Supporting Information

Bidirectional transcriptome analysis of rat bone marrow-derived mesenchymal stem cells and activated microglia in an *in vitro* co-culture system

Da Yeon Lee¹, Moon Suk Jin¹, Balachandran Manavalan¹, Hak Kyun Kim², Jun Hyeok Song², Tae Hwan Shin^{1,3}**, and Gwang Lee^{1,3}*

¹Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea

²Ajou University School of Medicine, Suwon, Republic of Korea

³ Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea

**Co-corresponding author: Tae Hwan Shin

Research fellow, Department of Physiology Ajou University School of Medicine, 164, World cup-ro Yeongtong-gu, Suwon, 16499, Republic of Korea. Tel: +82-31-219-4555 Fax: +82-31-219-5049 E-mail: catholicon@ajou.ac.kr

*Corresponding author: Gwang Lee

Professor, Department of Physiology Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea. Tel: +82-31-219-4554 Fax: +82-31-219-5049 E-mail: glee@ajou.ac.kr

Supplementary	Table	1:	Quantitative	RT-PCR	primer	sequences	for	genes	encoding
transcriptomic ne	etwork r	elat	ed to cell mig	ration					

Gene Name	Symbol	NCBI Ref. seq	Direction	Primer sequence (5'-3')	
Pottus porvegious			Formand	ACA GCA TTT ACC CCT	
Kattus norvegicus	Icam1	NM_012967.1	rorward	CAC C	
intercellular adhesion			Reverse	CAG GTC ACG AGT TCA	
molecule 1				CAG TC	
Dottus nomusicus			Formand	TCC AAC TCC CAA AAT	
Kattus norvegicus	Vcam1	NM_012889.1	Forward	CCT GTG	
vascular cell adhesion			Reverse	TTC CAG CCT CAT TAA	
molecule 1				TCC CTT C	
D //			F 1	TCA CTT TCC CTT CAC CTT	
Rattus norvegicus		NR 021055 1	Forward	CG	
matrix	Mmp9	NM_031055.1	Reverse	CTC CGT GTA GAG ATT	
metallopeptidase 9				CTC ACT G	
D //			F 1	TCT TCC TCT GAA ACT	
Rattus norvegicus	NC 2	ND 4 122502 2	Forward	TGG CG	
matrix	Mmp3	NM_133523.3	Reverse	AGT GCT TCT GAA TGT	
metallopeptidase 3				CCT TCG	

Ref. seq.: Reference sequence

Supplementary Table 2: Quantitative RT-PCR primer sequences for genes encoding transcriptomic network related to inflammatory response

Gene Name	Symbol	NCBI Ref. seq Direction		Primer sequence (5'-3')		
		NM_198769.2	Forward	GGA TCT TGA TGG CTG		
Rattus norvegicus toll-	Tlr2		Porward	TGA TAG G		
like receptor 2			Davanaa	CTT TGT GTT TGC TGT		
			Reverse	GAG TCC		
Dattus nomesians C.C.			E a marca a l	GGA CTT CAG CAC CTT		
Rattus norvegicus C-C	Ccl2	NM_031530.1	Forward	TGA ATG		
motif chemokine			Reverse	GGA CTT CAG CAC CTT		
ngand 2				TGA ATG		
	Tnf	NM_012675.3	Г 1	TGG GCT GTA CCT TAT		
Rattus norvegicus			Forward	CTA CTC C		
tumor necrosis factor			D	GGC TGA CTT TCT CCT		
			Reverse	GGT ATG		
	Gapdh		F 1	GAA GAC TGT GGA TGG		
Rattus norvegicus			Forward	CCC		
phosphate		NM_017008.4		CCA TGC CAG TGA GCT		
dehydrogenase			Reverse	TCC		

Ref. seq.: Reference sequence

Supplementary Table 3: Top 20 canonical pathways constructed algorithmically by Ingenuity Pathway Analysis in rBM-MSCs co-cultured with LPS-stimulated microglia compared to rBM-MSCs co-cultured with microglia

Canonical Pathways	-log(p-value)	Number of
		genes
Interferon Signaling	13.7	20
Death Receptor Signaling	10.6	28
Hepatic Fibrosis / Hepatic Stellate Cell Activation	9.1	39
Neuroinflammation Signaling Pathway	8.71	53
iNOS Signaling	8.38	17
Activation of IRF by Cytosolic Pattern Recognition Receptors	8.21	20
TREM1 Signaling	7.51	21
Protein Ubiquitination Pathway	7.01	44
PPAR Signaling	6.87	23
Apoptosis Signaling	6.68	22
Role of JAK1, JAK2 and TYK2 in Interferon Signaling	6.65	11
Osteoarthritis Pathway	6.55	37
Granulocyte Adhesion and Diapedesis	6.47	33
TNFR2 Signaling	6.41	12
Role of Macrophages, Fibroblasts and Endothelial Cells in		
Rheumatoid Arthritis	6.15	47
Colorectal Cancer Metastasis Signaling	6.09	49
IL-10 Signaling	6.03	18
Role of Pattern Recognition Receptors in Recognition of Bacteria		
and Viruses	6	27
TNFR1 Signaling	5.96	15
Hepatic Cholestasis	5.61	29

Supplementary Table 4: Top 20 canonical pathways constructed algorithmically by Ingenuity Pathway Analysis in LPS-stimulated microglia co-cultured with rBM-MSCs compared to LPSstimulated microglia

Canonical Pathways	-log(p-value)	Number of
		genes
TREM1 Signaling	11.7	31
Neuroinflammation Signaling Pathway	10.4	73
Role of Macrophages, Fibroblasts and Endothelial Cells in		
Rheumatoid Arthritis	9.65	70
Dendritic Cell Maturation	8.54	49
iNOS Signaling	7.17	19
IL-10 Signaling	7.04	24
Type I Diabetes Mellitus Signaling	6.93	31
Th1 Pathway	6.87	35
Role of PKR in Interferon Induction and Antiviral Response	6.83	18
Th1 and Th2 Activation Pathway	6.82	43
PI3K Signaling in B Lymphocytes	6.45	34
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	6.31	26
Colorectal Cancer Metastasis Signaling	5.97	51
JAK/Stat Signaling	5.88	24
Role of Pattern Recognition Receptors in Recognition of		
Bacteria and Viruses	5.81	33
Crosstalk between Dendritic Cells and Natural Killer Cells	5.75	25
HMGB1 Signaling	5.64	32
Production of Nitric Oxide and Reactive Oxygen Species in		
Macrophages	5.51	42
Death Receptor Signaling	5.46	25
Toll-like Receptor Signaling	5.46	22

Supplementary Figure 1: Flow cytometry analysis of Iba1 positive cells in primary microglia isolated from SD rat pups. Flow cytometry analysis was performed by staining with anti-Iba1. The percentage of Iba1 positive cells were determined as purity of microglia.

Supplementary Figure 2: Transcriptomic network analysis in four different culture conditions of rBM-MSCs. Gene network related to cell migration was constructed algorithmically using Ingenuity Pathway Analysis. Transcriptome network of (a) rBM-MSCs co-cultured with microglia, (b) LPS-treated rBM-MSCs, and (c) rBM-MSCs co-cultured with LPS-stimulated microglia compared to control (rBM-MSCs only), respectively were shown. Red and green areas indicate up- and down-regulated genes, respectively. Differentially expressed genes were obtained from microarray data (>1.5 fold-change).

Supplementary Figure 3: Gene network related to cell migration in rBM-MSCs co-cultured with LPS-stimulated microglia compared to rBM-MSCs co-cultured with microglia was constructed algorithmically using Ingenuity Pathway Analysis. Red and green areas indicate up- and down-regulated genes, respectively. Differentially expressed genes were obtained from microarray data (>1.5 fold-change).

Supplementary Figure 4: Gene network related to inflammatory response in LPS-stimulated microglia co-cultured with rBM-MSCs compared to control (microglia only) was constructed algorithmically using Ingenuity Pathway Analysis. Red and green areas indicate up- and down-regulated genes, respectively. Differentially expressed genes were obtained from microarray data (>1.5 fold-change).

Supplementary Figure 5: Plotting of signal intensities in three different culture conditions of rBM-MSCs compared to control (rBM-MSCs only). Correlation of gene expression variation in experimental groups. The X axes indicate the signal intensities of control and Y axes indicate (a) rBM-MSCs co-cultured with microglia, (b) LPS-treated rBM-MSCs, and (c) rBM-MSCs co-cultured with LPS-stimulated microglia, respectively. The black line indicates the criterion line which is standardized with control intensities.

Supplementary Figure 6: Top 20 list of function or diseases constructed algorithmically by Ingenuity Pathway Analysis in rBM-MSCs co-cultured with LPS-stimulated microglia compared to rBM-MSCs co-cultured with microglia.

Supplementary Figure 7: Transcriptomic network analysis in four different culture conditions of rBM-MSCs. Gene network related to cell migration was constructed algorithmically using Ingenuity Pathway Analysis. Transcriptome network of (a) rBM-MSCs co-cultured with microglia, (b) LPS-treated rBM-MSCs, and (c) rBM-MSCs co-cultured with LPS-stimulated microglia compared to control (rBM-MSCs only), respectively were shown. Red and green areas indicate up- and down-regulated genes, respectively. Differentially expressed genes were obtained from microarray data (>1.2 fold-change).

Supplementary Figure 8: Top 20 list of function or diseases constructed algorithmically by Ingenuity Pathway Analysis in LPS-stimulated microglia co-cultured with rBM-MSCs compared to LPS-stimulated microglia.

Supplementary Figure 9: Transcriptomic network analysis in two different culture conditions of LPS-stimulated microglia. Gene network related to inflammatory response was constructed algorithmically using Ingenuity Pathway Analysis. Transcriptome network of (a) LPS-stimulated microglia and (b) LPS-stimulated microglia co-cultured with rBM-MSCs compared to control (microglia only), respectively were shown. Red and green areas indicate up- and down-regulated genes, respectively. Differentially expressed genes were obtained from microarray data (>1.2 fold-change).

Supplementary Figure 10: Western blot analysis in LPS-stimulated microglia co-cultured with rBM-MSCs. Total Protein extracted from microglia in three different conditions. Samples were resolved on a 15% gel and western blotting was performed using anti CD40 and CD74 antibodies. β -actin served as a loading control.