Element type Eight-node hexahedral elements 
Time step for ECG calculation [ms] 1.0 
Time step for excitation propagation [ms] 0.01 
Mesh size of heart region [cm] 0.02 
Mesh size of torso region [cm] 0.16 

Fiber orientation 

 From endocardial to epicardial surface: -

90° to 60° in LV free wall  

-90° to 70° in ventricular septum  

-60° to 60° in RV free wall 
Transmural distribution of cell types 

(endothelial/M/epithelial) [volume ratio] 
20:44:36  

𝛽 (surface area-to-volume ratio) [cmିଵ] 2000 
𝐶௠ (membrane capacitance) [μF cmଶ⁄ ] 1 
 

  



STable 1.3 Definition of the model 

Variable Description 
Equations Bi-domain 
Material Transversely isotropic 
PDE solver Fully explicit 
Cell model variant O'Hara et al. (2011) 
Cell model numerical integration scheme Explicit 
Mesh type Hexahedral 
Solution method Finite element 
Basis function Bi-linear 
Pre-conditioners Incomplete LU 
Matrix solver Generalized minimal residual 
System architecture Distributed memory 

PDE: partial differential equation; LU: Lower-Upper 
 
  



1.1 In vitro current assay 

Ion currents were recorded in CHO or CHL cells expressing either hERG (IKr), Nav1.5, 

(INa), Cav1.2/b2/a2-d (ICa), KCNQ1+KCNE1 (IKs) channels using the Sophion QPatch 

HTX system and software (QPatch Assay Software 5.0; Biolin Scientific, Stockholm, 

Sweden) using the following cell lines, assay buffers, and voltage protocols. 

 Cell lines: hERG (KCNH2 gene) channels were stably expressed in CHO-K1 

cells. Nav1.5 (SCN5A gene, hNav1.5 channel) channels were stably expressed in CHL 

cells. Cav1.2 (CACNA1C/CACNB2/CACNA2D1 genes) channels were stably expressed 

in CHO cells. Iks (KCNQ1/KCNE1 genes) channels were stably expressed in CHO-K1 

cells. hERG, Nav1.5 and Iks Ik1 cell lines were established in Eisai. The Cav1.2 cell line 

was purchased from ChanTest Corporation (Cleveland, OH, USA). 

 Assay buffers: IKr: extracellular solution and internal solution containing (in 

mM): 145 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH adjusted to 7.4 

with NaOH, and 120 KCl, 5 CaCl2, 1.8 MgCl2, 10 KOH/EGTA, 4 Na2-ATP, 10 HEPES, 

pH adjusted to 7.2 with KOH. INa: extracellular solution and internal solution containing 

(in mM): 145 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH adjusted to 7.4 

with NaOH, and 135 CsF, 10 NaCl, 1 EGTA, 10 HEPES, pH adjusted to 7.3 with CsOH. 

ICa: extracellular solution and internal solution containing (in mM): 137 NaCl, 4 KCl, 1.8 

CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH adjusted to 7.4 with NaOH, and 80 L-

aspartic acid, 130 CsOH, 5 MgCl2, 4 Na2-ATP, 0.1 Tris-GTP, 5 EGTA, 10 HEPES, pH 

adjusted to 7.2 with L-aspartic acid. IKs: extracellular solution and internal solution 

containing (in mM): 145 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH 

adjusted to 7.4 with NaOH, and 110 K-gluconate, 20 KCl, 2 MgCl2, 5 EGTA, 4 Na2-ATP, 

10 HEPES, pH adjusted to 7.2 with KOH. 

 Voltage protocols: IKr was induced by the application of depolarizing step pulses 

to +20 mV with 2000 ms duration, followed by step pulses to -50 mV with 2000 ms 

duration from a holding potential of -80 mV every 15 s. The inhibition ratio of the tail 

current at -50 mV was calculated as hERG inhibition. INa was induced by the application 

of 30 repetitive depolarizing pulses to -10 mV with 50 ms duration from a holding 

potential of -90 mV at 2 Hz. The inhibition ratio of peak inward current at the 30th pulse 

was calculated as INa inhibition. Ica was induced by the application of depolarizing step 



pulses to 0 mV with 150 ms duration from a holding potential of -40 mV every 5 s. The 

inhibition ratio of peak inward current was calculated as ICa inhibition. Iks was induced by 

the application of depolarizing step pulses to +40 mV with 2000 ms, followed by step 

pulses to -50 mV with 500 ms duration from the holding potential of -80 mV every 5 s. 

The inhibition ratio of tail current at -50 mV was calculated as IKs inhibition.  

 Starting from the free effective therapeutic plasma concentration (ETPCunbound), 

drug concentrations were increased until the inhibition rate of any one of five currents 

reached its upper limit or arrhythmias were observed. Drug effects were analyzed for 

each channel by normalizing the current by its maximum value obtained in the absence of 

the drug and fit to the Hill equation, where x and h represent the drug concentration and 

Hill constant, respectively. 

Relative current =
1

1 + 10(௟௢௚ூ஼ఱబି௟௢௚ )∙௛
 

Non-linear least square fits were solved by GraphPad Prism version 6.02 (GraphPad 

Software Inc., La Jolla, CA, USA). Data are expressed as means+SEM.  

 

1.2 Prediction of arrhythmogenic risk by the ECG database 

 We evaluated the 26 benchmark drugs (Table) using the database. Drug concentration-

dependent changes in ECGs and corresponding locations in the multi-dimensional space 

are shown for each drug in Supplementary Figures 2.4 to 2.29.  

 

1.3 Predictive ability of ECG indices for arrhythmogenic risk 

We applied a multiple regression analysis to ECG indices, i.e., QT interval, Tpeak-Tend 

and J-Tpeak, with the extent of block of ionic currents as predictor variables using the 

following model, 

Y = 𝑎୍୒ୟ ∙ 𝑥ூே௔ + 𝑎୍୏ୱ ∙ 𝑥ூ௄௦ + 𝑎୍୏୰ ∙ 𝑥ூ௄௥ + 𝑎୍େୟ ∙ 𝑥ூ஼௔ + 𝑎୍୒ୟ,୐ ∙ 𝑥ூே௔,௅ 

where Y = ΔQT, ΔJ − Tpeak, or ΔTpeak −Tend, and 𝑥ூே௔, 𝑥ூ௄௦, 𝑥ூ௄௥ , 𝑥ூ஼௔ and 𝑥ூே௔,௅are 

the extent of block of INa, IKs, IKr, ICa and INa,L, respectively. 

However, because the occurrence of arrhythmia is expressed by a dichotomous variable 

(y), we applied a logistic regression analysis using the following model,  

logit(p) = log ൤
𝑦

(1 − 𝑦)
൨ = P  



𝑃 = 𝑏୍୒ୟ ∙ 𝑥ூே௔ + 𝑏୍୏ୱ ∙ 𝑥ூ௄௦ + 𝑏୍୏୰ ∙ 𝑥ூ௄௥ + 𝑏୍େୟ ∙ 𝑥ூ஼௔ + 𝑏୍୒ୟ,୐ ∙ 𝑥ூே௔,௅ + 𝑏௜௡௧ 

where 𝑥ூே௔, 𝑥ூ௄௦, 𝑥ூ௄௥ , 𝑥ூ஼௔ and 𝑥ூே௔,௅are the extent of block of INa, IKs, IKr, ICa 

and INa,L, respectively. P indicates how close each combinatorial state is to the region of 

arrhythmia; thus, it may be an index of arrhythmia risk.  

 Parameter estimations were performed using R Statistical Software (Free 

Software Foundation Inc. MA, USA).  

 

  



2. Verification of the partial differential equation solver 

2.1 Method 

Software code for the partial differential equation (PDE) solver used in this study was verified by 

two approaches. First, we solved the problem with known analytical solutions to evaluate exact 

errors and the convergence rate proposed by Pathmanathan and Gray (Pathmanathan & Gray, 

2014). Among the various benchmark tests provided in the literature, the three-dimensional (3D) 

bi-domain-with-bath problem (BB-3D*) conforms to the current heart simulation model, 

including the torso. As these authors pointed out, however, it is essentially a one-dimensional 

problem. Accordingly, we solved both BB-3D* and simple 3D bi-domain (B-3D) problems. The 

tissue domain (Ω = [0,1] × [0,1] × [0,1]) for B-3D is a cube, and that for BB-3D* is flanked by 

two cubic bath domains (Ω௕ = [−1,0] × [0,1] × [0,1] or [1,2] × [0,1] × [0,1]) of the same size 

(SFig. 1.4A). At all points in Ω, the extracellular (∅௘) and intracellular (∅௜) potentials and the 

membrane potential V = ∅௜ − ∅௘ are defined. The governing equations in Ω are 

χ ൬𝐶௠

𝜕𝑉

𝜕𝑡
+ 𝐼௜௢௡(𝒖, 𝑉)൰ − ∇ ∙ ൫𝜎௜∇(𝑉 + ∅௘)൯ = 𝐼௜

௦௧௜௠  

∇ ∙ ((𝜎௜ + 𝜎௘)∇∅௘ + 𝜎௜∇𝑉) = 0  

𝜕𝒖

𝜕𝑡
= 𝒇(𝒖, 𝑉)  

where 𝐶௠ is the capacitance of the cell membrane; χ is the membrane surface area-to-volume 

ratio; 𝜎௜ and 𝜎௘ are intracellular and extracellular conductivity tensors, respectively; 𝐼௜
௦௧௜௠ is 

the stimulus current; 𝑢 ≡ 𝑢(t, 𝑥) is the vector of state variables at time t and location x; 𝐼௜௢௡ is 

the ionic current calculated by the cell electrophysiology model. The following non-

physiological cell model giving the analytical solution was used: 

𝒇(𝒖, 𝑉) = ൦
(𝑢1 + 𝑢2 − 𝑉)ଶ𝑢ଶ

ଶ +
1

2
(𝑢ଵ + 𝑢ଷ − 𝑉)𝑢ଶ

ଶ(𝑉 − 𝑢ଷ)

−(𝑢ଵ + 𝑢ଷ − 𝑉)𝑢ଶ
ଷ

0

൪  

𝐼௜௢௡(𝒖, 𝑉) = −
𝐶௠

2
(𝑢ଵ + 𝑢ଷ − 𝑉)𝑢ଶ

ଶ(𝑉 − 𝑢ଷ) +
𝛽(𝑉 − 𝑢ଷ)

χ
.  

The bath domain satisfies 

∇ ∙ (𝑠௕∇∅௘) = 0.  



 Boundary conditions are continuity of extracellular potential ∅௘  and extracellular 

current across the boundary ∂Ω. Also, a stimulus current applied to the edge of the bath domain 

(𝐼ா
௦௨௥௙

) must fulfill the following conditions: 

n ∙ (𝜎௕∇∅௘) = 𝐼ா
௦௨௥௙  

In the simple 3D bi-domain problem (B-3D), let F(𝒙) = cos(πx)cos(2πy)cos(3πz) and 

G(𝒙) = 1 + x𝑦ଶ𝑧ଷ. We solved it with 𝐼௜
௦௧௜௠ = 0 with a zero flux boundary condition and initial 

conditions V(0, x) = F(x) and u(0, x = ൫G(x) + F(x), G(𝑥)ିଵ ଶ⁄ , 0൯ using the following 

parameter values.  

χ = 3, 𝐶௠ = 2, 𝜎௜ = 𝜋ିଶ ൥
1.1 0 0
0 1.2 0
0 0 0.3

൩ , k =
1

√2
,    

𝜎௘ = (1 − 𝑘)
𝜎௜

𝑘
,    β = −8.6(1 − k).  

The exact solution in the unit cube Ω = [0,1] × [0,1] × [0,1] is 

V(t, 𝒙) = (1 + 𝑡)
ଵ
ଶ𝐹(𝒙)  

𝐶(𝑡) = 𝑘(1 + 𝑡)
ଵ
ଶ  

𝑢ଵ(𝑡, 𝒙) = (1 + 𝒙)𝐺(𝒙) + (1 + 𝑡)
ଵ
ଶ𝐹(𝒙)  

𝑢ଶ(𝑡, 𝒙) = (1 + 𝑡)ିଵ(G(x))ି
ଵ
ଶ  

𝑢ଷ(𝑡, 𝒙) = 0  

For the 3D bi-domain-with-bath problem (BB-3D*), we applied an electrode stimulus of  

𝐼ா
௦௨௥௙

= ቄ
𝛼  𝑖𝑓 𝑥 = 2    
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

with 𝐼௜
௦௧௜௠ = 0 and Dirichlet boundary condition applied ∅௘ = 0 𝑜𝑛 𝑥 = −1. Let F(𝒙) =

cos(πx) and G(𝒙) = 1 + x𝑦ଶ𝑧ଷ. With the initial conditions V(0, x) = F(x) − 𝑎𝑥 𝑠௘⁄  and 

u(0, x = ൫G(x) + F(x), G(𝑥)ିଵ ଶ⁄ , − 𝑎𝑥 𝑠௘⁄ ൯, the following parameter values were used.  

χ = 3, 𝐶௠ = 2, 𝜎௜ = 𝜋ିଶ ൥
1.1 0 0
0 1.2 0
0 0 0.3

൩ , k =
1

√2
,    

𝜎௘ = (1 − 𝑘)
𝜎௜

𝑘
, α = 0.01, 𝑠௕ =

𝑠௘

2
, β = −1.1(1 − k).  

The exact solution in Ωୟ୪୪ = [−1,2] × [0,1] × [0,1] is as follows. 



V(t, 𝒙) = (1 + 𝑡)
ଵ
ଶ𝐹(𝒙) −

𝛼

𝑠௘
𝒙  

𝐶(𝑡) = 𝑘(1 + 𝑡)
ଵ
ଶ +

𝛼

𝑠௕
  

∅௘(𝑡, 𝒙) =

⎩
⎪⎪
⎨

⎪⎪
⎧−𝑘(1 + 𝑡)

ଵ
ଶ +

𝛼

𝑠௕
+  𝐶(𝑡)                                      𝑖𝑓 − 1 ≤ 𝑥 ≤ 0

−𝑘(1 + 𝑡)
ଵ
ଶ cos(𝜋𝑥) +

𝛼

𝑠௘
𝑥 +  𝐶(𝑡)                        𝑖𝑓 0 ≤ 𝑥 ≤ 1

−𝑘(1 + 𝑡)
ଵ
ଶ cos(𝜋) +

𝛼

𝑠௘
+

𝛼

𝑠௕

(𝑥 − 1)  +  𝐶(𝑡)  𝑖𝑓 1 ≤ 𝑥 ≤ 2

  

𝑢ଵ(𝑡, 𝒙) = (1 + 𝒙)𝐺(𝒙) + (1 + 𝑡)
ଵ
ଶ𝐹(𝒙)  

𝑢ଶ(𝑡, 𝒙) = (1 + 𝑡)ିଵ(G(x))ି
ଵ
ଶ  

𝑢ଷ(𝑡, 𝒙) = −
𝛼

𝑠௘
𝑥  

 We solved the problem using our PDE solver at four spatial resolutions (ℎ = 0.0125, 

0.025, 005, and 0.1). The results at t=1 were compared with the exact solution, and convergence 

was evaluated by calculating the standard L2 and Sobolev H1 spatial norms. For each spatial 

resolution (ℎ), we adopted a different time step (∆t=0.00015625, 0.000625, 0.0025, and 0.01), so 

the time steps were proportional to ℎଶ. 

 Second, we verified the code using the N-version strategy, wherein results from multiple 

simulation codes of a reproducible benchmark problem are used as a gold standard solution for 

the verification (Niederer et al., 2011). The following mono-domain equation is solved with this 

benchmark test 

χ ൬𝐶௠

𝜕𝑉

𝜕𝑡
+ 𝐼௜௢௡(𝒖, 𝑉)൰ = ∇ ∙ (𝜎∇𝑉) 

𝐼௜௢௡ = 𝑓(𝑦, 𝑡, 𝑉) 

𝜕𝒚

𝜕𝑡
= 𝑔(𝑦, 𝑡, 𝑉), 

where 𝐶௠ is the capacitance of the cell membrane; χ is the membrane surface area-to-volume 

ratio; 𝜎 is the conductivity; and 𝐼௜௢௡ is the ionic current calculated by a function (𝑓) of a set of 

state variables (y) defined by a system of non-linear ordinary differential equations (𝑔).  

 The ten Tusscher and Panfilov model of human epicardial myocytes (Ten Tusscher & 

Panfilov, 2006) is used for this benchmark test. The tissue model is a cuboid with dimensions of 



3×7×20 mm. In this model, fiber direction is oriented in the long (20 mm) axis, and transversely 

isotropic conductivity is introduced. A zero-flux boundary condition is imposed, and the stimulus 

current is applied to a volume of 1.5×1.5×1.5 mm located at one corner of the cuboid (S in SFig 

1.4B). The problem was solved at three spatial resolutions (∆x = 0.5, 0.2, and 0.1 mm), and 

each spatial resolution was solved with three time steps (∆t = 0.05, 0.01, and 0.005 ms). The 

definition of the model used for the benchmark test, model parameters, and the initial state 

variables of the cell model are listed in STables 1.2, 1.3, and 1.4, respectively. The time that the 

membrane potential passes through 0 mV upon first activation was used as the metrics of the 

model's behavior.  

 

SFig. 1.4 Tissue models used for verification. A: Top: Model used for the B-3D problem, Ω: 

tissue domain. Bottom: Model used for the BB-3D* problem, Ω: tissue domain; Ωb: bath domain. 

Numbers next to the double-headed arrow indicate size (in mm). B: Tissue model used for the N-

version strategy. S: subdomain for application of stimulation. Numbers next to the double-

headed arrow indicate size (in mm). 

 

  



STable 1.4 Definition of the model used for the N-version benchmark test 

Variable Description 

Equations Mono-domain 

Material Transversely isotropic 

PDE solver Fully explicit 

Cell model, variant Ten Tusscher & Panfilov, 2006; epicardial 

cell model 

Cell model numerical integration scheme Explicit  

Mesh type Hexahedral 

Solution method Finite element 

Basis function Bi-linear 

Pre-conditioners Incomplete LU 

Matrix solver Generalized minimal residual 

System architecture Distributed memory 

PDE: partial differential equation; LU: Lower-Upper 

  



STable 1.5 Model parameters for the N-version benchmark test 

Variables Description 

Geometric domain Cuboid 

Dimensions 20×7×3 mm 

Fiber orientation Fibers are aligned in the long (20 mm) axis 

Discretization 0.5, 0.2, and 0.1 mm isotropic 

PDE time steps 0.05, 0.01, and 0.005 ms 

Stimulation geometry 1.5×1.5×1.5 mm cube from a corner 

Stimulation protocol 2 ms at 50,000 μA cm-3 

Surface area-to-volume ratio 1400 cm-1 

Membrane capacitance 1 μFcm-2 

Conductivities: intra-longitudinal, intra-

transversal, extra-longitudinal, and extra-

transversal  

0.17, 0.019, 0.62, and 0.24 Sm-1 

 

  



Table 1.6 Initial state variables of the cell model for the N-version benchmark test 

Variable Values (units) 

Membrane potential -85.23 (mV) 

Rapid time-dependent potassium current Xr1 gate 0.00621 

Rapid time-dependent potassium current Xr2 gate 0.4712 

Slow time-dependent potassium current Xs gate 0.0095 

Fast sodium current m gate 0.00172 

Fast sodium current h gate 0.7444 

Fast sodium current j gate 0.7045 

L-type Ca current d gate 3.373×10-5 

L-type Ca current f gate 0.7888 

L-type Ca current f2 gate 0.9755 

L-type Ca current fClass gate 0.9953 

Transient outward current s gate 0.999998 

Transient outward current r gate 2.42×10-8 

Intracellular calcium 0.000126 (mM) 

Sarcoplasmic reticulum calcium 3.64 (mM) 

Subspace calcium 0.00036 (mM) 

Ryanodine receptor R prime 0.9073 

Intracellular sodium 8.604 (mM) 

Intracellular potassium 136.89 (mM) 

 

  



2.2 Results 

SFigure 1.5A compares the distributions of membrane potential (V, left) and extracellular 

potential (∅௘ , right) at the end time (T=1) calculated by our solver (FE analysis): spatial 

resolution = 0.2 mm) with the exact solution for the B-3D problem. Simulation results well 

reproduce the exact solutions. Furthermore, errors of the membrane potential (SFig. 1.5B, left) 

and extracellular potential (SFig. 1.5B, right) evaluated by the Sobolev H1 spatial norm (red line) 

and L2 spatial norm (black line) decreased monotonically with mesh size. The slopes of the log–

log plot were 1 and 2, respectively. The magnitudes of errors were also within the range reported 

in Figure 3 of Pathmanathan and Gray (Pathmanathan & Gray, 2014). Similarly good agreements 

in potential distribution and convergence were obtained for the BB-3D* problem (SFig. 1.6). As 

for N-version verification, we plotted the local activation time along the line in the test domain 

(red broken line in SFig. 1.4B) simulated using three spatial resolutions: 0.1 mm (red line), 0.2 

mm (green line), 0.5 mm (blue line) (SFig. 1.7A). The velocity of the activation wave (reciprocal 

of the slope) increased with the refinement of meshes and converged at lower spatial resolutions. 

Similar patterns can be seen in 9 of 11 simulations reported in Figure 2 of Niderer et al. 

(Niederer et al., 2011). The activation time at the end was also similar (~50 ms). We plotted this 

activation time in SFig. 1.7B as a function of both time steps and spatial resolution. The 

activation time is less dependent on the time step and, in the region ∆x ≤0.2 mm and ∆t ≤0.1 

ms, we confirmed convergence. Again, similar results have been reported for 9 of 11 program 

codes in Figure 3 of Niderer et al. (Niederer et al., 2011).  

  



 

SFig. 1.5 Verification using the B 3D problem. A: Distribution of the membrane potential (V: 

left) and extracellular potential (∅௘: 𝑟𝑖𝑔ℎ𝑡) at the end time (T=1) were compared between 

simulation results (FE analysis) and exact solutions. B: Errors in membrane potential (V: left) 

and extracellular potential (∅௘: 𝑟𝑖𝑔ℎ𝑡) evaluated by the L2 spatial norm (red line) and the Soblev 

H1 spatial norm (black line) are plotted as functions of the spatial resolution.  

  



 

SFig. 1.6 Verification using the BB 3D* problem. A: Distribution of the membrane 

potential (V: left) and extracellular potential (∅௘: 𝑟𝑖𝑔ℎ𝑡) at the end time (T=1) were 

compared between simulation results (FE analysis) and exact solutions. B: Errors in the 

membrane potential (V: left) and extracellular potential (∅௘: 𝑟𝑖𝑔ℎ𝑡) evaluated by the L2 

spatial norm (red line) and Soblev H1 spatial norm (black line) are plotted as functions of 

the spatial resolution. 

 

  



 

SFig. 1.7 Verification using the N-version strategy. A: Local activation times simulated 

with three spatial resolutions (∆x = 0.5 mm, blue line; 0.2 mm, green line; 0.1 mm, red 

line) are plotted as a function of the distance from the stimulation point. B: Activation 

time at the end point was simulated using different time steps and spatial resolutions. 
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