Supporting Information

Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates

Nako Nakatsuka,^{1,2} Huan H. Cao,^{1,2} Stephanie Deshayes,³ Arin L. Melkonian,³ Andrea M. Kasko,^{2,3} Paul S. Weiss,^{1,2,4} and Anne M. Andrews^{1,2,5*}

¹Department of Chemistry and Biochemistry, ²California NanoSystems Institute, 3 Department of Bioengineering, 4 Department of Materials Science and Engineering, 5 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States

*To whom correspondence should be addressed: aandrews@mednet.ucla.edu

Figure S1. Optimizing surface-tethered small molecule densities. (Left) Different ratios of hydroxyl-terminated alkanethiols (background molecules; hydroxyl triethylene glycol (undecanethiol) (TEG)) *vs.* carboxyl-terminated alkanethiols (small-molecule tethers; carboxyl hexa(ethylene glycol) undecanethiol (HEG)) were incubated in each channel. Representative fluorescence image for dopamine aptamer recognition of dopamine functionalized channels. **(Right)** Maximal relative fluorescence intensities were observed for 80% TEG:20% HEG. This ratio was used for all subsequent experiments. Error bars are standard errors of the means for $N=3$ substrates. Group means were significantly different **P*<0.05 and \dagger *†P*<0.01 *vs.* the 80:20 TEG:HEG ratio.

4 – 20 µM DA aptamer + 10 µM DA $5 - 20 \mu M DA$ aptamer + 20 $\mu M DA$ $6 - 20 \mu M DA$ aptamer + 50 $\mu M DA$

Figure S2. Representative fluorescence images for the competitive displacement experiment to investigate reversible binding of the dopamine (DA) aptamer to surface-tethered dopamine. A different concentration of free dopamine $(0-50 \mu M)$ was added to each channel in different orders on different substrates. Binding was quantified for $N=4$ substrates in Figure 3A.

Figure S3. *L*-Tryptophan aptamer capture on patterned substrates. (A) Schematic (not to scale) of patterning and functionalization of *L*-tryptophan. **(B)** Substrates were incubated with the 34-base *L*-tryptophan-specific aptamer sequence or (C) a scrambled sequence with the same numbers of each nucleotide as the correct sequence but randomized to generate a different secondary structure. The secondary structure of the correct and scrambled sequences were generated using *Mfold.* Substrates were imaged at an emission wavelength of 525 nm for AlexaFluor® 488 (excitation at 490 nm).

Figure S4. Selectivity of dopamine and *L*-tryptophan aptamers. **(A)** Patterned *L-*tryptophan-functionalized substrates imaged at an emission wavelength of 605 nm for AlexaFluor® 546 (excitation at 556 nm) to visualize bound dopamine aptamers. **(B)** Patterned dopamine-functionalized substrates imaged at an emission wavelength of 525 nm for AlexaFluor[®] 488 (excitation at 490 nm) to visualize bound L-tryptophan aptamers. In both cases, no observable patterns were detected indicating minimal cross-reactivity for the incorrect targets.