PARP1 is up-regulated in Non-small cell lung cancer tissues in the presence of the cyanobacterial toxin microcystin

Patrick L. Apopa¹, Lisa Alley¹, Rosalind B. Penney², Konstantinos Arnaoutakis³, Mathew A. Steliga³, Susan Jeffus⁴, Emine Bircan¹, Banu Gopalan⁵, Jing Jin¹, Preecha Patumcharoenpol⁶, Piroon Jenjaroenpun⁶, Thidathip Wongsurawat⁶, Nishi Shah⁷, Gunnar Boysen⁶, David Ussery⁶, Intawat Nookaew⁶, Pebbles Fagan⁸, Gurkan Bebek^{9,10,11*}, and Mohammed S. Orloff^{1, 3*}

¹Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

²Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

³Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

⁴Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

⁵Cleveland Clinic, Cleveland, Ohio, United States of America

⁶Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

⁷College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

⁸ Department of Health Behavior and Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

⁹ Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, United States of America

¹⁰Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America

¹¹Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America

Running Head: Cyanobacteria and microcystin increases PARP1 in NSCLC Number of words: 4,742 Number of figures: 7

* Corresponding Authors:

Mohammed S. Orloff, PhD, Department of Epidemiology Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences 4301 W. Markham Street, # 820. Little Rock, AR 72205 Phone: 501-526-6668 (Office) Email: MSOrloff@uams.edu

Gürkan Bebek, Ph.D., Center for Proteomics and Bioinformatics, Department of Nutrition Case Western Reserve University, 10900 Euclid Ave. BRB 921, Cleveland, Ohio 44106-4988 Phone: 216-368-4541 Email: gurkan.bebek@case.edu

Conflict of Interest The authors declare that they have no conflicts of interest to disclose.

Supplementary Materials

The best alignments or homology hits were at 92% with uncultured *Cyanobacteria*: GenBank: GQ502588.1, FJ024312.1, and KU667126.1 and KM892905.1. All these sequences link to the *Taxonomy ID*: 1211 (NCBI:txid1211)

Lineage (full): cellular organisms; Bacteria; Terrabacteria group; Cyanobacteria/Melainabacteria group; Cyanobacteria; environmental samples

Based on our OTU identifications we have investigated the sequence similarity of *Cyanobacteria* specific sequences or OTUs. These sequences are:

>8F21

>53CC

CCTACGGGAGGCAGCAGTGGGGAATTTTCCGCAATGGGCGAAAGCCTGACGGAGCAATGCCGCGTGAAGGCAGAAGGCCACGGGT CATGAACTTCTTTTCTCGGAGAAGAAAAATGACGGTATCTGAGGAATAAGCATCGGCTAACTCTGTGCCAGCAGCGCGGGGAGAGA AGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTCAAGTCCGCCGTCAAATCCCCGGGCTCAAC CCTGGACAGGCAGTGGAAACTACCAAGCTGGAGTACGGTAGGGGCAGAGGGGAATTTCCGGTGGAGCGGTGAAATGCGTTGAGATCG GAAAGAACACCAACGGCGAAAGCACTCTGCTGGGGCCGACACTGACACTGAGAGACGAAAGCTAGGGGAGCAAATGGGATTAGATA CCCTGGTAGTC

Further, we have conducted multi sequence alignment involving our sequences with GQ502588.1, FJ024312.1, KU667126.1 and KM892905.1. Then we drew tree to show sequences relationship using of the distances corrected by Kimura's 2 parameter model (1). Neighbor-joining Method was also used to reconstruct phylogenetic tree (2).

Cladogram

The sequences seem to share a common ancestor, but KU667126.1, 8F21, 53CC and KM892905.1 are much more closely related.

Supplementary Figures, Tables and Legends:

Figure S1: Bacterial DNA amplification: The PCR product of genomic DNA was used as a negative

control. Lane 1 shows size marker, 1-kb ladder, lane 2 contain genomic DNA, lanes 3- 12 contain FFPE

microbial DNA from different patient samples, lane 13 contains FFPE genomic DNA and lane 14 is blank

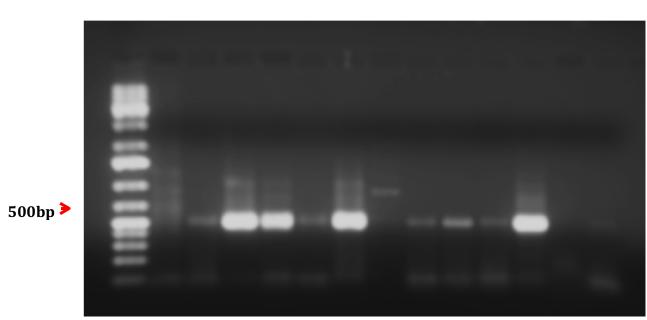
negative control. 500 bp fragment was amplified by the 16S primer.

There was no such fragment in total genomic DNA or total FFPE DNA.

Figure S2. Bacterial DNA amplification using primers specific for Cyanobacteria with indicated percentage abundance. Primers CYA106F and CYA781R(a) (3). Samples 9386-S4-LUAD amplified at the correct size and sample 9378-S3-LUAD showed a much lower amplification amounts proportional to amounts observed via MiSeq. A blank negative control and total human genomic DNA showed no amplification of *Cyanobacteria*.

Figure S3. Screening for unwanted microbial contamination in random FFPE samples. PCR amplification of FFPE extracted samples using 16S rRNA specific primers. Lanes 1 and 2 contain 500bp PCR products from FFPE tissue samples. Lanes 3 and 4 contain nothing or diminishing amounts of PCR products from adjacent paraffin samples. Lane 5 which was negative control (filtered and sterilized water), did not show any PCR product.

Table S1: The probes that are annotated with CD36 and the significance of differential expression


 between the healthy and LUAD samples in GSE19188 (4) is shown. Differentially expressed genes were

 estimated by using empirical Bayes framework after data was quantile normalized.

Table S2: The number of sequences generated from each sample are shown in a table. The values ranged from 32,846 to1,461,977 sequences.

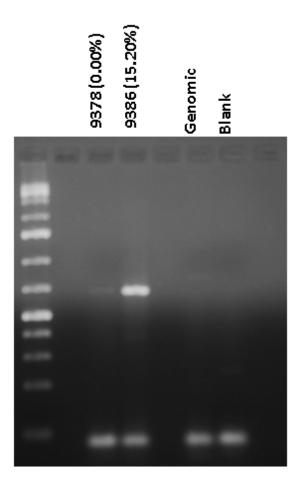
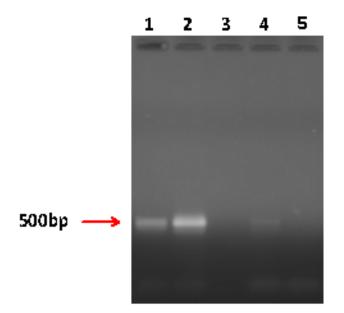

Supplementary Figures

Figure S1:



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Supplementary Tables

Table S1

Gene Symbol	Probe ID	P-value	FDR Adj. p-value
CD36	228766_at	2.52E-27	1.00E-24
CD36	206488 a at	1.13E-22	1.63E-20
CD30	206488_s_at	1.13E-22	1.03E-20
CD36	228766 at	2.52E-27	1.00E-24
	_		
CD36	206488 s at	1.13E-22	1.63E-20
CD36	209555_s_at	2.25E-20	2.05E-18
CD36	242197_x_at	3.96E-07	2.91E-06

Table S2

Sample ID	Sequence count	
538E-S12-LUSC	539497	
53CD-S6-NORM	734616	
53D0-S2-LUAD	493261	
53D1-S4-NORM	449415	
53D8-S24-NORM	759613	
542B-S26-LUSC	625826	
542C-S3-NORM	409201	
5439-S17-NORM	662371	
560F-S25-LUSC	389137	
5610-S7-NORM	671010	
562A-S10-LUSC	700965	
562B-S20-NORM	538137	
8CDD-S23-LUSC	555181	
8D34-S19-LUAD	403607	
8DC0-S16-LUSC	32846	
8DE8-S15-LUAD	622869	
8E9B-S13-LUSC	538947	
8F21-S1-LUAD	792561	
8F46-S8-LUAD	403899	
8F4C-S11-LUAD	325776	
8FBC-S22-NORM	376177	
9374-S21-LUAD	343436	

Reference:

1. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J Mol Evol* (1980) 16(2):111-20. PubMed PMID: 7463489.

2. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* (1987) 4(4):406-25. doi:

10.1093/oxfordjournals.molbev.a040454. PubMed PMID: 3447015.

3. Nubel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. *Appl Environ Microbiol* (1997) 63(8):3327-32. PubMed PMID: 9251225; PubMed Central PMCID: PMCPMC168636.

4. Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. *PLoS One* (2010) 5(4):e10312. doi: 10.1371/journal.pone.0010312. PubMed PMID: 20421987; PubMed Central PMCID: PMCPMC2858668.

1.