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Functional Neuroimaging Evidence for Distinct Neurobiological 
Pathways in Attention-Deficit/Hyperactivity Disorder 

 
Supplemental Information 

 
 

Clinical Assessment Measures 

 In addition to the KSADS-PL semi-structured interview that yielded both Axis I DSM-IV 

diagnoses and ADHD symptom counts for analysis, the clinical assessment included parent- and 

participant-reported ADHD-related problem behavior on the Brown ADD Scales (1).  General 

behavioral problems of clinical relevance were assessed using the Child Behavior Checklist 

(CBCL; (2)).  Specific depressive and anxiety symptom severity were quantified using the Beck 

Depression Inventory II (BDI-II; (3)) and Multidimensional Anxiety Scale for Children (MASC; 

(4)).  Tobacco use was measured by the Fagerstrom Test for Nicotine Dependence (5) and illicit 

substance use by the Adolescent Alcohol/Drug Use Scale (AADIS; (6)).  Familial ADHD history 

was assessed in first-degree relatives by parent interview using the Family History Screener (7).   

 

Neuropsychological Tests 

 The cognitive test battery was constructed to fully assess two neurocognitive domains 

that have reliably proven to be impaired in ADHD – motor inhibition tasks that emphasize 

executive control (8, 9), and several that assess different aspects of choice impulsivity, i.e., a 

preference for smaller, immediate rewards (10).   

The executive/inhibition tests included Conner’s Continuous Performance Test-II (CPT-

II (11)).  The CPT-II is a visual speeded response test that measures sustained attention, 

impulsive responding, motor response variability, response style and several other useful metrics.  
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Participants press the space bar of a computer keyboard when any letter except “X” appears on 

the screen (10% of 360 trials).  The 250 msec trials are presented in 18 blocks of 20 trials, 

requiring 14 minutes of test administration time.  The primary dependent measure examined was 

the number of commission errors.  The Stop Signal Reaction Time Test (SSRT) is a classic 

assessment of the “horse race” motor inhibition model (12) in which two signals to execute or 

countermand a motor response compete.  In this version (13), the auditory cue stop signal was 

presented on 25% of trials and the stop signal delays were automatically adjusted trial-by-trial 

until participants were able to withhold approximately 50% of trials.  The stop signal reaction 

time (SSRT) was calculated by subtracting the final mean tone delay from the mean go reaction 

time (14).  The Immediate and Delayed Memory Tasks (IMT/DMT) are another speeded visual 

CPT variant (15), but use different stimuli and conditions than Conner’s CPT-II (e.g., the use of 

visually similar “lure” trials to provoke an impulsive response).  One key difference is that the 

DMT includes a delay in which the stimuli must be retained in working memory in order to 

successfully guide performance on the subsequent trial.  An impulsivity dependent measure was 

constructed for both the IMT and DMT (number of commission errors / number of catch trials) / 

(number of correct detections / number of target trials).  The Matching Familiar Figures Test 

(MFFT) measures participants’ impulsive non-reflective style.  Like the original non-

computerized version (16), participants were shown one standard picture and had to choose 

among six seemingly-identical variants to identify perfect matches.  The primary dependent 

variable was the number of error responses, with higher error counts indicating a more 

impulsive, non-reflective style.  Collectively, these tasks measured motor response inhibition as 

conceptualized in several different theoretical models and under different information processing 

contexts. 
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The reward tasks were chosen to measure impulsive choice tendencies.  The Delay 

Discounting Questionnaire (DDQ; (17)) measures discounting or devaluation of hypothetical 

rewards as a function of delay.  Participants answered 100 questions like: “Would you prefer 

$10.00 in 30 days or $2.00 today?  The primary dependent measure was calculated as area-

under-the-curve (AUC) under the empirically calculated hyperbolic discounting function (18).  

The Experiential Discounting Task (EDT; (19)) also assesses discounting, but requires 

participants to make choices for monetary reward that result in immediate consequences.  

Despite theoretical similarities, the EDT is thought to capture a somewhat different construct of 

discounting compared to the DDQ (20).  For direct comparability of measures, the EDT also 

used AUC for its primary dependent measure.  The Single Key Impulsivity Paradigm (SKIP; 

(21)) is an unstructured assessment where participants respond as often as they choose to obtain 

a reward.  Longer delays between responses result in larger reward.  The average inter-response 

interval is considered an assessment of an impulsive choice-based response tendency.  Of all the 

reward-oriented tasks in the battery, it probably can be conceptualized as best measuring ADHD 

“delay aversion” tendencies.  The primary dependent measure was the average inter-trial interval 

of free responses collected over a 20 minute assessment.   

 

Taxometric Analysis Data Preparation Using Principal Component Analysis Data Reduction 

A non-significant Little’s MCAR test indicated that any missing values due to 

participants’ occasional failure to complete every cognitive measure in the test battery were 

random.   Scores were then inspected to identify any implausible or un-useable data, as can 

potentially occur on some of the tests chosen for the study.  Values were recoded as missing if 

SSRT Z scores > 1.96, if IMT/DMT performance had no errors, if there were fewer than 5 SKIP 
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responses overall, or if a hyperbolic curve could not be fit and AUC=1 for any of the three 

phases of the DDQ or EDT.  After excluding missing or non-useable data, ADHD participants 

had 89.7% and non-ADHD 90.8% of their test battery scores available for subsequent analyses.  

To maximize use of the available data, single imputation via multiple regression was used 

separately for each diagnostic study group to replace missing values in all cognitive test scores 

examined.  Next, multiple regression was used to regress out any linear effects of age and WASI-

estimated Full Scale IQ so that pathway analyses would not be driven by these effects.  The 

residuals were saved as z scores and reoriented so positive values reflected “better” test 

performance for all measures to ease principal component analysis (PCA) interpretation. 

To prepare data for taxometric analyses, PCA with Varimax rotation and Kaiser 

normalization was used to reduce the battery of neurocognitive scores into a smaller number of 

factors.  A key question was whether to reduce data from the entire sample simultaneously, or 

just ADHD adolescents.  The former approach presumes both groups show similar relationships 

among different tests.  To address this assumption’s validity, we compared the results of PCAs 

done separately for ADHD and non-ADHD subsamples.  Both solutions had three factors with 

eigenvalues >1 that explained 54.3% (ADHD) or 55.1% (non-ADHD) of the variance.  Though 

there were some commonalities between the two PCA solutions, the ADHD study group’s factor 

structure deviated enough from non-ADHD to conclude that their abnormalities could not be 

considered as extremes on a normal distribution (Table S2).  As judged by loading coefficients 

>.30, the first factor of each PCA solution primarily reflected executive control over motor 

responses for both groups, while the second two factors reflected reward-related test profiles.  

There were notable differences for specific tests, e.g., SSRT score prominently loaded onto the 

first PCA factor for non-ADHD, but co-varied with SKIP performance in ADHD.  For the 
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second and third factors, there were study group differences in the role of the DDQ or a measure 

of impulsive cognitive style from a computerized version of the MFFT.  Interestingly, in ADHD 

performance on the DDQ and EDT covaried.  In contrast, for non-ADHD, these tests loaded onto 

different factors.  The latter reflects findings that these measures assess somewhat different 

constructs in non-clinical samples (20).  But in ADHD, it seems that DDQ and EDT performance 

is more closely related. 

 

Taxometric Analyses 

 Each indicator used for taxometric analysis adequately and uniquely represented the 

constructs of interest, as assured by the removal of IQ- and age-related nuisance covariance from 

the neurocognitive data and PCA to ensure minimal correlation among factors.  Taxometric 

analysis was done only for ADHD participants.  Taxometric results were confirmed using a 

“multiple methods” approach in which the curve that depicts the latent structure in 

neurocognitive data was tested with two different taxometric measures to test consistency 

(MAMBAC (22) and MAXSLOPE (23)).  Although each taxometric measure is based on the 

same formal definition of the taxonic latent structure captured in the general covariance mixture 

theorem, they use unique mathematical operations to test model fit hypotheses.  As such, they 

provide complementary pieces of evidence for the nature of the taxa and participant assignment, 

as recommended for taxometric analyses (24).  Figure S1 displays the average fit curves for the 

procedures for the taxometric analysis that divided the data into an n=46 taxon and n=71 

complement (i.e., the first subgrouping “cut” where cognitively unimpaired ADHD were 

identified).  These curves were super-imposed on comparison data generated from an iterative 

simulation technique that reproduces the distributional and correlational properties of the 
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neurocognitive data in order to visualize what the curves should resemble if the latent structure is 

either categorical or dimensional.  Both clearly depict a categorical structure with CCFI values of 

.638 and .621, and estimated taxon base rates P of .398 and .412, respectively.  Another 

taxometric analysis performed on the n=71 complement provided similar results dividing it into 

two subgroups (MAMBAC/MAXSLOPE CCFI=.580/.682).   

For comparison purposes, the same analyses were run using non-ADHD PCA-derived 

indicator data.  In contrast to the categorical model fit found for ADHD, these CCFI and 

simulation results suggested a smoothly dimensional latent structure in non-ADHD. 

 

Neuropsychological Test Scores Not Used for Taxometric Analysis 

 In analyses that covaried for sex, we examined other scores produced by our 

neuropsychological test battery not used in taxometric classification because they were not 

directly theoretically related to the dual-pathway model (Supplementary Table S3).  Briefly, all 

three ADHD subgroups showed differences from vs. non-ADHD differences in many tests of 

sustained attention, response speed, response variability, signal detection, and response bias.  

Also, response speed and signal detection scores differed among the three ADHD subgroups.  To 

further test whether these differences were independent from the executive and reward-related 

pathways, we re-did these analyses, covarying for the PCA factor scores used for taxometric 

analyses.  All ADHD subgroups’ differences on these other cognitive tests were no longer 

significant, suggesting the pathways identified during taxometric analyses also drove the 

subgroup differences in response speed and signal detection. 
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MRI Scanning Procedures 

All MRI data were collected using a 3.0 Tesla Siemens Allegra MRI scanner at the Olin 

Neuropsychiatry Research Center, Institute of Living at Hartford Hospital.  Functional MRI data 

for this task was acquired using a gradient-echo echo-planar imaging (EPI) pulse sequence: 

repetition time (TR)=1500 msec, echo time (TE)=28 msec, flip angle=65°, field of view=24×24 

cm, acquisition matrix=64×64, A>>P phase encoding, voxel size=3.4×3.4 mm, slice thickness=5 

mm, number of slices=29 (acquired sequentially).  Gradient echo fieldmaps: TR=580 msec, 

TE=7 msec, flip angle=90°, matrix=128×128, A>>P phase encoding, 3 mm slice thickness.  

MPRAGE T1-weighted images of brain structure:  TR=2500 msec, TE=2.74 msec, flip 

angle=8°, matrix=256×208, 1 mm slice thickness.  

During the Go/NoGo (GNG) fMRI task, participants were instructed to make a speeded 

button press with their right index finger to rapidly-presented visual ‘X’ (Go) stimuli (P = 0.85), 

but to withhold response to infrequent, interspersed ‘K’ (No-Go) stimuli (P = 0.15).  All stimuli 

were presented for 50 msec.  Prior to beginning the task, each participant performed a practice 

trial to ensure understanding of the instructions.  Hits and errors were defined as a response 

occurring within 1,000 msec of an ‘X’ or ‘K’ trial, respectively.  The two conditions of interest 

were false alarm responses (i.e., hitting the button incorrectly for a ‘K’ stimulus) and correct 

rejects (i.e., accurately withholding prepotent response to ‘K’ stimuli).  The ‘X’ stimuli were so 

frequent that their hemodynamic responses were essentially un-estimable, designed to serve as a 

constant hemodynamic baseline against which deviations to ‘K’ stimuli could be effectively 

contrasted.  Two runs were collected, each lasting 7:21 min. 

During the Monetary Incentive Delay (MID) fMRI task, participants see cues that they 

may win or lose money ($0, $1, $5), then wait for a variable anticipatory delay period, and 
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finally respond to a rapidly presented target with a single button press to try to either win or 

avoid losing money.  The interval between box offset and outcome information varied randomly 

from 3000-5000 msec.  On incentive trials, sufficiently fast responses result in rewards, slow 

responses non-reward.  Our extensively published version (25-30) includes three periods that 

represent a modification of Knutson et al.’s original fMRI MID task (31) in order to assess an 

extended series of information processing stages: 1) The initial presentation of the cue signaling 

the availability of reward; 2) the effortful response to the task and anticipatory period prior to 

reward notification, and 3) outcome feedback delivery.  The first two phases were the conditions 

of greatest theoretical interest in this project as they assess conceptually different aspects of 

reward anticipation.  The former involves the brain’s response to “reward prospect” while the 

latter measures a combination of motivated response and waiting to learn whether that effort was 

sufficient to obtain reward.  Both of these are relevant to different types of anticipatory 

information processing.  Outcome delivery was not examined in this study.  While it is highly 

germane to reward neural system function, it is less relevant to neurocognitive models of 

motivational impairment in ADHD that more commonly implicate how ADHD-diagnosed 

patients process the availability of reward and how they act in motivated contexts (32).  In a pre-

scan practice session, each participant’s reaction times to the high-value win category ($5) were 

averaged and used to individually-tailor the visual cue display time so that most participants win 

~⅔ of the time.  To ensure optimal incentive, participants are aware they get to keep the money 

they earn on one run of the task determined randomly (typically in the range of ~$20-$50).  Two 

runs were collected, each lasting 12:09 min.   

Both fMRI tasks were implemented using E-Prime 2.0 (Psychology Software Tools, 

Inc.).  The experimental stimuli were projected to the participant via a screen visible to 
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participants in the MRI by rear-facing mirror attached to the head coil.  Behavioral responses 

were collected using a fiber-optic MRI-compatible response device (Current Designs, Inc.) and 

recorded by E-Prime for off-line analysis.   

 

MRI Data Processing and Quality Control 

Each fMRI timeseries was realigned to the mid-series volume (33), corrected for slice-

timing acquisition differences (34) and spatial distortions due to inhomogeneity removed using 

fieldmap-based unwarping (35).  Signal spikes were removed using AFNI 3dDespike (36) and 

volumes were automatically reoriented to stereotactic space using 3-parameter rigid body 

realignment.  An example fMRI volume was co-registered to the MPRAGE high-resolution brain 

structure scan, then spatial normalization parameters mapping the T1 to MNI atlas space were 

applied to each fMRI volume.  Each image of the resulting timeseries was written at 3 mm3 

isotropic voxel resolution then spatially smoothed with a 6 mm FWHM Gaussian kernel.  

Timeseries variance related to sporadic head motion was removed and the data linearly 

detrended using fMRIB’s ICA-based Xnoiseifier (FIX v1.602 beta) (37, 38), using a training 

dataset constructed using a representative sample of fMRI datasets from this project with and 

without head motion (FIX classification threshold=20). 

 After omitting 10 datasets collected from left-handed ADHD participants to avoid 

interpretive problems related to varying hemispheric laterality, the other n=74 available ADHD 

fMRI datasets were matched with n=74 datasets from the non-ADHD group that had statistically 

equivalent mean age and sex proportion.  We visually inspected the fMRI data to identify any 

sudden head displacements greater than a voxel length that might not be adequately controlled by 

ICA-FIX or during fMRI activation estimation.  In the non-ADHD group, we identified 5 GNG 
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and 1 MID task that were omitted from further analysis due to at least one or more large 

displacements in both task runs.  All ADHD GNG datasets were retained, but 2 ADHD MID 

datasets were discarded.  To maximize available data, participants who had at least one good run 

from each task were retained (non-ADHD 1 GNG and 1 MID; ADHD 4 GNG and 6 MID).  In 

addition, several more datasets were omitted for technical reasons (e.g., problems collecting 

behavioral responses, a missing MPRAGE scan that prevented T1-guided spatial normalization, 

etc.).  The final fMRI analyses were performed using n=63 non-ADHD and n=62 ADHD GNG 

datasets and n=69 non-ADHD and n=62 ADHD MID datasets.  For GNG, the final ADHD 

subgroup sizes were ADHD-EF n=22, ADHD-EF/REW n=16, ADHD-NONE n=24.  For MID, 

the final ADHD subgroup sizes were ADHD-EF n=22, ADHD-EF/REW n=15, ADHD-NONE 

n=25.  These final study groups did not differ in the absolute value of head displacement in the x, 

y, or z direction following realignment, nor did the root mean square intensity difference of 

successive volumes (i.e., DVARS (39)) statistically differ among groups for either fMRI task.  

The final fMRI subsample study groups also did not statistically differ by mean age or sex 

proportion. 

 

fMRI Brain Activation Modeling and Subgroup Comparison 

Individual participant activation to GNG false alarm and correctly rejected ‘K’ stimuli 

and to the two MID reward anticipation-related task phases was done in SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).  For both tasks, stimuli onsets for each 

experimental condition were convolved with a conventional hemodynamic response model.  To 

segregate any remaining variance in the timeseries due to head motion that was not removed by 

ICA-FIX, timepoints indicated by DVARS with outlier scan-to-scan movement (75th %ile + 1.5 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


Stevens et al.  Supplement 

11 

times the inter-quartile range) were each modeled with their own regressor.  All activation 

general linear models included a temporal derivative term, 128 sec high-pass filter, and global 

AR(1) model to correct for timeseries serial autocorrelation.   

The fMRI group analyses had two distinct objectives.  First, we needed to identify brain 

regions that were “abnormal” in each of the ADHD subgroups relative to non-ADHD controls.  

To avoid statistical disadvantages conferred by unequal cell sizes in an ANOVA, each ADHD 

subgroup was contrasted to non-ADHD using an SPM12 two-sample t test model.  Multiple 

comparisons control for searching the entire brain volume were implemented using a clusterwise 

inference framework (40) requiring both a cluster-determining threshold (CDT) of p<.005 and 

extent thresholds to be surpassed for results to be considered significant.  To address recent 

demonstrations this inference method can inflate false positive rates (41), we used updated AFNI 

code that corrected for inaccurate search volume space ‘edge effects’ and a new method to 

estimate noise smoothness with a non-Gaussian spatial autocorrelation function (ACF).  We used 

mean ACF from all tested subjects’ timeseries residuals as input into 3dClustSim.  This approach 

recently has been shown to yield accurate false positive error-rate control with p<.005 CDT for 

event-related fMRI paradigms and similar FWHM smoothing values as in this study (42).  

Moreover, our choice of p<.005 cluster-determining threshold follows recent recommendations 

(43) to strike an acceptable balance between the need for a strong inference framework versus 

available statistical power in our modest-sized fMRI subsamples, the novel nature of the 

questions being addressed in this study, and spatial precision considerations.   

Second, we wished to interrogate all these regions-of-interest (ROI) for evidence that 

each abnormality was specific to the subgroup in which it was found.  These distinct study 

questions were best done using independent statistical tests to avoid interpretive ambiguities 
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(44).  For each ROI identified by the primary fMRI analyses, we extracted average contrast 

values within a 3 mm radius sphere centered at the regional peak effect reported in Tables 3-5.  

Using these data, we conducted a secondary ANOVA to simultaneously evaluate pairwise 

differences among all three ADHD subgroups for the most efficient control of Type I error.  We 

used False Discovery Rate (45) applied to all ROIs within each fMRI contrast (e.g., all ROIs 

within GNG response inhibition).  A post hoc power analysis for the ADHD subgroup sample 

sizes indicated that this ANOVA could only detect “large” effect size differences (i.e., f > 0.52).  

As such, caution should be taken in interpreting omnibus F significance levels, particularly when 

uncorrected group differences fell under the conventional p<.05 cutoff but failed to be confirmed 

after  correcting for multiple comparisons.  Finally, to complement this analysis we examined the 

question of ADHD subgroup-specificity by conducting a conjunction analysis, following well-

described methodology (25).  For each fMRI task condition examined, three contrasts were 

specified to test for simple study group differences between non-ADHD and one of the three 

ADHD subgroups.  In the approach taken in SPM12, the conjunction corresponds to a significant 

sum of all the individual contrast effects, if and only if there are no significant differences among 

them.  These estimates are represented as a statistical map and thresholded at p <.05 uncorrected.  

A liberal threshold was deliberately chosen to assess whether any evidence could be found for 

abnormalities shared by all three subgroups, even if such evidence would not hold up to 

conventional corrections for multiple comparisons. 

 

fMRI Task Behavioral Performance 

For the GNG task, a series of t tests found that the number of false alarm errors in non-

ADHD was lower than found in both the ADHD-EF (t = -2.502, p = .014) and ADHD-EF/REW 
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(t = -3.686, p <.001), but not the ADHD-NONE.  However, secondary ANOVA among the 3 

ADHD subgroups indicated this false alarm performance difference was non-significant (F2,59 = 

1.975, p = .148).   The number of misses to ‘X’ stimuli did not differ between non-ADHD or any 

of the ADHD subgroups. 

The results of t test analyses for MID task performance data showed that none of the 

ADHD subgroups differed from non-ADHD in average reaction time to incentivized Win trials.  

Only the ADHD-EF/REW differed from non-ADHD average monetary winnings per run (t = 

1.749, p = .010), where ADHD-EF/REW won less money ($10.29 vs. $12.96).  However, 

ANOVA failed to detect differences among the ADHD subgroups for average winnings.  
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Table S1.  Neuropsychological test performance differences between ADHD-diagnosed adolescents and 
non-ADHD control participants as evaluated by two-sample t test.   

 
Controls 
n=134 

ADHD 
n=117 p 

Delay Discounting (AUC) 0.382 (0.28) 0.325 (0.22) .070 † 
Experiential Discounting (AUC) 0.639 (0.17) 0.602 (0.15) .072 † 
SKIP average IRT (sec) 13.48 (21.26) 7.451 (15.94) .011 
Stop Signal RT (msec) 277.936 (60.35) 306.901 (77.76) .001 
IMT Impulsivity (ratio) 0.506 (0.19) 0.652 (0.2) <.001 
DMT Impulsivity (ratio) 0.506 (0.24) 0.761 (0.42) <.001 
MMF Errors (#) 17.101 (10.98) 30.08 (16.03) <.001 
CPT-II Commissions (#) 20.145 (6.61) 22.693 (7.13) .004 
† statistical trend p < .10.   
AUC – Area under the curve 
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Table S2.   Factor structure estimated separately for ADHD and non-ADHD study groups using principal 
component analysis.  Component loadings >.300 are listed. 
 Non-ADHD ADHD 
 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 
Delay Discounting (AUC) - -0.695 - - - 0.765 
Experiential Discounting (AUC) - - 0.738 -0.363 -0.423 0.566 
SKIP average IRT (sec) - 0.757 - - 0.577 - 
Stop Signal RT (msec) 0.549 0.392 - - 0.606 0.492 
IMT Impulsivity (ratio) 0.731 - - 0.815 - - 
DMT Impulsivity (ratio) 0.632 - 0.499 - 0.727 - 
MMF Errors (#) - - 0.537 - - - 
CPT-II Commissions (#) 0.712 - - 0.798 - - 
AUC – Area under the curve 
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Table S3.   Taxometric-derived ADHD subgroup characteristics from other available neuropsychological test scores 
compared to non-ADHD control in a series of two-sample t tests and results from one-way Analysis of Variance 
(ANOVA) directly comparing the ADHD subgroups. 

 
Controls  
n=134 

ADHD-EF 
n=40 

ADHD-
EF/REW 

n=31 
ADHD-NONE 

n=46 

ADHD 
Subgroup 
ANOVA p  

CPT-II Omissions 6.331 (1.55) 18.141 (2.78) * 22.911 (3.18) * 12.528 (2.61) * ns 
CPT-II Hit Reaction Time SE 6.61 (0.44) 11.731 (0.79) * 11.859 (0.9) * 8.386 (0.74) * .019 
CPT-II Variability 12.439 (1.71) 29.332 (3.08) * 27.495 (3.51) * 19.121 (2.88) * ns 
CPT-II Hit Reaction Time 336.167 (4.73) 369.507 (8.5) * 371.178 (9.7) * 375.429 (7.96) * ns 
IMT Latency 454.43 (5.04) 439.82 (9.07) 432.12 (10.35)  493.06 (8.5) * <.001 
DMT Latency 483.67 (7.46) 445.83 (13.42) * 424.94 (15.32) * 514.44 (12.58) * <.001 
IMT d’ 1.288 (0.05) 0.777 (0.09) * 0.508 (0.1) * 1.086 (0.08) * <.001 
DMT d’ 1.545 (0.07) 0.743 (0.12) * 0.427 (0.14) * 1.191 (0.11) <.001 
CPT-II d’ 0.424 (0.03) 0.287 (0.06) * 0.164 (0.06) * 0.546 (0.05) * <.001 
IMT beta 0.653 (0.03) 0.752 (0.05) 0.806 (0.06) * 0.816 (0.05) ns 
DMT beta 0.623 (0.08) 0.81 (0.14) 1.262 (0.17) * 0.785 (0.14) ns 
CPT-II beta 0.554 (0.04) 0.627 (0.08) 0.77 (0.09) * 0.688 (0.07) ns 
Probabilistic Discounting 0.396 (0.02) 0.377 (0.03) 0.402 (0.03) 0.395 (0.03) ns 
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Figure S1.  Comparison of simulated dimensional and categorical comparison data fit to the 
taxometric model determined in this study using MAMBAC and MAXSLOPE methods for 
consistency checks. 
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Figure S2.  This figure depicts simple activation profiles (p<.01 uncorrected) across all ADHD 
and non-ADHD participants who underwent fMRI for the GNG and MID tasks as whole brain 
renderings on a representative anatomical atlas.  Red-yellow indicates brain regions with positive 
hemodynamic signal change relative to an unmodeled implicit baseline; blue-light blue 
represents negative change.  A) Brain activity elicited when NoGo ‘K’ stimuli were correctly 
inhibited.  B) Brain activity elicited during “false alarm” errors to NoGo ‘K’ stimuli when 
participants incorrectly made a motor response.  C) Brain activity elicited when participants were 
presented a cue indicating they might win $5 or $1.  D) Brain activity elicited when participants 
made a speeded button press and awaited the outcome of their effort. 
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Figure S3.  This figure depicts differences (p<.01 uncorrected) between non-ADHD and ADHD-
diagnosed participants on the four conditions of interest on the GNG and MID fMRI tasks (A-D).  
All regions depicted survive a “whole brain” correction for multiple comparisons from Monte 
Carlo simulation.  Red-yellow indicates brain regions where non-ADHD had greater 
hemodynamic response than ADHD; blue-light blue represents greater activation in ADHD 
compared to non-ADHD.  A) Correctly-inhibited NoGo ‘K’ stimuli.  B) False alarm responses to 
NoGo ‘K’ stimuli.  C) Brain activity to cue indicating the availability of monetary reward.  D) 
Brain activity when participants exerted effort to obtain reward and awaited outcome 
notification. 
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