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SUMMARY

Protruding from the apical surface of inner ear
sensory cells, hair bundles carry out mechanotrans-
duction. Bundle growth involves sequential and
overlapping cellular processes, which are concealed
within gene expression profiles of individual cells. To
dissect such processes, we developed CellTrails, a
tool for uncovering, analyzing, and visualizing sin-
gle-cell gene-expression dynamics. Utilizing quanti-
tative gene-expression data for key bundle proteins
from single cells of the developing chick utricle, we
reconstructed de novo a bifurcating trajectory that
spanned from progenitor cells to mature striolar
and extrastriolar hair cells. Extraction and alignment
of developmental trails and association of pseudo-
time with bundle length measurements linked
expression dynamics of individual genes with bundle
growth stages. Differential trail analysis revealed
high-resolution dynamics of transcripts that control
striolar and extrastriolar bundle development,
including those that encode proteins that regulate
[Ca2+]i or mediate crosslinking and lengthening of
actin filaments.

INTRODUCTION

Hair bundles are the mechanosensitive organelles of sensory

hair cells, which mediate the mechanical-to-electrical transduc-

tion that is at the heart of hearing and balance (Gillespie and

M€uller, 2009). The actin-filled stereocilia comprising a bundle

are arranged in ranks of increasing height, producing an

asymmetrical morphology that specifies the axis of physiolog-

ical sensitivity—mechanotransduction channels open when a

bundle is moved toward its tallest stereocilia and close when

moved in the opposite direction (Fettiplace and Kim, 2014).

Bundle structure therefore fundamentally underlies hair-cell

function.

The morphological steps that occur during hair-bundle devel-

opment (Tilney et al., 1992a) are evolutionarily conserved (Barr-

Gillespie, 2015), yet underlying molecular changes are only

sparsely known, mostly through identification of ‘‘deafness
Cel
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genes’’ (Barr-Gillespie, 2015; Drummond et al., 2012). Neverthe-

less, such identification is insufficient to catalog the proteins

essential for bundle assembly, as some proteins may be essen-

tial for embryonic survival or are compensated for by a close pa-

ralog. Many of these additional proteins are likely present in

mass-spectrometry analyses of the bundle’s proteome (Krey

et al., 2015; Shin et al., 2013; Wilmarth et al., 2015). Inventorying

molecules that participate in hair-bundle assembly is the first

step toward developing amechanistic understanding of this pro-

cess (Pollard, 2014), and the available deafness gene and prote-

omics compilations provide the foundation to build upon.

The next step in characterizing hair-bundle development is to

understand when each molecule is expressed by hair cells, as

this sequence dictates the assembly process. Using single-cell

analysis, we describe here the spatial and temporal expression

of key hair-bundle transcripts. The full spectrum of developing

and mature cell types exists in a single snapshot of an asynchro-

nously developing organ, such as the chick utricle at embryonic

day (E) 15 (Goodyear et al., 1999). In addition to developmental

differences among cells, the utricle also shows regional variation

in cell organization and structure, containing at least three types

of hair cells (Figures 1A and 1B). The striola primarily contains

type I hair cells, enveloped by afferent calyces, as well as a

few striolar type II hair cells, which are centrally located at the

line of hair-bundle polarity reversal and are contacted by synap-

tic boutons. Both striolar hair cell types display relatively short

hair bundles with thick stereocilia; by contrast, extrastriolar

type II hair cells—also contacted by synaptic boutons—have

long hair bundles with thin stereocilia. Although type, location,

and developmental age of individual cells are not preserved dur-

ing single-cell sampling, we hypothesized that their transcrip-

tional profiles encode this information. We therefore devised

an algorithm, CellTrails, to determine the dynamically changing

cellular states of a branching trajectory of utricle hair cells

during bundle assembly. By using spectral decomposition of a

robust cell-cell association index, CellTrails embeds the tran-

scriptional profiles of cells into a low-dimensional representa-

tion—a manifold—that best characterizes the data. In situ

hybridization and immunolabeling confirmed the predicted

spatial information as well as transcription dynamics. Moreover,

the precise temporal ordering of cells and accompanying

expression changes in individual genes were robustly correlated

with stereocilia elongation, which we utilized as an in situ ruler for

developmental progression. CellTrails’ spatiotemporal mapping
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Figure 1. Uncovering Spatiotemporal States of Bundle Development

(A) Cytomorphological features of hair cells in medial and lateral extrastriolar (MES, LES) regions and in the striola. The line of polarity reversal (LPR) is indicated.

We only show one example of striolar type II hair cells (bright orange), which are found on both sides of the LPR. The drawing was inspired by Jorgensen (1989).

(B) Top-down scanning electron microscopy (SEM) view of a medial-to-lateral stripe of the E15 chicken utricle; the enlarged inset shows the distinct hair-bundle

shapes of cells in striolar and extrastriolar regions. A high-resolution version of the SEM data file is available at Mendeley Data (https://doi.org/10.17632/

yy3c72972w.1).

(C) Isolation of cells from chicken utricles. 261 cells were sampled exclusively from either the lateral or the medial half. The fluorescence-activated cell sorting

(FACS) plot shows the range of FM1–43 uptake. Rectangles delineate metadata labels; SSC-A, side scatter area.

(D) Lower-dimensional manifold learning. Fuzzymutual information-based affinity scores were used to define edgeweights of a complete graphwith a cell at each

node. Spectral decomposition of the graph was performed to unfold the manifold.

(E) Subspace dimensionality. Linear regression to the total eigengap values of the spectral embedding revealed nine relevant dimensions.

(F) Spectral clustering. The dendrogram displays the relationship between 25 clusters (leaf nodes) with at least 1% of cells in each. If the null hypothesis of a post

hoc test on differential gene expression was accepted, siblings were iteratively merged, resulting in the 11 highlighted states.

(G) Spatiotemporal information. Bottom: the cell-to-cell distance matrix (L2-norm) in the low-dimensional space, which was used to compute initial clusters and

their relationship (dendrogram). Top: the relative distribution of FM1–43-gated cells and cells with known spatial origin per determined state; *p < 10�3 by imputed

Fisher test.
revealed gene-expression dynamics that specified unique ster-

eocilia dimensions for striolar and extrastriolar hair cells and pro-

vided evidence for two distinct classes of extrastriolar type II hair

cells.

We further established a strategy for the alignment of ex-

tracted linear trajectories (trails), which allows comparison of

gene expression dynamics as different hair-bundle types

develop. Examining genes involved in hair-bundle development,

which includes the processes of lengthening, widening, tapering,
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actin-crosslinking, transport, and transduction, we found that

the Ca2+ regulators CALB2 (calretinin) and ATP2B2 (PMCA2)

are dynamically regulated during stereocilia growth in different

hair cell types. Precise spatiotemporal control of [Ca2+]i conse-

quently appears to be an important component of hair-bundle

development.

Our analysis provides insight into spatial, temporal, and cyto-

morphological aspects of hair-bundle development at high reso-

lution. Utilizing a concept of uncovering and visualizing latent

https://doi.org/10.17632/yy3c72972w.1
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spatiotemporal information from single-cell gene-expression

data, CellTrails performs as well with RNA-seq data as it does

with single-cell multiplex qRT-PCR data.

RESULTS

Transcriptional Profiling of Chicken Vestibular Cells
To determine gene expression patterns during hair-bundle

development, we chose 183 genes associated with bundle

structure, function, and development (Ku et al., 2014; Shin

et al., 2013; Van Camp and Smith, 2017) (Table S1A). We ob-

tained multiplex qRT-PCR transcriptional profiles of 1,008 single

epithelial cells from chicken utricles at E15, when cells of all

developmental stages are present (Goodyear et al., 1999) (Fig-

ure S1; Table S1B). We generated metadata by sampling cells

either from the lateral region of the utricle (134 cells), which in-

cludes the striola, or from the medial extrastriolar (MES) side of

the utricle (127 cells; Figure 1C). Further, we briefly exposed

other utricles to FM1–43 and isolated 93 cells for which we re-

corded the level of uptake of the styryl dye; a high level of

FM1–43 fluorescence is indicative of a functional mechanoelec-

trical transduction apparatus (Gale et al., 2001).

Spectral Embedding Reveals Latent Spatiotemporal
Information
We hypothesized that the expression profiles of the 1,008 cells

represent indirect measurements of underlying spatiotemporal

features of each cell. By proper learning of a low-dimensional

manifold, we expected to reveal this latent information and to

reduce noise by removing irrelevant or highly correlated vari-

ables. We employed the geometrically motivated concept of

nonlinear spectral embedding (Figure 1D) (Belkin and Niyogi,

2003; Sussman et al., 2012). Due to its locality-preserving char-

acter, this technique is advantageous because it is insensitive

to outliers and noise, is not susceptible to short-circuiting,

and emphasizes naturally occurring clusters in the data. The

data’s manifold structure was represented by a simple graph

connecting cells by edges, which were weighted by a cell-cell

similarity score derived from fuzzy mutual information (Daub

et al., 2004). Spectral decomposition of this graph revealed

nine intrinsic dimensions (Figure 1E). By using hierarchical

clustering in the derived latent space, combined with an unsu-

pervised post hoc analysis of gene expression patterns, we

identified 11 cellular subgroups (Figure 1F) that were character-

ized by distinct sets of marker genes (Figures S2A–S2L; Table

S1C). Individual clusters displayed significant associations

with cells from specific spatial origins and functional mechano-

transduction (Figure 1G). Two supersets were evident, based on

FM1–43 dye-loading capacity: non-hair cells (states a–f) and

hair cells (states g–k). The three groups harboring most cells

with high FM1–43 fluorescence (h, i, j) likely represent mature

hair cell states. Two states (g, k) are composed of cells with

low, middle, and high FM1–43 signals and presumably repre-

sent intermediate developmental stages. The mature state h

mostly consists of cells sampled from the lateral region of the

utricle (imputed odds ratio [OR] = 3.3). Conversely, state j rep-

resents cells isolated from the medial region of the utricle

(imputed OR = 9.2).
Our unsupervised approach thus revealed cell groups that

represent developmentally and spatially distinct populations.

Robust Reconstruction of a Branching Trajectory
To delineate trajectories that resemble discrete—and possibly

bifurcating—developmental continua, we aimed to place cells

along a maximum-parsimony tree. Its structure was determined

by linking adjacent states that share the highest number of

neighboring cells (maximum interface tree; Figures 2A and 2B).

We found that state c is composed of cells outlying the hair-

bundle development trajectory; it also had a nonspecific set of

expressionmarkers (Table S1C), the lowest number of genes de-

tected overall, and consequently was left indeterminate. The re-

maining states (896 cells) formed a trajectory with three terminal

(a, h, i) and seven internal states, of which state g designated a

branch point. Notably, this state held the largest fraction of

marker genes (n = 42), indicating that our assay captured crucial

transcripts required for the transition to distinct mature cell

types.

Next, we projected cells on the trajectory fitted by straight

lines passing through the geometric median (Bedall and Zimmer-

mann, 1979) of adjacent states (Figure 2C). Comparing the actual

residuals against a null distribution generated by random sam-

pling of state centers indicated that we achieved a good approx-

imation of the cell order represented by the lower-dimensional

manifold (Kolmogorov-Smirnov test p < 53 10�3; Figure 2D).

The distance between consecutive cells along the fitted trajec-

tory can be interpreted as a function of time. As the actual time-

scale is unknown, we derived pseudotime by calculating the

geodesic distance between cells (Figure 2E). Our resultingmodel

describes cellular differentiation by temporally ordering single

cells. Here, each cell can be portrayed as a step on a transitional

journey through a high-dimensional landscape. Cells can be

visualized on a map-like ordination of the whole trajectory in

which gene expression can be shown as a fitted surface topol-

ogy, which we refer to as CellTrails maps (Table S2A).

Finally, we tested whether our result is robust by computing

the pseudotemporal ordering on bootstrap samples (Haghverdi

et al., 2016).We observed a high self-concordance among pseu-

dotime predictions for reduced samples of size 75% (median

Kendall’s t = 0.92) and 50% of all cells (median t = 0.90; Fig-

ure 2F). This result suggests that cell populations that were iden-

tifiable by the assay were reasonably oversampled; using the

negative binomial distribution, we estimated that the probability

of observing at least 10 cells from each state for a sample size of

448 cells (50% of total count) is 99.9%.

Expression Maps Visualize Cell Differentiation toward
Spatially Distinct Hair Cell Groups
CellTrails maps revealed a trajectory toward distinct spatial loca-

tions (Figure 3A) with a discrete FM1–43 uptake gradient (Fig-

ure 3B). We found 12 and 22 genes differentially upregulated in

the laterally and medially associated terminal hair cell states h

(51 cells) and i (115 cells), respectively (Figures S2I and S2J;

Table S1C). Indeed, state h markers LOXHD1, ATP2B2, TMC2,

and TNNC2 were confirmed to be high in striolar hair cells

when compared with surrounding extrastriolar regions (Fig-

ure 3C). Most striolar hair cells had high LOXHD1 mRNA levels,
Cell Reports 23, 2901–2914, June 5, 2018 2903



Figure 2. Reconstructing a Branching Trajectory toward Bundle Maturation

(A–C) Algorithm outline. (A) Input data are single cells represented in the low-dimensional space and their state membership. (B) Geometric proximity of states is

estimated using the k-nearest neighbor information of their members. Interface cardinalities of a given state are defined as the percentage of nearest neighbors

from each state. A state is defined as isolated if all of its nearest neighboring cells are members of itself; the state tree is computed maximizing the total interface

cardinality. (C) Straight lines are fitted through the mediancenters of adjacent states. Single cells are orthogonally projected onto the closest line passing through

their assigned states. A weighted acyclic trajectory graph G is constructed by connecting cells accordingly to their ordering along the fitted lines.

(D) Goodness of fit. Shown is the cumulative distribution of the absolute residuals of the trajectory fit (i.e., the vector rejection length of the orthogonal projection)

using mediancenters, randomized state centers, or random state assignments. Shaded areas indicate the 95% confidence interval of the median.

(E) Inferred trajectory graph. Left: the cells’ geodesic distance (or pseudotime) from the endpoints of the longest path in the trajectory graph; the perpendicular

dispersion is proportional to the distance of the cell from the predicted trajectory (black line) in the low-dimensional space and reflects the stochasticity of state

equilibria. Bifurcations define the substates d1–3 and g1–3; two groups with high variation in state i are indicated with dotted ellipses. Center: the trajectory graph

(red line). Distances between adjacent cells correlate with pseudotime. Contours (gray lines) represent the cell density along the trajectory. Right: the total cell

count per state and substate (d1–3, g1–3).

(F) Robustness analysis. High self-concordance of reconstructed trajectories for bootstrap samples of 75% and 50% of cells. Box plots show the interquartile

range (IQR), whiskers extend to the most extreme data point, which is no more than 1.5 3 IQR from the upper and lower quartile; outliers are indicated.
but a more central subset, near the expected line of hair-bundle

polarity reversal (Figure 1A), had reduced LOXHD1 levels. TMC2

mRNA expression was uniformly strong in all striolar hair cells.

CellTrails maps revealed that LOXHD1, ATP2B2, and TNNC2

expression was highest toward the terminus associated with

laterally originating cells, which includes striolar cells (Figure 3A).

We suggest that the striolar branch mostly contains type I hair

cells, and that the relatively few striolar type II hair cells are

distributed along the same branch but absent from the terminus.

Conversely, SKOR2 and SYN3 transcripts were more abun-

dant in extrastriolar hair cells, which are invariably type II (Fig-

ure 3D). CALB2 mRNA was abundant in extrastriolar hair cells,

whereas in the striola we found hair cells with strong or moderate

expression, which corroborates the predicted distribution shown

in the corresponding CellTrails map (Figure 3E).

The striola and extrastriola trails bifurcate from a common path

tracing back to state d, which consists of the largest fraction of

cells (Figure 2E). Based on the expression of assayed supporting

cell markers (OTOA, TECTA), we hypothesize that state d cells

are a progenitor population. This state also forks. The shorter

branch (d2 in Figure 2E) represents a subgroup of 74 cells; based

on our metadata (OR of lateral location = 4.5) and branch-spe-

cific expression of TECTB, those 74 cells originated from the

striola (Figure 3F).
2904 Cell Reports 23, 2901–2914, June 5, 2018
We observed known (ATOH1, POU4F3) and novel (e.g.,

KIAA1549, KLHDC7A) markers of nascent hair cells; these

markers peaked prior to maturation along the path originating

in state d (Figure 3G, Tables S1C and S2A).

Overall, CellTrails reconstructed a differentiation trajectory

from presumptive hair cell progenitor cells via nascent hair cells

and immature stages toward distinct striolar and extrastriolar

phenotypes. The underlying leitmotif for the hair cell branches

of the trajectory is likely linked to hair-bundle shapes, which

differ in striolar and extrastriolar locations.

Hair-Bundle Growth Correlates with Expression Peaks
of [Ca2+]i Regulators
CellTrails’ expression maps allowed us to draw several conclu-

sions about the bifurcating trails that end with mature cell groups

of states h and i (Figure 4A). Trail S (striola, TrS) consists of 283

cells from states d3, e, f, g1, g2, and h; trail ES (extrastriola, TrES)

harbors 470 cells representing states d3, e, f, g1, g3, k, j, and i

(Figure 2E). Owing to the limited number of genes assayed, the

first 192 cells of both trails are shared. The location of the bifur-

cation depends on differential expression levels of the assayed

genes; in this context, we conclude that the trajectory branches

into cells with short hair bundles displaying thick stereocilia (TrS)

and into cells that have long and thin stereocilia (TrES). We



Figure 3. Visualizing Metadata and Gene Expression with CellTrails Maps

(A) Cell originmetadata. Cells from lateral utricle preparations, which contained striolar cells (orange dots), distinctively accumulated along one of the two terminal

branches of the CellTrails map (orange arrowhead; Fisher test p < 63 10�5). Cells from medial utricle preparations, which should not contain striolar cells, were

more strongly associated with the other terminal branch (blue arrowhead; p < 33 10�3). Cells without collected metadata are not shown.

(B) FM1–43 uptake metadata. Two hair cell branches with high FM1–43 uptake can be identified; cells labeled with medium FM1–43 intensity are found along the

path leading to the bifurcation, and low FM1–43 cells are enriched at the remaining two major branches (purple arrowheads).

(C) CellTrails maps project high expression of LOXHD1, TMC2, ATP2B2, and TNNC2 along the lateral-associated hair cell branch of the utricle. In situ hybrid-

ization on E15 chicken utricle cross-sections and whole-mount immunolabeling validated RNA or protein expression of these genes in striolar hair cells.

(D)SKOR2 andSYN3 expression is associatedwith hair cells located along themedial-associated branch; in situ hybridization revealed corresponding transcripts

in extrastriolar hair cells.

(E) The spatiotemporal projection of high CALB2 gene expression at the bifurcation and the medial-associated branch was confirmed by in situ hybridization;

CALB2 RNA was detected in extrastriolar and in scattered striolar cells.

(legend continued on next page)
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therefore inferred spatial expression dynamics by fitting cellular

transcription profiles as a function of pseudotime for each trail

individually (Table S2B).

CALB2 transcripts were upregulated along TrES, concurrent

with the onset of hair cell differentiation and culminating in a local

maximum at state k (Figure 4B). After its peak, CALB2 declines

but maintains a 3.7-fold higher (Log2Ex) mRNA level in mature

hair cells relative to the trail start (at t = 0). We observed a similar

transient transcription peak in TrS, where the drop is steeper

(0.2-fold higher compared to t = 0; 3.6-fold lower mRNA expres-

sion than TrES; Table S2B). Because the E15 utricle harbors all

bundle-development stages (Figure 4C), we hypothesized that

we could validate the inferred expression profile by correlating

protein measurements from individual hair cells with bundle

heights. We quantified bundle height, defined by the length of

the tallest stereocilium, and CALB2 immunofluorescence inten-

sity in extrastriolar hair cells. The agreement between transcript

and protein level profiles over developmental time was striking:

hair cells with short bundles displayed low CALB2 protein levels,

cells with medium-sized bundles had the highest levels, and

levels were reduced in cells with the tallest bundles (Figures

4D, 4E, and S3A). This observation suggested that we could

translate CellTrails’ pseudotime to actual bundle length.

We computed a nonlinear alignment of the fitted CALB2 pro-

tein expression curve with the CALB2 transcription dynamics

along TrES (Figure 4F). Bundles with the shortest heights aligned

with the transient peak of the transcription factor ATOH1, which

is essential for hair cell development (Bermingham et al., 1999).

Likewise, in developing extrastriolar type II hair cells along TrES,

mRNA encoding the stereocilia calcium pump ATP2B2 (Dumont

et al., 2001) displayed a prominent peak coincident with short

bundle lengths; this peak preceded the CALB2 peak (Figures

4G, 4I, and S3B). In contrast, in maturing striolar hair cells along

TrS, ATP2B2 mRNA and protein expression exhibited logistic

growth (Figures S3B and S4A–S4C).

The transient dynamics of [Ca2+]i regulators along TrES sug-

gest that local maxima correlate with distinct hair-bundle growth

phases. Tilney et al. (1992b) reported four prototypical stages of

developing bundles: 1 = pre-growth before visible bundle forma-

tion; 2 = initial growth; 3 = widening; 4 = secondary growth.

We noticed that the distribution of extrastriolar bundle lengths

at E15 was not uniform (Kolmogorov-Smirnov test for equality

p < 33 10�14; Figure 4J). Assuming that growth stages 2 to 4

represent normally distributed subpopulations, we found that

the bundle length distribution can be well described by a

Gaussian mixture model with three components (test for equality

p = 0.82). Stage 2 peaks at 3.0 mm, stage 3 at 5.8 mm, and stage 4

at 10.8 mm. The model also meets the biological assumption that

longer bundles aremore likely observed than shorter ones at E15

becausemature hair cells accumulate over time (Goodyear et al.,

1999); the mixing proportions increased by growth stage

(p2 = 0.1, p3 = 0.2, p4 = 0.7). We found that the ATP2B2 protein

expression peaked during stage 3, whereas the highest level of
(F) Expression of supporting cell marker genes designates the progenitor cell po

projected along the left branch within the progenitor population. Immunolabeling

(G) Transient peaks of ATOH1, KLHDC7A, and POU4F3 mark the nascent hair

POU4F3 mRNA was found in scattered extrastriolar and striolar cells.
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CALB2 protein coincided with the onset of the secondary growth

(stage 4). The growing bundle thus requires distinct, temporally

coordinated mechanisms to control [Ca2+]i.

Two Classes of Type II Extrastriolar Hair Cells
ATP2B2 transcript and protein levels rebounded toward the end

of TrES (Figures 4G and 4H). The lower-dimensional manifold

suggested that two mature cellular populations are present

along TrES; trajectory fit residuals of state i indicated two state

equilibria (Figure 2E) for which the cell groups, both containing

mature cells as indicated by high FM1–43 uptake (Figure 3B),

were separated by a significant leap in pseudotime (Figure S4E).

Indeed, a subset of extrastriolar hair cells, those with the tallest

hair bundles, displayed strong ATP2B2 immunofluorescence

(Figures 4H, 4I, and S3B), suggesting that a distinct class of

type II hair cells arises late along TrES. We suggest that two trails

overlap at the TrES branch (Figure 4K) and therefore introduce an

additional terminal end at the pseudotime leap (TrES*). While

branching trails (e.g., TrS and TrES) are induced by differential

gene regulation, sequential terminal ends denote that expression

time series data of one developmental process is a subset of

another (i.e., TrES* is a subset of TrES).

The resulting trails TrES and TrES* exhibit the same transient

ATP2B2 expression peak before the bifurcation. ATP2B2 re-

mains low toward the end of TrES*, which represents the mature

state of the majority of extrastriolar cells in the utricle. We also

found that CCDC50, MYO1H, TMC2, and TNNC2 were signifi-

cantly elevated at the terminal end of trail TrES compared to

TrES* (Log2Ex fold change >2.5, Peto-Peto test p < 10�3; Fig-

ure S4D); those genes were most highly expressed at the

terminal end of TrS, suggesting that they carry out functions in

terminal TrES cells that are related to their functions in striolar

hair bundles. The terminal ends of TrES and TrES* diverge

from TrS by 17 genes (including CALB2) that are differentially

expressed.

Observing the discovered type II extrastriolar hair cell sub-

classes in older utricles would demonstrate that they are stable

cell types.We pooled an additional 354 posthatch (P) utricle cells

with the E15 cells and recomputed the lower-dimensional mani-

fold. The cellular location in the latent space met the expected

shift from young/developing hair cells toward mature hair cells,

revealed by accumulation of posthatch cells at the terminal

ends of the hair cell trajectory (Figure S4F). Here, posthatch cells

with high ATP2B2 levels emerged at the tail of TrES, corrobo-

rating our observations at E15. Finally, examination of ATP2B2

protein levels in the P7 utricle confirmed the presence of two

classes of extrastriolar type II hair cells (Figure 4L).

Orchestration of Gene Expression during Hair-Bundle
Assembly
CellTrails revealed transcriptional dynamics with high resolution.

However, since pseudotime is a function of transcriptional

change, its axis may be distorted, making comparison of trails
ol located at the left side of the CellTrails maps. High TECTB expression was

identified a subgroup of supporting cells located in the striola.

cell path between progenitors and the bifurcation toward maturing hair cells.



Figure 4. Inferring Expression Dynamics of Bundle Growth

(A) CellTrails map indicates the bifurcating trails from progenitors toward mature hair cells (TrS, TrES) and the computed pseudotime, respectively.

(B and G) CALB2 (B) and ATP2B2 (G) exhibit transient peaks along TrES. Measured transcript levels of each single cell as a function of pseudotime and the

inferred expression dynamic (red line) are shown; top bar indicates the correspondingATOH1 dynamic, vertical dotted line depicts the bifurcation; single cells are

color coded by state (d–g, k, j, i).

(C) SEM images show similar and spatially distinct morphological features of hair-bundle growth in the chicken utricle (dotted circles).

(D, E, H, and I) Immunolabeling confirms inferred expression dynamics of CALB2 and ATP2B2 in MES. (D and H) Quantification of immunofluorescence as a

function of bundle length. These measurements reveal similar transcript and protein expression dynamics (compare to B and G; n = 221 for CALB2; n = 125 for

ATP2B2); SOX2 immunolabeling confirmed type II hair cell phenotypes. (E and I) Representative examples of CALB2 and ATP2B2 levels associated with distinct

bundle lengths; short, blue; medium, green; long, yellow; asterisk indicates the tallest bundle.

(F) Alignment of extrastriolar CALB2 protein dynamics (red) withCALB2 transcriptional expression dynamics (gray) along TrES; the ATOH1 gene expression peak

coincides with the shortest measured hair-bundle lengths.

(J) Bundle growth stages. The distribution of bundle lengths sampled from the MES (n = 642) followed a Gaussian mixture model with three components. The

shaded areas in the upper panel show the individual fitted normal distributions representing stages 2–4 of bundle growth. ATP2B2 and CALB2 protein expression

peaks coincide with different growth stages as shown in the lower two panels. The shaded areas indicate the bundle length intervals for each growth stage

according to the individual probability functions of the Gaussian mixture model.

(legend continued on next page)
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challenging. We employed an algorithm from speech recogni-

tion, dynamic time warping (DTW; (Sakoe and Chiba, 1978)), to

pairwise align trail expression series that are similar but locally

out of phase (Figure 5A).

Calculated root-mean-square deviations (RMSD) between

warped expression dynamics confirmed the overall similarity

of the hair-bundle assembly process of extrastriolar types

(mean RMSD TrES::TrES* = 0.16; Table S3A), while signifi-

cantly differing from striolar bundle maturation (mean RMSD

TrES::TrS = 0.49, TrES*::TrS = 0.44; each Mann-Whitney test

p < 10�13). We noted that 14 common genes (AKAP5,

ATP2B2, CAB39L, CHRNA10, CIB2, LOXHD1, MYO1H,

MYO3A, OCM, SKOR2, SLC8A1, SYN3, TMC2, and TNNC2)

showed high discrepancies (Z score >1.65, Figure 5B) between

extrastriola and striola over developmental time, suggesting

that they may play distinguishing roles during location-specific

bundle growth.

This procedure further allowed us to compare gene expres-

sion between hair cell subtypes during hair-bundle assembly.

We computed a multiple alignment of all trails by using TrES as

common reference. By integrating morphometrics with protein

measurements, we were able to model bundle length as a func-

tion of pseudotime (Figure 4F). We selected sets of genes

responsible for bundle maturation and function (Figures 5C–

5H). For example, we found that tight actin crosslinkers are

sharply regulated, and their expression peaks are temporally

concordant between hair cell types. FSCN1 is present during

early bundle growth stages, while its paralog, FSCN2, becomes

dominant during secondary growth; PLS1 follows ESPN, which

has its highest transcript level during bundle widening. This

ordering agrees with previous findings (Avenarius et al., 2014).

As discussed earlier, transcripts for proteins that regulate Ca2+

emerge with distinct time courses (Figure 5G). Moreover,

appearance of mechanotransduction transcripts is coordinated,

with PCDH15 preceding CDH23; TMC1, LHFPL5, and TMIE ap-

peared together, whereas TMC2 displayed a transient peak

coinciding with other transduction genes and became exclu-

sively expressed in TrS hair cells (Figure 5D). PIP2 metabolism

transcripts appeared at higher levels during the second growth

phase of hair-bundle development, with the lipid kinase PI4KA

and its putative binding partner EFR3A expressed earlier than

the PIP2 phosphatase PTPRQ (Figure 5E). Ankle-link transcripts

ADGRV1, MYO7A, and PDZD7 appeared simultaneously with

transduction transcripts (Figure 5F), while transcripts that control

stereocilia length and width peaked at notably different time

points (Figure 5H).

CellTrails Complements Alternative Trajectory
Reconstruction Methods
Our results show that CellTrails maps and the derived expression

dynamics accurately predict spatiotemporal information. We
(K) Generation of trails illustrated by ATP2B2 expression. Initially similar, express

splitting at the TrS/TrES bifurcation (dotted line). Extrastriolar hair cells have s

maturation, while the other subtype (TrES*) maintains a low ATP2B2 level.

(L) ATP2B2 immunolabeling of P7 chicken utricles. The MES harbors two types of

cells displayed long bundles with a uniform strong ATP2B2 labeling. The dashed

depicted with increased intensity levels to illustrate the presence of a subset of A
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next examined whether recent methods for trajectory inference

could corroborate our validated findings (Figure 6A). We found

that SLICER (Welch et al., 2016), DPT (Haghverdi et al., 2016),

SCUBA (Marco et al., 2014), and Monocle (version 2; (Trapnell

et al., 2014) correctly ordered progenitor, nascent, and mature

hair cells, at least according to marker expression and FM1–43

uptake. Notably, SLICER and DPT predicted a non-branching

trajectory (SLCR1, DPT1). SLICER chronologically ordersmature

striolar hair cells prior to designated mature extrastriolar hair

cells (Figure 6B), while DPT predicts the reverse ordering (i.e.,

extrastriolar to striolar, on a highly compressed temporal axis;

Figure 6C). However, our experiments showed that at least two

spatially distinct trails exist in the developing utricle (Figures 3,

4C, and S3A–S3F), arguing against a transition between mature

hair cell types. SCUBA determined a branching trajectory (SCB1,

SCB2; Figures 6D and S6C); similar to SLICER and DPT, the pre-

dicted expression dynamics along trail SCB2 suggest a mixture

of striolar and extrastriolar hair cell development. SCB1, in

contrast, does not describe a bona fide maturation process as

indicated by the limited FM1–43 uptake, increased ATOH1

expression at the differentiation endpoint (84% of the ATOH1

peak size), and general lower transcript levels of hair cell marker

genes compared to SCB2. Monocle (version 2) predicted a pro-

gression tree toward six different hair cell types (MNCL1–6; Fig-

ure S6E). AlthoughMNCL1 andMNCL6 had the highest similarity

to CellTrails’ TrS and TrES (Figure 6E), Monocle’s inferred dy-

namics did not reveal the transient peak of CALB2 and instead

predicted both a downregulation of ATP2B2 toward the proximal

end ofMNCL1 and a nearlymonotonic increase ofATP2B2 along

MNCL6. Neither behavior was consistent with our biological ex-

periments. Moreover, while LOXHD1 was predicted to have a

notable peak along MNCL6, in situ hybridization did not detect

significant LOXHD1 levels in extrastriolar regions (Figure 3C).

Thus, although all methods accurately ordered cells by maturity,

they were unable to identify the underlying progression toward

the spatially distinct hair cell types that CellTrails identified and

that we confirmed with biological methods.

Analysis of Single-Cell RNA-Seq Data from Neonatal
Mouse Utricles
To demonstrate CellTrails’ generalization to single-cell RNA

sequencing (RNA-seq) data, we utilized measurements of

14,313 genes from 120 cells from postnatal day 1 (P1) mouse

utricles (Burns et al., 2015). Based on a set of 436 highly variable

transcripts (Table S3B), we identified a trajectory with three

terminal states (a, c, d) connected by one internal bifurcating

state (b) (Figure 7A). Projection of the experiment-associated

metadata on the CellTrails map allowed us to define progenitor

cells (state a), nascent hair cells (state b), and maturing/mature

hair cells (states c and d; Figure 7B). CellTrails maps for spe-

cific marker genes validated the assignments (Figures 7C–7G;
ion levels change toward the maturation of striolar and extrastriolar hair cells,

imilar dynamics; one subtype (TrES) upregulates ATP2B2 at the end of its

mature type II hair cell having high and low ATP2B2 intensity. Striolar type I hair

blue box in the MES region of the overview image points to the extracted inset

TP2B2 expressing type II hair cells.



Figure 5. Comparison of Gene Expression Dynamics during Hair-Bundle Development

(A) Trail alignment. The trails’ pseudotime scale can be distorted as shown forATOH1 along TrS and TrES. By using a dynamic programming-based approach, the

optimal alignment (time warp) between the trail-specific dynamics is determined.

(B) Expression time series differences. The root-mean-square deviation (RMSD) of each gene between TrES, TrES*, and TrS was calculated. Highlighted and

listed are genes with a Z score >1.65 in the standard log-normal RMSD distribution.

(C–H) Gene expression peaks during bundle development. In the extrastriola, pseudotime was translated into bundle length by nonlinear mapping of CALB2

transcription over pseudotime to CALB2 protein expression as a function of bundle length (Figure 4F). This mapping enables the interpretation of warped

(legend continued on next page)
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Figure 6. Expression Dynamic Inference Using State-of-the-Art Algorithms

(A) Known and validated (here) spatiotemporal gene expression dynamics during bundle development; heatmap illustration of their predicted dynamics by

CellTrails, scaled per gene and across trails.

(B–E) Predictions by SLICER (B), DPT (C), SCUBA (D), and Monocle (with DDRTree) (E).
Table S3C). The supporting-cell marker Tecta indicated the start

of a bifurcating trajectory toward two hair cell types, which were

labeled by the late marker Fscn2, confirming and substantially

extending the original analysis (Burns et al., 2015). The two trails

are distinguished by Ocm expression; this observation and dif-

ferential Sox2 expression suggest that trails Tr2 and Tr1 are

respectively associated with development of extrastriolar type

II hair cells and striolar type I hair cells. For both trails, we

observed a transient peak of Atoh1.

Differential analysis of Tr1 and Tr2 corroborated reported trail-

specific expression dynamics (Clu, Z = 1.8) and revealed other

trail-specific genes (Figures 7H). For example, Fgf21 (Z = 2.0)

and Ai593442 (Z = 1.8) were ranked among themost distinguish-

ing genes (Table S3B). Fgf21 expression increased along Tr2 but

was suppressed along Tr1, suggesting that Fgf21 protein is

selectively produced by extrastriolar type II hair cells. In contrast,

Ai593442 expression is strong toward the terminus of Tr1 and

not in Tr2. Although Ai593442 is expressed in E14.5 mouse inner

ear (Visel et al., 2004), its function is unknown.

DISCUSSION

Appreciation of hair cell function requires understanding how

hair bundles are constructed, which entails cataloging the parts

and deciphering the blueprint. While the list of abundant bundle
expression dynamics in context of bundle length and growth stages. Shown are in

and >90% of maximum expression (boxes and horizontal black lines); gray lines a

roles in actin crosslinking (C), mechanoelectrical transduction (D), lipid synthesis a

bundle growth (H).
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proteins is well established (Barr-Gillespie, 2015), the multiple

and overlapping cellular processes involved in bundle matura-

tion remain to be sorted out. In this study, we provide a resource

that combines multiplexed single-cell qRT-PCR with de novo

computation to document gene-expression dynamics during

bundle development.

CellTrails: A Toolbox for the Reconstruction and
Analysis of Branching Trajectories from Single-Cell
Data
A single snapshot of an asynchronously developing organ, such

as the chicken utricle, constitutes a time series in which individ-

ual cells represent distinct time points along a continuum. To

derive a coherent picture of a process’s dynamical expression

landscape, its internal time axis, which determines each

cell’s position along a trajectory, needs to be computed and

visualized.

A key challenge for any such computation is that single-cell

data are not only rife with noise, dropouts, and redundancy but

are also highly complex due to branching processes. If the

intrinsic dimensionality of the data is lower than its extrinsic

dimensionality, projection of data points to a low-dimensional

manifold reduces noise and emphasizes relevant latent informa-

tion. We applied nonlinear spectral dimensionality reduction, at

the heart of which was the spectral decomposition of a square
ter-trail peaks of gene sets denoted by vertical black lines, intervals with >95%

nd dashed boxes indicate intra-trail peaks. Shown are examples of genes with

nd transport (E), stereocilia ankle links and tapering (F), Ca2+ regulation (G), and



Figure 7. CellTrails Analysis of Mouse Utricle Single-Cell RNA-Seq Data

(A) CellTrails determined a branching trajectory with four states (a–c); distance from the trajectory (black line) is proportional to residuals of orthogonal projection.

Bar diagram shows size of states.

(B) Trajectory map. Cells are colored by type as defined by genetic labeling (Burns et al., 2015).

(C–G) CellTrails maps exhibit consistent spatiotemporal cell ordering according to expression of supporting cell marker Tecta (C), hair cell differentiation marker

Atoh1 (D), late hair cell marker Fscn2 (E), striolar hair cell marker Ocm (F), and Sox2 (G), a marker of supporting cells and type II hair cells; nTPM = normalized

transcripts per million.

(H and I) Differential trail analysis identified 30 highly distinguishing genes. These include the previously validated gene Clu, as well as candidates Fgf21 and

Ai593442; RMSD, root-mean-square deviation (H). Single-cell expression measurements are plotted as a function of pseudotime for Fgf21 and Ai593442,

respectively (I).
symmetric feature matrix. To capture cell-to-cell relationships,

this matrix was constructed based on the robust concept of

fuzzy conditional entropy; because the optimization function of

the embedding is convex, the manifold-learning process is

deterministic. When we added increasing fractions of permu-

tated variables or degrees of Gaussian noise to our expression

matrix, we found that spectral embedding had significantly

greater robustness compared to prevalent spectral methods,

such as principal-component analysis (PCA) and diffusion

maps (Haghverdi et al., 2015, 2016; Setty et al., 2016) (Figures

S7A and S7B). To determine the intrinsic dimensionality of the

data, we adapted Scree plots to show eigengaps between

ranked components and identified nine relevant dimensions

(d = 9). Similar results were obtained for PCA (d = 8) and diffusion

maps (d = 11) (Figure S7C). Both nonlinear methods greatly pro-

nounced the bifurcation between striolar and extrastriolar hair

cells in the respective low-dimensional manifold, while a refined

trajectory structure was less obvious in the principal-component

space.

The manifold containing the trajectory structure thus is likely

nonlinear, indeed unfolding in a �9-dimensional latent space.

Consequentially, cell ordering with our dataset by SLICER and

SCUBA, which initially reduce the original data space to two

and three dimensions, may be inaccurate. DPT, which uses the

full rank of a latent space derived from diffusion maps, failed to

identify the branching point, indicating that the trajectory struc-

ture is masked by noise from lower-ranked dimensions. More-

over, the 11-dimensional manifold from diffusion maps did not

reveal the mature extrastriolar hair cell population expressing
ATP2B2, which we verified experimentally, although those cells

were projected in close proximity within the extrastriolar hair cell

population by PCA and spectral embedding (Figure S7C). In

summary, we suggest that spectral embedding as utilized here

is a useful tool for multivariate analysis of single-cell data.

If the lower-dimensional manifold indeed represents a trajec-

tory, then relevant information, such as locally linear pseudotem-

poral ordering and branching points, can be isolated. For this

purpose, we adapted ‘‘broken-stick’’ regression and fitted cells

onto straight lines connecting geometric medians of cell popula-

tions. Cell groups (states) were determined using a post hoc test

on a cluster dendrogram, which retained cluster-to-cluster rela-

tions observed in the latent space. The trajectory spanning all

relevant states was then computed by an adaption of the mini-

mum spanning-tree algorithm (Kruskal, 1956). While minimizing

the overall L2-norm between states’ centroids performs well on

small expression-vector sets of hyper-spherical shape and

non-distorted axes, it failed to capture the accurate trajectory

structure of simulated data that violated these assumptions

(Figures S7D and S7E). The applied maximum interface tree

algorithm overcomes this limitation by assessing the local

k-neighborhood between adjacent states.

We organized the extracted trajectory information in a graph

structure that allowed practical applications such as navigation

along trails. We introduced an intuitive two-dimensional data

representation of expression dynamics along branching trajec-

tories, called CellTrails maps. With increasing sample sizes,

data visualization methods face the challenge of displaying

expression profiles of many cells and their temporal relations
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simultaneously. Although the crowding problem imposed by

multiple overlapping cells (e.g., Figures S6A–S6D) can be solved

by colorizing areas for a given variable rather than individual data

points (Buettner and Theis, 2012), trajectory information remains

to be integrated. While a common alternative is to plot expres-

sion dynamics of single trails, e.g., by a heatmap, this approach

prevents the proper display of multiple branches. CellTrails

maps overcome these limitations by delineating develop-

mental-progression pathways through the topological surface

of a gene-expression landscape as a function of pseudotime.

These maps should allow projection of additional cells sampled

from different ages, perturbation analyses, or disease cases,

which will facilitate identification of deviations from the reference

trajectory that arise due to a specific condition.

We used CellTrails maps to identify developmental paths

manually. Although attempts were made to perform this step

automatically (e.g., by DPT, SCUBA, and SLICER), we observed

that supervised trail selection (e.g., by Monocle) increased accu-

racy (Figure 6). In addition to partially overlapping trails, we

observed that progression endpoints become latent if a terminal

state of one cell type is similar to an intermediate state of another

cell type (TrES*, TrES). We found that the structure of the lower-

dimensional manifold can be used to distinguish such sub-trails.

Finally, differential trail analysis was performed by pairwise

warping gene-expression time series. As single-cell measure-

ments amass, the need to pinpoint differences and similarities

in timing and extent of gene regulation, which govern canonical

and disease processes as they unfold over time, will become

increasingly important (Alpert et al., 2018).

To demonstrate that our framework is suitable for a wide range

of problems, we performed independent analyses on single-cell

measurements from hematopoiesis (Moignard et al., 2013) and

from early development of the mouse embryo (Guo et al.,

2010). CellTrails correctly identified the branching trajectories

expected from known lineage hierarchies (Figures S7F–S7K).

Moreover, as shown in Figure 7, CellTrails is suitable for use

with RNA-seq data.

CellTrails is freely available as an extension for R (http://

hellerlab.stanford.edu/celltrails/).

Biological Implications for Utricle Hair-Bundle
Development
The CellTrails analysis accurately predicts the known dynamic

behavior of actin crosslinking molecules in hair cells. Consistent

with previous results (Avenarius et al., 2014; Krey et al., 2016),

CellTrails showed that FSCN1 transcripts decrease in expres-

sion during hair cell development, ESPN peaks early during

hair-bundle assembly, and PLS1 and FSCN2 appear late

(Figure 5C).

Our results highlight a developmental split in chicken utricle

hair cells, where trails TrS and TrES/TrES* lead respectively to

striolar hair cells and extrastriolar hair cells with discrete differ-

ences in hair-bundle shape. Moreover, we found evidence for

distinct extrastriolar type II hair cell subclasses. The transcrip-

tional regulator SKOR2, which promotes early differentiation of

cerebellar Purkinje cells (Nakatani et al., 2014), could bias cells

to TrES/TrES* over TrS; SKOR2 is expressed at substantially

higher levels along TrES/TrES* compared to TrS, and its concen-
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tration rises at the trail bifurcation (Figure 3D; Table S2A).

Expression of genes required for hair-bundle development un-

folds distinctly in the two main trajectories and likely underlies

the morphological differences seen in stereocilia structure and

organization in striolar and extrastriolar hair cells (Figure 4C).

Most proteins known to be important for stereocilia lengthening

or widening have similar expression levels and timing between

the TrS and TrES/TrES* cells (Figure 5H), however, suggesting

that the control of stereocilia dimensions may rely on relatively

subtle differences in expression between the two cell types. Of

the proteins most strongly differentially regulated between the

two main cell trajectories (Figure 5B), only two are cytoskeletal

proteins expressed in bundles (MYO1H and MYO3A); several

proteins are involved in mechanotransduction (TMC2 and

CIB2), while others play regulatory roles (AKAP5, CAB39L).

TNNC2, a Ca2+-binding subunit of troponin that controls its bind-

ing to actin filaments, is markedly elevated in TrS cells but has

not been identified in bundles (Krey et al., 2015; Shin et al.,

2013), which suggests that it affects the TrS versus TrES/TrES*

distinction through its activity in the cell body. Remarkably, all

of these proteins bind Ca2+, are regulated by Ca2+-binding pro-

teins, or control Ca2+ entry into hair cells, which suggests that

control of Ca2+ plays a role in distinguishing striolar and extra-

striolar bundle structure.

Indeed, one of our most interesting observations was the

timed expression of the Ca2+ pump ATP2B2 and mobile Ca2+

buffer CALB2. While localized control of [Ca2+]i is important for

physiology of mature hair cells, our findings suggest that differ-

entially controlling local [Ca2+]i with buffers and pumps may

also be important during hair-bundle maturation. Recent data

support Tilney’s proposal that Ca2+ entry at stereocilia tips in-

creases actin filament elongation (Tilney et al., 1988; Vélez-

Ortega et al., 2017), but [Ca2+]i could also regulate stereocilia

widening. ATP2B2, which sets resting [Ca2+]i in stereocilia

(Lumpkin and Hudspeth, 1998), is upregulated at stage 3,

when elongation of stereocilia stops and they instead widen.

During stage 3, high levels of ATP2B2 should maintain very low

[Ca2+]i throughout the stereocilium, which could be a precondi-

tion for addition of new filaments to the actin core. ATP2B2 re-

mains high during late bundle development in TrS cells, perhaps

facilitating further stereocilia widening in striolar hair cells. By

contrast, CALB2 mRNA is only elevated early during stage 4,

when bundles resume elongation. The high levels of CALB2 dur-

ing stage 4 should still allow elevated Ca2+ near stereocilia tips,

but the relatively low affinity of CALB2 for Ca2+ (Schwaller, 2010)

means that [Ca2+]i along stereocilia shafts should be atmoderate

levels, perhaps preventing addition of new filaments. Differential

control of Ca2+ in striolar and extrastriolar stereocilia again em-

phasizes the role in distinguishing the two bundle types.

Our results reveal the sequence of expression of key genes

during hair-bundle assembly in the chick utricle. We envision

that additional data will reveal further regional diversity of cells,

such as differences along the medial-to-lateral axis between

MES and lateral extrastriolar (LES) cells, or along the anterior-

to-posterior axis. To fully understand bundle assembly, how-

ever, additional information is also required at the protein

level—including biochemical activity, regulation, intracellular

transport, and protein interaction partners. Expression dynamics

http://hellerlab.stanford.edu/celltrails/
http://hellerlab.stanford.edu/celltrails/


reported here will nonetheless greatly assist in developing pre-

dictive models for the process of bundle assembly during

development.
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Rtsne – R package https://cran.r-project.org/web/packages/Rtsne/index.html Version 0.13

SCUBA – MATLAB package https://github.com/gcyuan/SCUBA Version 1.0

SLICER – R package https://github.com/jw156605/SLICER Version 0.2.0

scater – R package https://bioconductor.org/packages/release/bioc/html/

scater.html

Version 1.6.1

scran – R package https://bioconductor.org/packages/release/bioc/html/

scran.html

Version 1.6.6

zoo – R package https://cran.r-project.org/web/packages/zoo/index.html Version 1.7-14

yEd Graph Editor Software https://www.yworks.com Version 3.14.4

Other

Biomark HD System Fluidigm N/A

IFC Controller HX Fluidigm N/A

LSM 700 confocal microscope/ A Plan-Apochromat

40x/1.3 NA

Zeiss N/A

LSM 880 with Airyscan microscope/ A Plan-

Apochromat 40x/1.3 NA

Zeiss N/A

Axioimager M1/ EC PLAN-Neofluar 10x/0,30 M27 Zeiss N/A

Helios Nanolab 660 DualBeam scanning electron

microscope

FEI N/A

Sirion XL30 FEG field-emission scanning electron

microscope

FEI N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Stefan

Heller (hellers@stanford.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fertilized chicken eggs were incubated at 38�C in a humidified incubator with automatically rocking racks. At the 18th day of embry-

onic development, the eggs weremoved to a dedicated hatching incubator where they remained until the animals hatched. Success-

fully hatched chickens weremoved into a brooder box with a heat lamp, food, andwater, then were housed for additional 7 days (P7).

Posthatch chickens were euthanized by CO2 inhalation, while embryonic chickens were decapitated. Animal procedures were

approved by the Stanford University’s Institutional Animal Care and Use Committee.

METHOD DETAILS

Single-cell qRT-PCR Data from Chicken Utricles
Single Cell Isolation and Flow Cytometry

Single cells were collected from utricle sensory epithelia at embryonic day 15, within 12 hr after hatching (P0), and 7 days posthatch

(P7). Utricles were dissected in ice-cold Medium 199 containing Hanks’ salts (M199; GIBCO – Thermo Fisher Scientific) and otolithic

membranes were removed without enzymatic treatment. Next, utricles were transferred with a micro-spoon for 15 s into 10 mMFM1-

43 (FM1-43FX, Biotium) in M199 at room temperature. Utricles were then transferred into M199 to wash off residual FM1-43 dye.

Stained tissues were incubated in thermolysin (0.5 mg/mL; Sigma) in M199 for 20 min at 37�C followed by inactivation using 10%

FBS in M199. The tissue’s circumferential non-sensory edges were trimmed away using a sapphire knife. Sensory epithelia were

carefully peeled off from the underlying stromal cells using a 30-gauge ½-inch hypodermic needle attached to 1 mL syringe. Cells

from either the lateral or the medial side were sampled by cutting along the anterior-posterior axis using a sapphire knife. For

each experiment, we pooled 6 utricles. Finally, the sensory epithelia were dissociated using Accutase (Innovative Cell Technology)

for 20min at 37�C, followed bymild mechanical trituration, and washed twice with PBS using centrifugation for replacement of buffer

(300 g, 5 min).

Cells were sorted with a FACSARIA II instrument (BD Biosciences) set to ‘‘single cell’’ mode and equipped with a 100 mm nozzle.

Debris was removed based on side-scatter area (SSC-A) and forward-scatter area (FSC-A) (Figure S1Di). Doublets were discarded

using two subsequent gating steps: forward-scatter height (FSC-H) versus forward-scatter area (FSC-A), and side-scatter width

(SSC-W) versus side-scatter area (SSC-A) (Figure S1Dii–iii). SYTOX� Red Dead Cell Stain (Molecular Probes) was used to identify

live and dead cells (SSC-A versus SYTOX Red) (Figure S1Div). Based on our final gating approach (SSC-A versus FITC-A (FM1-43)),

either single cells (Figure S1Dv) or single FM1-43High-, FM1-43Middle-, and FM1-43Low-cells (Figure 1C) were deposited into indi-

vidual wells of 96-well PCR plates (USA Scientific). Wells were prepared beforehand with 5 mL of CellsDirect Reactionmix (Invitrogen)

and 0.05 U of SUPERase-In RNase Inhibitor (Invitrogen). Cells were sorted with a flow rate of 300 cells/sec. Filled 96-well plates were

immediately sealed and transferred to dry ice, and stored at �80�C.
Primer Validation

We chose 190 genes for generation of qRT-PCR experiments that included those encoding proteins that were highly expressed or

highly enriched in purified chick hair bundles (Shin et al., 2013; Wilmarth et al., 2015), those with transcripts enriched in chick utricle

hair cells (Ku et al., 2014), and those encoding deafness genes that were known to be expressed in stereocilia (Van Camp and Smith,

2017). Primer pairs (DELTAgene assays, Fluidigm) were assessed for efficiency, sensitivity, and specificity by performing a dilution

series analysis on bulk RNA isolated from E15 utricles that included the stromal cell layer and nerve fibers. Total RNA (1 mg) was

reverse-transcribed using recombinant Moloney murine leukemia virus reverse transcriptase (High Capacity cDNA Reverse Tran-

scription Kit). 100 ng of resulting cDNA was pre-amplified (19 cycles) using 500 nM of pooled DELTAgene Assay mix and TaqMan

PreAmp Mix (Applied Biosystems). Exonuclease I was used to remove single stranded primer oligonucleotides. A 2-fold dilution se-

ries of 15 concentrations ranging from 100 ng to 6 pg was prepared with TE buffer (Ambion). Six technical replicates were used to

determine the threshold for each primer pair at which technical noise of the instrument becomes too large. Specificity of amplification

for a single product was verified by examining the melting curves for each primer pair. 185 effective primer pairs were filtered by

analyzing the relationship between the average CT value (y) per dilution and the input template concentration (x) using a linear

semi-log regression model: y � c� s log2ðxÞ. We retained primers with an excellent performance indicated by an R squared

(R2) R 0.9 and an amplification efficiency (� 1 + 2
�1
s ) R 0.9. The limit of detection (LOD) was determined for each primer pair by

determining the highest dilution for which a CT value was recorded for all 6 replicates; the mean CT value defined the primer specific

detection limit. The global LOD was set to the 95% quantile of all primer specific detection limits (LOD = 23).

RNA Processing and Single-cell qRT-PCR

96.96 Dynamic Arrays (Fluidigm) were used to capture CT values of 185 primer pairs from 1,056 E15 (192 P0, 192 P7) chicken utricular

single cells with the Biomark HD system (Fluidigm) as previously described (Durruthy-Durruthy et al., 2014). Two 96-well plates were

matched to enable the quantification of the whole gene assay (96 cells 3 185 primer pairs) per cell.

Quality Control and Data Processing

First, we evaluated the amplicons generated by the 185 selected primer pairs. Measurements not generating fluorescence signals or

melting curves outside the validated temperature range (implying non-specific amplicons) were treated as absent data and set to the

technical limit of detection, CT = 30. Cells were filtered and normalized using the reference gene GAPDH, as its mRNA levels have
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been reported to be constant during chick hair bundle development (Avenarius et al., 2014). We removed dying cells or multiplets

indicated by significant lower (< 25% quantile � 1.5 3 interquartile range) or higher (> 75% quantile + 1.5 3 interquartile range)

GAPDH levels compared to all captured cells, respectively (E15: 48 cells; P0: 14 cells; P7: 16 cells); the GAPDH distribution was

computed without non-detects. Two genes, GFI1 and PKD2L1, were found not expressed in any cell and were therefore excluded

from the subsequent analysis. CT values R LOD were set to 0 (i.e., no signal detected); remaining CT values were transformed to a

log-scale transcript level above background (DCT = LOD � CT), which is referred to as Log2Ex. Normalized expression values for

each cell i were derived by DDCT(i) = DCT(i) � DCT
GAPDH(i). To ensure linear molecule counts > 1 (i.e., DDCT >0), we scaled each

DDCT(i) by

DDCTðiÞ=DDCTðiÞ+minðDCTÞ+ jminðDDCTÞ j
A Kolmogorov-Smirnov goodness-of-fit test indicated that E15 DDCT values of 77% of genes followed a normal distribution (Bonfer-

roni corrected a = 10�2). Finally, we obtained a Log2Ex expression matrixX= ðxijÞ˛Rm3n ofm observations (E15: 1,008 cells; P0: 178

cells; P7: 176 cells) for n = 183 features (genes) with

xij =

�
0; CTRLOD
DDCT; otherwise:

Hierarchical clustering was applied (complete linkage agglomeration with Euclidean distance metric) to check for batch effects. X

contained a considerable fraction of non-detected values, i.e., xij = 0 (E15: 35.0%; P0: 23.0%; P7: 23.8%). We noted a linear relation

between the number of non-detects and the mean DDCT value per gene (R2 = 0.28; F-test p < 7.6 3 10�15) for the E15 data, which

suggested that a fraction of the non-detected values is due to limited technical sensitivity and thus is type I left-censored.

The CellTrails Framework
Input to CellTrails is any normalized expression matrix X = ðxijÞ˛Rm3n, which is composed of measurements of n genes/transcripts

that are presumed to trace a spatiotemporal trajectory inm cells. In the following, xi. denotes a row vector of size nwith all expression

values of cell i, and x.j is a column vector of size m containing all measurements of gene j.

Dimensionality Reduction

Single-cell gene expression data comprise high-dimensional data of large volume, i.e., many genes are measured in many cells; or

more formally,m cells can be described by the expression of n genes (i.e., n dimensions). The genes’ expression profiles are shaped

bymany distinct unobserved biological causes related to each cell’s geno- and phenotype, such as developmental age, tissue region

of origin, cell cycle stage, as well as extrinsic sources such as status of signaling receptors, and environmental stressors, but also

technical noise. In other words, a single dimension, despite just containing gene expression information, represents an underlying

combination of multiple dependent and independent, relevant, and non-relevant factors, whereat each factors’ individual contribu-

tion is non-uniform. To obtain a better resolution and to extract underlying information, we aim to find a meaningful low-dimensional

structure – amanifold – that represents cells mainly by their spatial and temporal relation.We reduce the dimensionality of the dataset

X, which consists ofm data vectors xi.with i˛ [1,m] of dimensionality n, under the assumption thatX has an intrinsic dimensionality of

d, where d < n or even d � n. In other terms, we presume that the data vectors are lying on or near a manifold with dimensionality

d that is embedded in the n-dimensional space. Thus, we aimed to amplify latent spatiotemporal information by reducing noise (non-

relevant dimensions) by transforming X into a new dataset Y= ðyijÞ˛Rm3d while retaining the geometry of the dataset as much as

possible. However, dimensionality reduction is an ill-posed problem, because neither the geometry of the data manifold, nor the

value of d is known. Since we were interested in spatiotemporal ordering of cells, we aimed to robustly capture the intrinsic data ge-

ometry based on the statistical dependency between any two data vectors. A high dependency should represent a close proximity of

two cells along a trajectory.

For this purpose, we used mutual information, which is robust against outliers and noise, and is sensitive to nonlinear relations,

which cannot be detected by covariance-based measures. We argue that mutual information is well suited to describe develop-

mental progression, as it quantifies the amount of uncertainty about the current cell state that is removed by the occurrence of its

progenitor cell state. If a mutual relationship between two cells is non-existent, they are statistically independent and consequently

considered as distant. Wemodel xi. as a random variable Awith a defined finite set of a possible outcomes (e.g., discrete expression

intensity levels) and its probability mass function P(A) which is based on the relative frequencies of each outcome. For each data

vector, we can then compute the Shannon entropy (Shannon, 1948) H(A):

HðAÞ=
Xa

i = 1
PðAiÞlog2 PðAiÞ

Frequent outcomes, such as non-detects, have a low contribution to the total sum, as the information content I(Ai) = log2P(Ai)/ 0 for

P(Ai)/ 1. The amount of information needed to describe the outcome of cell x1. if another cell x2. has been observed can be quan-

tified by the conditional entropy:

H
�
Af1g ��Af2g�= �

Xa

i = 1

Xa

j = 1
P
�
A

f1g
i

��Af2g
j

�
log2 P

�
A

f1g
i

��Af2g
j

�
The statistical dependence between two cells in terms of their mutual information can then be estimated by
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I
�
Af1g;Af2g�=H

�
Af1g�� H

�
Af1g ��Af2g�=H

�
Af2g�� H

�
Af2g ��Af1g�= I

�
Af2g;Af1g�

with H(A{1}jA{2}) = H(A{1}) if x1. and x2. are statistically independent and therefore spatiotemporally unrelated. The entropy framework

naturally requires discretization of data vectors by an indicator function fðxijÞ which assigns each continuous data point (expression

value) xij to exactly one discrete interval (e.g., low, mid or high). However, measurement points located close to the interval borders

may get wrongly assigned due to noise-induced fluctuations. Therefore, we fuzzified fðxijÞ by using a piecewise polynomial function

F(xi.), i.e., the domain of xi. is divided into contiguous intervals, whereat F is represented by a separated polynomial in each interval

(Daub et al., 2004). This allows a data point to be simultaneously in multiple neighboring intervals, which increases the robustness of

this scoring scheme. Expressions for the polynomial segments were derived by the Cox-de Boor recursion formula of B-spline basis

functions:

Bz;0ðxijÞ=
�
1; tz%xij < tz+ 1

0; otherwise:
Bz;cðxijÞ= xij � tz
tz+c � tz

Bz;c�1ðxijÞ+ tz+ c+ 1 � xij
tz+ c+1 � tz+ 1

Bz+ 1;c�1ðxijÞ

with degree 3 (i.e., index c runs in {1, 2, 3} resulting in cubic splines), and a sorted uniform knot vector t = {tz j z˛Z}. We composed t as

follows.We generated eight equidistant knots over the range of xi.: {t0 = min(xi.), ..., t7 = max(xi.)}. Due to the inflation of non-detected

values in single-cell data, most likely t0 = 0. Therefore, we selected the internal knot vector t = {tz j z˛½0; 6�} and the boundary knots t0
and t7. Due to the recursive nature of B-splines the lower and upper boundary knots have to be appended (degree + 1) times to t,

resulting in 2 3 degree + 2 + jtj = 15 knots generating 10 basis functions (without intercept B0,c). The B-spline basis transfor-

mation of the expression matrix X results in the basis matrix B = ðbijkÞ˛Rm3n310. We adjust the computation of the marginal and joint

probabilities for an outcome k as follows:

PðAkÞ=
Xn

j = 1

b:jk

n
; and P

�
A

f1g
k ;A

f2g
k

�
=
Xn

j = 1

b1jk b2jk

n
:

We then derive the weighted mutual information between any two cells by

I
�
Af1g;Af2g�=X10

i = 1

X10

j =1
u
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with weight function uðAf1g
i ; A

f2g
j Þ = ð1� PðAf1g

i ÞÞð1� PðAf2g
j ÞÞ. The resulting matrix M= ðmijÞ˛Rm3m already contains valuable in-

formation about cell-to-cell relations. However, the computed mutual information is left-bounded and composed of bits. Therefore,

similar to the derivation of a Pearson correlation coefficient from a covariance matrix, we scaled the mutual information matrix M,

which enables its interpretation as generalized correlation coefficient:

FðmijÞ=mij

ffiffiffiffiffiffiffiffiffiffiffiffi
1

miimjj

s
˛½0; 1�

with FðmijÞ = 0 denotes statistical independence. From this, we can formulate a non-negative, symmetric distance function between

two cells (i, j) by

Dði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�mijÞ

q
˛
h
0;

ffiffiffi
2

p i
with Dði; jÞ = 0 implies that i = j. Of note, we found that the triangle-inequality was valid for each distance matrix D =

ðdijÞ˛Rm3m derived from the datasets analyzed in this study, indicating that functionDmay satisfy the requirements of ametric; how-

ever, a formal proof is not provided within the scope of this study.

Next, we conducted the mapping j : X / Y= ðyijÞ˛Rm3d by using the idea of Laplacian eigenmaps (Belkin and Niyogi, 2003).

Here, the cost function that is minimized is given by

FðYÞ= kyi: � yj: k 2
uij = 2YTLY

where L is the Laplacian of a corresponding weighted graphG = (V, E,W) and uij are weights that are chosen such that data vectors,

whichwere defined proximal in the original space remain close-by in the lower-dimensional representation. Theminimization of F can

be defined as generalized eigenvector problem using spectral graph theory Lv= lQv with the degree matrix Q of G. We extend the

original local concept as follows. First, instead of using a sparse (weighted) adjacency graph (e.g., k-nearest neighbor graph), we
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constructed a simple complete graph withm nodes, one for each data vector (i.e., cell), and weighted each edge between two nodes

(i, j) by a heat kernel function F applied on D:

FðdijÞ= eg; with g=
1

2s2
d2
ij

and a scaling factor swhich was set to the third quartile of D, i.e., the distance matrix is transformed to a weighted adjacency matrix

with exponentially decaying values (F : D/D = ðdijÞ˛Rm3m). Second, we operate the spectral embedding directly on this adjacency

matrix (Sussman et al., 2012), by computing an eigendecomposition ofmatrix L
0
which is given by L

0
= 1

mQ+D (comparable to a sign-

less graph Laplacian). Here, the (ordered) set of eigenvalues provides the spectrum of the graph. Third, the resulting eigenbasis Y,

obtained by concatenation of the first d eigenvectors, is coordinate-scaled (Sussman et al., 2012) by the reverse inverse hyperbolic

sine of the eigenvalues l:

F
�
yij
�
= yij log

	
lj +

ffiffiffiffiffiffiffiffiffiffiffiffi
l2j + 1

q 

To detect the number of relevant dimensions automatically, we computed the eigengaps (lagged differences of sorted l) and calcu-

lated a linear fit on the top 100 values. The top d eigenvectors having an eigengap greater than the fitted values were selected to span

the eigenbasis Y = ðyijÞ˛Rm3d.

Identification of States

To identify cellular subpopulations, we performed hierarchical clustering via minimization of a square-error criterion (Ward, 1963) in

the lower-dimensional space Y = ðyijÞ˛Rm3d. To determine the cardinality of the clustering, we conducted an unsupervised post hoc

analysis. This has the advantage that branches of the dendrogram tree are pruned by individual heights while the overall cluster-to-

cluster structure remains intact. We determined the clustering cardinality unbiasedly using a biological paradigm. Here, we assumed

that differential expression of assayed genes determines distinct cellular states. First, we identified the maximal fragmentation of the

data space, i.e., the lowest cutting height in the clustering dendrogram that ensured that the resulting clusters contained at least 1%

of all cells. Then, processing from this height toward the root, we iteratively joined siblings if they did not have at least five differentially

expressed genes. Statistical significance was tested either by means of a two-sample non-parametric Peto-Peto test (R package

EnvStats) to account for censored values, or by its uncensored analog, the Wilcoxon rank sum test, if all Log2Ex values were greater

than 0. The null hypothesis was rejected using the Benjamini-Hochberg procedure for a significance level of a = 10�4. Parameters

were selected based on number and covariance of genes (redundancy), and sample size (statistical power).

Multiple Differential Gene Expression Analysis

Each cluster c found in the lower dimensional spaceY is composed of a distinct set of u cells. Therefore, it also defines a submatrix of

expression matrix X that is composed of a distinct set of u data vectors Xfcg = ðxfcgij Þ˛Ru3n. To identify genes that are significantly

high expressed per cluster, we performed a multiple differential gene expression analysis, i.e., comparing one cluster against all

simultaneously, rather than conducting 0.5k(k� 1) pairwise comparisons for k clusters. First, we computed the mean expression

per gene for any cluster c, i.e., its barycenter mfcg by

mfcg =
1

u
J1;nX

fcg

with J1,n is all-ones unit matrix with one row and n columns. Then, we computed the complementary barycenter mf:cg of all cells that
were not assigned to cluster c. From this, we can define a differential expression score DE for each gene j in each cluster c by

DEðj; cÞ=g
fcg
j

�
m
fcg
j � m

f:cg
j

�
˛½�1; 1�

with scaling factor g which was defined as

g
fcg
j =

8><>:
�
m
fmaxg
j � m

f:maxg
j

��1

; m
fcg
j Rm

f:cg
j�

m
fming
j � m

f:ming
j

��1

; otherwise:

Here, m
fmaxg
j is the highest possible and m

fming
j is the lowest possible mean expression value in the whole dataset for gene j in a cluster

of size u, and m
f:maxg
j and m

f:ming
j are the average expression values in the remaining cells, respectively. If DEðj; cÞ= 1 then cluster c

contains all cells having the u highest values of gene j, if DEðj; cÞ= � 1 then cluster c contains all cells having the u lowest values of

gene j. To test for statistical significance, we performed 1,000 Monte Carlo simulations. For each iteration we calculated DE(j; c) for u

sampled cells. If neither random cluster exhibited a higher score (or lower score if m
fcg
j < m

f:cg
j ), then the null hypothesis was rejected.

Further, we calculated the specificity of DE(j; c) as follows:

Sðj; cÞ= 2h

k � 1
� 1 ˛ ½ � 1; 1�
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with k is the total number of clusters and h is the number of clusters having a lower DE score for gene j. Here, Sðj; cÞ= 1 indicates that

gene j is highly specific overexpressed in cluster c. A gene jwas defined asmarker for cluster c, ifDEðj; cÞ> 0:5,MonteCarlo p < 10�3,

and Sðj; cÞ = 1.

Trajectory Fitting

We assume that the arrangement of cells in the lower-dimensional space Y= ðyijÞ˛Rm3d constitutes a trajectory. Therefore, we aim to

place single cells along a maximum parsimony tree, which resembles a branching developmental continuum. Distances between

cells in the lower-dimensional space are computed using the L2-norm (Euclidean distance). To avoid overfitting and to facilitate

the accurate identification of bifurcations, we simplify the problem. Analogous to the idea of a ‘broken-stick regression’, we group

the data and perform linear fits to separate trajectory segments, which are determined by the branching chronology of states.

This leaves us with the optimization problem of finding the minimum number of associations between states maximizing the total

parsimony, which in theory can be solved by anyminimum spanning tree algorithm.We adapt this concept by assuming that adjacent

states should be located nearby and therefore share a relative high number of neighboring cells. Each state c defines a submatrix ofY

that is composed of a distinct set of u data vectors Yfcg = ðyfcgij Þ˛Ru3d, i.e., state c is a distinct set of u cells represented in the lower-

dimensional space. For each state we identify the 10-nearest neighbors (N{c}4Y) to each data vector y
fcg
i: and took note of their state

memberships (u{c}) and distances (d{c}). This results in two vectors (u{c}˛U, d{c}˛D) of length 10u per cluster c. We remove spurious

neighbors (outliers), which fulfill the condition

dfcg
i Re medianðlogðDÞÞ + MADðlogðDÞÞ

whereMAD is the median absolute deviation function applied on the log-transformed matrixDmx10 of all recorded neighborhood dis-

tances. For each state cwe calculate the relative frequency table of u{c}, which we refer to as the interface cardinality scores of c. We

implement a greedy algorithm to find the tree maximizing the total interface cardinality score, similar to a minimum spanning tree

algorithm (Kruskal, 1956). In a nutshell, all interface cardinality scores are organized in a sorted linked list, and a graph with no edges,

but k nodes (one for each state) is initialized. During each iteration the highest score is selected, removed from the list and its cor-

responding edge (connecting two states), if it is not introducing a cycle or is already existent, is added to the graph. The algorithm

terminates if the size of the graph is k� 1 or the list is empty. A cycle is determined if nodes were revisited while traversing the graph

using depth-first search. Please note that any state c can become isolated (degree = 0) ifN{c}4 Y{c}, i.e., all its nearest neighbors are

exclusively members of the same state c. Data vectors of isolated states are removed from X and Y for subsequent steps, respec-

tively. The resulting tree spanning all non-isolated states defines the topology of the trajectory. Next, we embed the trajectory struc-

ture in Y by computing k� 1 straight lines passing through k mediancenters m (Bedall and Zimmermann, 1979) of adjacent states.

Then, we learn a fitting function 4 : Y / Z = ðzijÞ˛Rm3d. Each y
fcg
ij is orthogonally projected on its closest line passing through

mfcg (the mediancenter of c). Here, whenever possible, projections on line segments between two mediancenters are preferred. Re-

siduals (fitting deviations) are given by ðyi: � zi:Þ2. Finally, a weighted acyclic trajectory graph G = (V, E,W) with jVj = m can be con-

structed based on each cell’s position along its straight line; each edge is weighted by the distance between each adjacent cell in Z.

Of note,4 implies potential leafs branching from internal states in the trajectory graph encompassing cellular heterogeneity of a state.

Drawing of CellTrails Maps

We intend to portray a computed trajectory as collection of trails that can be found in a landscape that is shaped by individual gene

expression dynamics. To generate such a topographic map, we first generate a two-dimensional spatiotemporal ordination

O= ðoijÞ˛Rm32 of the expression matrix X= ðxijÞ˛Rm3n using structural information from the trajectory graph G. We determine the

spatial coordinates of each cell based on their location along the trajectory, wðxi:Þ = ðoi1; oi2Þ, i.e., we draw a map of all observed

trails in the data. For this purpose, we load the structural properties of G into the graph editing software yEd (http://www.yworks.

com) to make use of a layout algorithm optimized for undirected, dense or huge trees, called ‘balloon’ style. This method roots

the trajectory graph in a quasi-radial style, which we found is optimally suited for the subsequent procedure. Here, we adjust the local

distances between data points in O, such that the layout accurately represents the weight of the edges (i.e., pseudotime) between

adjacent nodes (i.e., cells) in G:

(1) The dimensions of the layout are scaled, such that the axes’ range is identical and the minimum Euclidean distance between

adjacent data points in O is greater than the maximum geodesic distance between adjacent nodes in G.

(2) We identify all leafs V1 (nodes with degree = 1) and all internal nodes V2 (degree > 2) in G. If V2 = {}, then one node is sampled

from V1 and gets assigned to V2.

(3.1) If jV2j > 1, then a minimum spanning tree T2 = (V2, E) is computed based on the geodesic distances of V2 inG. For each edge

in T2, the shortest path P4G between both incident nodes is computed inG using Dijkstra’s algorithm. Then, for each node

along P (with layout coordinates o1), the layout coordinates, o2˛O, of its adjacent node get adjusted, such that the distance

between o1 and o2, equals the weight w of their incident edge in G:
o2 =o1 +
wðo1 � o2Þ
ko1 � o2 k
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(3.2) If the edge with the endpoint of P, vk-1vk, is reached, the vector difference d between the original and adjusted coordinates of

ok is recorded. SinceG is a tree, the vertex-induced subgraph ofGwith V \ {vk} is disconnected. Since we iterated directedly

through P from a start to an endpoint ˛ V2, we select the component not containing P, and adjust its nodes inO by adding d

to their layout coordinates.

(4) For each internal node ˛ V2, a tree T2 spanning the internal node and its closest leafs ˛ V1 is created based on their geodesic

distances in G. We update O identical to step (3.1) using T2, but require iterating through P from the internal node to the leaf

node.

Next, we generate smoothed expression surfaces for individual genes, i.e., the map topography. We extend the map by adding a

dense equal-spaced regular grid of size 3003 300, bO = ðboijÞ˛R90;00032, with boij ˛½minðo:jÞ; maxðo:jÞ�. This raises the problem of pre-

dicting a gene’s presumptive expression value for each grid point bo i:, by learning a regression function from the spatial location of

individual cells inO and their associated gene expression vectors xi.. For this purpose, we employ an extension of the multiple linear

regression model, called generalized additive model (GAM). It allows for nonlinear relationships between each covariate and the

response variable by replacing each linear component with a smooth nonlinear function. For each gene j a GAM zj is fitted with a

single smoothing term F of the spatial coordinates of cell i in O:

EðxijÞ= b0 +Fðoi:Þ+ εi

where b0 is a coefficient and εi is an identical and independent distributed random error term.We use isotropic (i.e., same parameters

for both map dimensions) thin-plate spline smoothing with 10 basis dimensions to estimate F and fit its parameters by generalized

cross-validation using the R package mgcv. Here, for each gene j we introduce prior weights p.j to lower the confounding effect of

drop-outs (xij = 0) to the maximum-likelihood-based fitting process:

phj =

8><>:
���nxfcgij ˛Xfcg : xfcgij = 0

o ���
jXfcg j ; xhj = 0

1; otherwise:

where cell h is member of state c and Xfcg are expression vectors of all cells of the trajectory (or a trail) that are member of state c; in

other words, each non-detect of gene j in state c is weighted by the relative fraction of non-detects of gene j in state c along the tra-

jectory (or a trail). Each grid point bo i: has then a corresponding expression vector bx i: = ðz1ðbo i:Þ; .; znðbo i:ÞÞ for n genes with Li. is the

vector with the values of the linear predictors at the supplied covariate values (i.e., coordinates), and bb are the estimated coefficients

for each parameter. Maps are post-processed, such that the expression interval of the predicted response variable is right-bound by

themaximumof its fitted expression values along the trajectory and left-bound by 0. Thus, we neither project expression values in any

region of the map that are greater than those fitted in any cell on the trajectory, nor lower than a non-detected expression signal

(which corresponds to a value of 0). Uncertainty estimates for quantities derived from fitted GAM predictions were calculated based

on the Bayesian posterior covariance matrix of the fitted model coefficients, V. Here, the standard errors of predictions were calcu-

lated by
ffiffiffiffiffiffiffiffiffiffiffiffi
Li:VLi

p
for grid point bo i: of the gene expression surface (Wood, 2006).

Inference of Gene Expression Dynamics

To analyze gene expression dynamics of developmental progression toward distinct phenotypes, i.e., gene expression profiles along

individual linear trajectories (trails), wemake use of the structural information contained in the trajectory graphG= (V, E, W). Here, the

shortest path from a given start node v0 to a given end node vk denotes a single trail, (v0, e0, ., ek-1, vk). Here, the sequence of nodes

v = (v0, ., vk) represents gene expression snapshots X0 = (x0., ., xk.) taken from various states c = (c0, ., ck) and the sequence

of weighted edges e = (e0,., ek-1), connecting those nodes, approximates the pseudotime between single snapshotsw = (w0,.,

wk-1 ˛W). The pseudotime vector t = (t0, ., tk) is then defined by the geodesic distance from v0 by

th =

�Xh�1

i = 0
wi; h> 0

0; otherwise:

To learn the expression level of each gene as a function of pseudotime, we used generalized additive models with a single smoothing

term with five basis dimensions (thin-plate regression spline) and introduced prior weights to lower confounding effects of drop-outs

(see above: Drawing of CellTrails Maps).

Differential Trail Analysis

We hypothesized that it would be feasible to analyze differences and similarities in gene expression dynamics by comparing different

trails. Genes have non-uniform expression rates and each trail has a distinct set of upregulated genes, but also contains unequal

numbers of cells. Because pseudotime is based on transcriptional change, its axis may be distorted, leading to stretched or com-

pressed sections of longitudinal expression data that make comparison of trails challenging. To align different trails, despite these

differences, we employ a dynamic programming based algorithm that has long been known in speech recognition, called dynamic

time warping (Sakoe and Chiba, 1978). RNA expression rates aremodeled analogous to speaking rates (Aach and Church, 2001); the

latter accounts for innate nonlinear variation in the length of individual phonemes (here: states) resulting in stretching and shrinking of

word (here: trail) segments. This allows the computation of inter-trail alignment warps of individual expression time series that are
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similar but locally out of phase. Please recall, a trail is defined as a chronologically ordered sequence of cells v = (v0, ., vk) repre-

senting gene expression snapshots at distinct points in pseudotime t = (t0,., tk); an expression snapshot is a data vector containing

measurements of n genes, where x.j = (x0j,., xkj) denotes the expression sequence of a particular gene j. We calculated univariate

pairwise alignments of two trails, (v1, t1, x.j) and (v2, t2, y.j), resulting in n warps per trail set as follows.

Expression values were fitted and smoothed using generalized additive models for each trail tr, zj;tr (GAMs; see above: Inference of

Gene Expression Dynamics). We normalized the smoothed expression value vectors by x.j = zj;1(t1)=max(zj;1(t1)) and y.j = zj;2(t2)=

max(zj;2(t2)); the time series withmaximumpseudotime, max(t1, t2), was used as query sequence. The cross-distancematrix between

x.j and y.jwas calculated by applying the Euclidean distance functionD(xgj, yhj) on any snapshot g of time series x.j and any snapshot h

of time series y.j of gene j. DTW fits a warping function which minimalizes the total distance between x.j and y.j

wðiÞ= �
wxðiÞ; wyðiÞ

�
where wxðiÞ ˛x:j and wyðiÞ ˛y:j are the individual snapshots aligned at position i of the alignment, i.e., wx and wy remap the time indices

of the expression series. Similar to a (global) pairwise protein sequence alignment, monotonicity (i.e., no time loops) and continuity

(i.e., no time leaps) constraints have to be imposed on w to preserve sequence ordering. We use asymmetric dynamic programming,

as provided by the R package dtw, to compute the optimal warp. Its recursion rule selects the local minimum of three moves through

the dynamic programming matrix: suppose that query snapshot g and reference snapshot h have already been aligned, then the

alignment of h + 1 with g + 1 is a (unit slope) diagonal move, h with g + 1 denotes an expansion by repetition of h, and h + 2

with g + 1 contracts the query by dropping h + 1.

The resulting alignment may contain gaps. Therefore, were imputed missing values using smoothed spline functions with l – 1 de-

grees of freedom, with l is the minimum length of aligned time indices. The overall dissimilarity between two expression time series

(i.e., the difference of a gene’s dynamic between two trails) was estimated by predicting expression values for k = 250 equally distant

time points over the warped time span, w, and by calculating their root-mean-square deviation (RMSD).

RMSDðwÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i = 1

�
wxðiÞ � wyðiÞ

�2
k

s

Robustness Analysis
Robustness With Respect to Sample Size

We analyzed the robustness of the CellTrails framework with respect to sample size. We generated bootstrap samples by sampling

without replacement from all 896 cells that were used to reconstruct the trajectory of hair bundle development. 100 subsets

composed of 75% and 100 subsets composed of 50% of the data were generated. Each bootstrap sample was input to CellTrails

and the pseudotime of each cell was computed automatically. To quantify how accurately CellTrails recovers the original trajectory

from bootstrap samples, the concordance between the pseudotime labels of a subset and the pseudotime of the original trajectory

was estimated by Kendall’s rank correlation coefficient.

Robustness Against Variable Noise

We analyzed the robustness of spectral embedding against variable noise. To add noisy dimensions to the expression dataset

X= ðxijÞ˛Rm3n withm cells and n genes, we sampled k data vectors of genes (without replacement), shuffled each vector, and added

the mock data to X. The number of sampled gene vectors was determined by

k =

�
n

ð1� pÞ+ 0:5

�
� n

where p is the fraction of noise which was selected 5%, 10% and 20%. To quantify robustness, the average absolute Spearman rank

correlation between the top 10 latent dimensions derived from the original data and the top 10 latent dimensions derived from the

data with a certain noise fraction was computed; quantification was repeated 100 times per noise level.

Robustness Against Expression Noise

We analyzed the robustness of spectral embedding against expression noise. We sampled m3n values from a Normal distribution

Nðm= 5; sÞ with s˛f1; 2; 3g and added them to the expression matrix X = ðxijÞ˛Rm3n; resulting negative values were set to 0 (drop-

outs). The average absolute Spearman rank correlation between the top 10 latent dimensions derived from the original data and the

top 10 latent dimensions derived from the data with a certain noise fraction was computed; quantification was repeated 100 times per

noise level.

Processing and Analysis of Other Datasets
Single-cell RNA-Seq Data from Mouse Utricles

Transcript expression profiles of n = 313 single cells from the sensory organs of the inner ear of P1 LfngEGFP;R26RCAG-tdTomato;

Gfi1Cre mice (Burns et al., 2015) were obtained via accession number GEO: GSE71982 (https://www.ncbi.nlm.nih.gov/geo/). Tran-

script abundances in this dataset have been reported in sum of isoform transcripts per million (TPM). We calculated the library

size (total number of TPM) and the number of detected genes per cell, and performed density-based clustering using DBSCAN
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with an epsilon neighborhood of 0.7 (as provided by the R package dbscan) on the principal component space of these two variables

to identify three outlying cells, which were removed consequently. We filtered 16,918 genes, which were expressed in at least three

cells. Additional three cells predicted to be in S or G2M phase of the cell cycle by cyclone of the R package scran were removed.

Similar to the original study, normalization factors for each sample were calculated. Size factors were robustly deconvolved from

pooled cells and the expression matrix was subsequently normalized using scran and scater. Finally, we retained 14,313 genes an-

notated as protein-coding byGENCODE (releaseM15, https://www.gencodegenes.org/), and selected all 53 supporting cells and 67

hair cells from the utricle as defined by genetic labeling.

Because confounding variables, such as cell cycle and stress, may impair successful reconstruction of the trajectory, we applied

an unsupervised filter strategy. First, genes were filtered similarly to the original study (Burns et al., 2015). We removed 917 genes

detected in fewer than three cells and 2,096 genes that varied little from cell to cell, i.e., they had a coefficient of variation (standard

deviation / mean, s=m) % 0.5. We then identified the most variable genes remaining in the set using an unsupervised strategy that

controls for the relationship between a gene’s average expression intensity and its expression variability (Macosko et al., 2015).

Genes were placed into 20 bins based on their mean expression. For each bin the index of dispersion ðs2=mÞ distribution was

computed and standardized (Z-score = x=s� m=s). Using a Z-score threshold of 1.7 (Macosko et al., 2015), we identified 436 highly

variable genes whose expression pattern was assumed to trace the underlying spatiotemporal differences of the 120 individual P1

mouse utricle cells. This dataset was predicted to have an intrinsic dimensionality of size six using the top 100 eigenvalues obtained

by spectral embedding.When determining states, we accounted for the small sample size of this dataset and increased the statistical

power of the clustering post hoc analysis by requiring that siblings in the cluster dendrogram were merged if they had less than two

differentially expressed genes with p < 10�3. Subsequent trajectory fitting was performed as described above (see above: The

CellTrails Framework).

Single-cell qRT-PCR Data from Blood Cells

We obtained publicly available expression profiles of 620 single primary blood stem and progenitor cells isolated from mouse bone

marrow (Moignard et al., 2013). The single cell profiles of the FACS-purified cells in this dataset are labeled by cell type. Non-detects

were set to the technical limit of detection, CT = 28. Cells were filtered and normalized using the reference genes Ubc and Polr2a. 28

dying cells or multiplets indicated by significant lower (< 25% quantile� 1.53 interquartile range) or higher (> 75% quantile + 1.53

interquartile range) reference gene levels were removed. The overall CT value distributions ofUbc and Polr2awere computed without

non-detects. CT values were transformed to Log2Ex and normalized by the geometric mean of Ubc and Polr2a as described above

(see above: Single-cell qRT-PCR Data from Chicken Utricles). This resulted in an expression matrix X= ðxijÞ˛Rm3n withm = 592 cells

and n = 18 key hematopoietic transcription factors. To account for the low number of features, we used the top 25 eigenvalues from

the spectral embedding to determine four relevant latent dimensions and required for the state identification that at least two genes

were differentially expressed (p < 10�4) between each sibling in the clustering dendrogram. The subsequent trajectory fitting was

performed as described above (see above: The CellTrails Framework).

Single-cell qRT-PCR Data from Embryogenesis

Processed expression profiles of 48 genes measured in 429 single cells from zygote to blastocyst developmental stages (Guo et al.,

2010) and the respective cell type annotations were obtained from Buettner and Theis (2012). Non-detects were set to the technical

limit of detection, CT = 28. Log2Ex values were then derived by 28�CT.We identified an intrinsic dimensionality of nine using the top

100 eigenvalues of the spectral embedding. State identification was conducted in the latent space as described above (see above:

The CellTrails Framework). Since the cells exhibited a strong separation by stage in the latent space, no interfaces between states

were found using the 10-nearest neighbors. Therefore, we increased the k-neighborhood (k = 50) for themaximum interface tree con-

struction. Subsequent trajectory fitting was performed as described above (see above: The CellTrails Framework).

Application of Alternative Algorithms
Dimensionality Reduction

Linear dimensionality reduction was performed using principal component analysis on the gene-wise scaled expression matrix hav-

ing unit variance. Principal components were derived by an orthogonal transformation of the expressionmatrix bymeans of the spec-

tral decomposition of its gene-gene covariance matrix.

Diffusion maps were computed using the implementation available in the R package destiny, which allows the autonomous deter-

mination of the neighborhood size and the diffusion scale parameter of the Gaussian kernel.

Learned lower-dimensional manifolds were approximated and visualized using the Barnes-Hut implementation of t-Distributed

Stochastic Neighbor Embedding as provided by the R package Rtsne.

Trajectory Reconstruction

The normalized expression matrix X= ðxijÞ˛Rm3n was input to trajectory reconstruction algorithms that were freely available, func-

tional, and comparable to CellTrails. Here, we selected methods employing diverse nonlinear dimensionality reduction techniques

prior to trajectory inference. For all algorithms, we used recommended (standard) parameter settings. The diffusion pseudotime al-

gorithm (DPT) with option ‘branching’ and the SLICER algorithm were applied using the R packages dpt and SLICER, respectively;

SCUBA was applied using the MATLAB package SCUBA. All implementations predicted a trajectory structure and derived a
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pseudotime per cell, but did not infer expression dynamics. Therefore, we adopted the moving average (over 50 adjacent cells)

approach originally presented in the DPT article (Haghverdi et al., 2016) by using the R package zoo. Monocle was applied using

the R package monocle with its most recent ‘‘DDRTree’’ option. For each algorithm, the start and end of the inferred trajectory

was determined using the expression of TECTA and MYO7A (Figures S6A–S6D). All algorithms, except Monocle, extracted single

trails automatically.

Edu Injections
For 5-ethynyl-20-deoxyuridine (EdU) injection in ovo, chicken eggs were incubated for 15 days. A single subcutaneous EdU injection

(50 mg/kg) in sterile, phosphate buffered saline, (PBS, pH 7.4) was administered to each embryo. The embryos were further incu-

bated for 5 days and euthanized via decapitation. For EdU injection at posthatch day 7, chickenswere housed for 7 days and received

a single subcutaneous EdU injection (50 mg/kg), as described above. Chickens were euthanized 10 days after EdU injection. Detec-

tion of EdU incorporated in the DNA was achieved using the Click-iT EdU Alexa Fluor Imaging Kit.

In situ Hybridization
Complementary DNA fragments for mRNA encoding CALB2, LOXHD1, POU4F3, SKOR2, SYN3, and TMC2 were PCR-amplified

from chicken basilar papilla cDNA and cloned into pSPT18 or pSPT19 (see Table S1D for details). The resulting plasmids were line-

arized, and antisense digoxigenin-11-UTP (DIG)-labeled single-stranded RNA probes were run-off transcribed with T7 RNA-poly-

merase (SP6/T7 Transcription Kit), precipitated, and suspended in 30 mL water.

In situ hybridization was conducted on 16-mm thick frozen utricle sections along the organ’s coronal axis. DIG-labeled RNA was

diluted 1:100 in 120 mL hybridization buffer consisting of 50% formamide, 10% dextran sulfate, 1 mg/mL yeast RNA, 1x Denhardt’s

solution, 185 mM NaCl, 5.6 mM NaH2PO4, 5 mM Na2HPO4, 5 mM EDTA, and 15 mM Tris, pH 7.5. The DIG-cDNA in hybridization

buffer was heated to 75�C and transferred onto the utricle sections, protected with coverslips, and incubated overnight at 70�C in

a chamber humidified with 50% formamide in 1x saline-sodium citrate (SSC) buffer, which consists of 150 mM NaCl and 15 mM tri-

sodium citrate, pH 7.0. Themicroslides were incubated with 5x SSC at 70�Cuntil coverslips fell off, transferred into pre-heated (70�C)
wash buffer consisting of 50% formamide, 0.1% Tween-20 in 1x SSC. The wash buffer was replaced once after 30 min, followed by

two 15-minutes washes at room temperature in 0.2x SSC, and transfer of the slides into PBS.

The sections were then blocked for 2 hr in PBS containing 0.5% blocking reagent, 5% heat-inactivated goat serum, and 0.1%

Tween-20, followed by overnight incubation at room temperature in blocking solution with 1,500-fold diluted alkaline phospha-

tase-conjugated anti-DIG Fab fragments. After two 30-minutes washes with 0.1% Tween-20 in PBS, and two 15-minutes washes

with PBS, the sections were incubated for 15 min in basic buffer consisting of 0.1% Tween-20 in 100 mM NaCl, 50 mM MgCl2,

and 100 mM Tris at pH 9.5. Alkaline phosphatase activity was detected with nitroblue tetrazolium chloride at 30 mg/mL and

5-bromo-4-chloro-3-indolyl phosphate substrate at 60 mg/mL alkalic buffer overnight at room temperature. The slides were sealed

with coverslips to minimize background oxidative processes.

Immunocytochemistry
For CALB2 protein intensity and stereocilia length measurements, utricles were dissected and processed as previously described

(Krey et al., 2016). For ATP2B2 immunolabeling we observed that the protease XXIV treatment described by Krey and colleagues

resulted in a lack of signal. Thus, we performed ATP2B2, MYO3A and MYO7A protein intensity and stereocilia length measurements

without protease XXIV treatment. For all ATP2B2, MYO3A, MYO7A, FSCN2, NF200, TNNC2, and TECTB whole-mount antibody la-

beling experiments, as well as EdU detection, the otolithic membranes were removed using an eyelash and a gentle fluid stream

generated with a 1 mL syringe and attached 30G 1/2 hypodermic needle. The utricles were fixed overnight with 4% paraformalde-

hyde in PBS, rinsed three times for 15 min in PBS, perforated for 30 min with 1% Triton X-100 in PBS, and blocked for 3-4 h with 1%

BSA, 5% donkey serum, 0.1% Triton X-100 in PBS. Utricles were incubated overnight at 4�C in blocking solution with primary an-

tibodies and Alexa Fluor 488-conjugated phalloidin. The specimens were then washed three times for 15 min at room temperature

with 0.2% Triton X-100 in PBS, incubated for 1-2 h in blocking solution with secondary antibodies, rinsed three times for 15 min in

0.2%Triton X-100 in PBS and three times for 15min in PBS. FluorSave Reagent (Calbiochem) was used tomount 2-3 utricles on glass

slides using a Secure-Seal Spacer (one well, 13 mm diameter, 0.12 mm deep, Invitrogen).

Microscopy and Image Analysis
In situ hybridization images were acquired with an AxioCam HRc and AxioVision software on a Zeiss Axio Imager M1 equipped with

EC PLAN-Neofluar objectives 10x/0.30 numerical aperture (NA) and 20x/0.5 NA. Whole utricles were imaged with a Zeiss LSM 880

Airyscan laser scanning confocal microscope and Zen Black software. A Plan-Apochromat 40x/1.3 NA oil objective was used for

confocal imaging at 2.2x zoom and 0.40 mm z-step interval; Airyscan imaging was done at 1.8x zoom and 0.22 mm z-step interval

settings. Airyscan imaging was used for CALB2 and MYO3A protein intensity and stereocilia length measurements. For each indi-

vidual utricle, identical microscope settings (laser intensity and gain) were used for z stacks of striolar and extrastriolar regions.

For analysis, the z stacks were loaded into Bitplane Imaris 8.4.1 followed by 3D reconstruction, and measurements of protein
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intensities and bundle lengths. 3D projections for individual z stacks were visualized using the ‘Surpass’ tool. For further analysis, we

segmented each z stack (x = 100 mm, y = 100 mm) into five cropped 3D projections with x = 100 mm and y = 20 mm using the ‘Crop3D’

tool. To enable a side view of hair cells with upright hair bundles, the ‘Surpass’ tool was used to rotate each segment. Protein intensity

measurements were conducted with the ‘Spot’ function to automatically detect and locate intensity spots above background per

channel. Parameters were chosen based on pixel intensity threshold, target size, and location (bundle, soma, nucleus) to extract

intensity data points. F-ACTIN and ATP2B2 intensity spot detection was restricted to hair bundles; for MYO7A and CALB2, the apical

region of hair cells was used; MYO3A was measured only at the tips of the tallest stereocilia. To obtain bundle lengths, we measured

the longest stereocilium of each bundle by manually selecting points along the stereocilium with the ‘Measurement Points’ tool. The

spot intensity center values of the target protein and F-ACTIN, as well as the length measurement for each hair cell were exported for

subsequent statistical analysis. All immunolabeling experiments were carried out at least three times.

Scanning Electron Microscopy (SEM)
To prepare E15 and E20 chicken utricles for SEM, embryos were decapitated, the brain was removed, and the head bisected in cold

chicken saline (155mMNaCl, 5 mMKCl, 5 mMD-glucose, and 10mMHEPES pH 7.25) containing 4% formaldehyde (Ted Pella). The

temporal bone was opened to expose utricles to fixative. Samples weremaintained in the formaldehyde overnight at 4�C. A thorough

wash with chicken saline removed the fixative before utricles were dissected from the temporal bone. The sensory epithelium was

exposed and following a 20-minutes incubation with 50 mg/mL protease XXIV (Sigma-Aldrich) in room-temperature chicken saline

and a rinse in ice-cold chick saline, otoconia and otolithic membranes were detached with an eyelash. Utricles were incubated over-

night at 4�C in 2.5% glutaraldehyde (Ted Pella) and 0.1 M sodium cacodylate, pH 7.4 (Electron Microscopy Sciences). Utricles were

further processed for SEM using the osmium-thiocarbohydrazide method (Hunter-Duvar, 1978) with slight modifications: utricles

were incubated in 1% osmium tetroxide (Polysciences) for 45 min, and 20 min in fresh, filtered 1% thiocarbohydrazide (Sigma-Al-

drich), with thorough washes in water in between each step. This sequence was repeated three times. Tissues were dehydrated

with an ethanol series. E20 utricles were critical point dried using liquid CO2 in an EMS 850 critical point dryer (Electron Microscopy

Sciences). For imaging, E20 utricles were glued onto aluminum specimenmounts (ElectronMicroscopy Sciences) with colloidal silver

liquid (Electron Microscopy Sciences), and imaged using a FEI Sirion XL30 FEG field-emission scanning electron microscope oper-

ated at 5 kV. E15 utricles were critical point dried in liquid CO2 in a Leica CPD300. For imaging, E15 utricles were also glued onto

aluminum specimenmounts with colloidal silver liquid, and imaged using an FEI Helios Nanolab 660 DualBeamMicroscope operated

at 1 kV (FEI). High-resolution images were acquired over large areas of E15 utricles using the MAPS Software (FEI), and stitched

together with a 5% overlap.

Analysis of Bundle Length Measurements
To identify extrastriolar hair cell type II bundle growth stages, we fitted a Gaussian mixture model with three components based on

the bundle length distribution of 642 measurements from extrastriolar regions located equidistant from the striola along the central

region of the MES. Mean, standard deviation, and prior of each component were derived by expectation-maximization using the R

package mixtools.

To analyze protein expression as a function of bundle length, we fitted generalized additive models with a single smoothing term

(thin-plate regression spline) with four basis dimensions.

To map pseudotime to bundle length, we aligned CALB2 expression as a function of pseudotime along TrES with CALB2 protein

levels as a function of bundle length from the medial extrastriola using the fitted generalized additive models (zCALB2 and zCALB2). We

observed that transcript and protein dynamics exhibit very similar patterns during bundle maturation. Further, CALB2 could be reli-

ably quantified in the cytoplasm, neglecting the requirement to consider the transport of the protein to the hair bundle in our

alignment. To account for nonlinearity between transcription, translation, and degradation rates, we used asymmetric dynamic pro-

gramming to generate a semi-unconstrained alignment between the reference vector zCALB2=maxðzCALB2Þ and the query vector

zCALB2=maxðzCALB2Þ using the R package dtw. The resulting warp was used to translate pseudotime to bundle length (and vice versa).

To compare gene expression dynamics of TrES, TrES* and TrS as a function of bundle length at the same time, we aligned each

query to the common reference TrES using dynamic timewarping (see above:Differential Trail Analysis) and translated pseudotime to

bundle length, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

P-values were calculated and corrected for multiple testing as indicated in the main text. To analyze how metadata (cell origin and

cellular FM1-43 dye uptake) is distributed in cell clusters (Figure 1G), we compensated for missing label information by imputation

using 1-nearest neighbor classification in the lower-dimensional space.
e12 Cell Reports 23, 2901–2914.e1–e13, June 5, 2018



DATA AND SOFTWARE AVAILABILITY

Data
Processed single-cell qRT-PCR expression data (normalized Log2Ex values) from E15 chicken utricles are reported in Table S1 and

are available with the CellTrails software. A high-resolution version of the SEM data file shown in Figure 1B is available at Mendeley

Data (https://data.mendeley.com/datasets/yy3c72972w/1).

Software
The implementation of the CellTrails algorithm (R package) including its documentation (vignette) is available at http://hellerlab.

stanford.edu/celltrails/
Cell Reports 23, 2901–2914.e1–e13, June 5, 2018 e13
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Figure S1. Specimen Analysis and Raw Data Processing. Related to Figure 1 

(A-C) Utricle cell proliferation. 5-ethynyl-2’-deoxyuridine (EdU) was injected at E15 and utricles were examined at P7 
(A), and EdU was injected at P7 and examined at P17 (B). (A, B) Immunolabeling with antibodies to hair cell marker 
MYO7A and supporting cell marker SOX2; nuclear DNA is labeled with 4,6-diamidino-2-phenylindole (DAPI). (C) 
Quantification of EdU+ cells (per 100x100 µm2 area) in extrastriolar and striolar regions of E15 and P7 chicken utricles. 
Error bars show the 95% confidence interval of the mean; *** Mann-Whitney test P < 10-3. 

(D) Illustration of the FACS gating strategy to filter viable single-cell events. Debris, dead cells, and cell aggregates 
were sequentially excluded (i-v). Indicated are gates and the percentages of filtered cells that propagated for each 
subsequent step from a representative experiment; SSC-A = side scatter area, SSC-W = side scatter width, FSC-A = 
forward scatter area, FSC-H = forward scatter height, and Sytox red, a dye excluded from living cells. 

(E, F) Primer validation. CT values for each primer pair were recorded for a serial two-fold 15-step dilution series of 
bulk RNA (NC = negative control). 185 suitable primer pairs had a linear relation between the generated CT value and 
the log input RNA concentration (R2 > 0.9 and efficiency > 0.9), such as illustrated with the examples of ATOH1, 
CALB2, ATP2B2, and MYO7A; error bars denote ± standard deviation of six replicates. 

(G) Determination of the global limit of detection (LOD). The LOD was set to the 95% quantile of individual detection 
limits of the assayed primer pairs as identified by the dilution series. 

(H) Missingness map. Shown is the pattern of non-detects (white points) of 195,360 measurements. The assay (185 
primer pairs) was conducted on 11 panels, which are composed of two matching 96-well plates quantifying identical 
cells; black points indicate genes for which expression values were determined. 

(I, J) Filtering of 1,008 cells based on the reference gene GAPDH. Red lines denote the inner and outer fence for 48 
outliers (first and third quartile ± 1.5 × interquartile range). 

(K, L) Distribution of Log2Ex transformed and normalized CT values. Boxplots show similar Log2Ex value 
distributions (without non-detects) for each single panel. Histogram indicates a high frequency of non-detects in the data 
set. 

(M) Relation between the probability of a primer producing non-detects and the mean normalized expression intensity 
(without non-detects) of the corresponding gene. Genes producing a higher number of transcripts have a lower 
probability for drop-outs. 

(N) Hierarchical clustering of single cells colorized by individual panels suggests no significant batch effects. 

  



 3 

 

Figure S2. Gene Marker Detection. Related to Figure 1 

(A) Post hoc analysis. The table represents the last iteration of the post hoc analysis generating the final set of states. It 
lists the number of genes significantly higher expressed in one state (row) compared to its neighbors (siblings) in the 
cluster dendrogram (column). For example, the closest neighbor to state a is state b in the cluster dendrogram. We 
found 23 differentially expressed genes (DEG) between both states, whereas state a has 7 genes significantly higher 
expressed compared to state b, and state b has 16 higher expressed genes than state a. As a consequence, states a and b 
were not joined and determined as distinct states. 

(B-L) Multiple differential gene expression analysis. One state was compared to all other states simultaneously. Shown 
are the differential expression score (DE), specificity and Monte Carlo p of each gene for each state. Up-regulated genes 
are defined by DE > 0.5 and specificity > 0; specific state markers (red dots) have further specificity of 1 and p < 10-3. 
As GAPDH was used for normalization, it has, as expected, DE = 0, specificity = -1 and P = 1 in all states. 
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Figure S3. Overview of Single-cell Protein Measurements. Related to Figures 4-6 

(A-E) Immunolabeling of chicken E15 utricles. Nuclei were labeled with DAPI, stereocilia were visualized with 
phalloidin (F-ACTIN), kinocilia were labeled with antibodies to acetylated α-tubulin (ACETYL-a-TUBULIN), and 
supporting cells and type II hair cells were labeled with antibodies to SOX2. Images at different focal planes were 
recorded from the striola and medial extrastriolar regions as indicated (i-i’’’). Entire volumes were rendered (z-stacks), 
which enabled the analysis of x-y projections (ii-ii’’, iv-iv’’) and x-z projections (iii-iii’, v-v’); asterisks highlight nuclei 
of SOX2– maturing/mature type I hair cells. FSCN2 protein expression was not quantified. The arrowheads in A and B 
point to the same hair bundles that are labeled in Figure 4E and I. 

(F) E15 utricles were immunolabeled with antibodies to the neural marker Neurofilament 200 kDa (NF200) and with 
antibodies to SOX2. DAPI was used to visualize nuclei. The E15 striolar epithelium harbors mature type I hair cells 
with calyx type terminals. Medial extrastriolar regions and the striola harbor mature type II hair cells, which are 
innervated by boutons. 
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Figure S4. Striolar ATP2B2 Expression and Inter-Type II Hair Cell Comparison. Related to Figure 4 

(A) ATP2B2 expression of TrS. Cells are colorized by cluster (d-h), the fitted expression dynamic is shown in red; upper 
panel shows the corresponding ATOH1 expression. 

(B) ATP2B2 expression in the striola of E15 utricles. Quantification of ATP2B2 protein intensity along with bundle 
length measurements confirms up-regulation in developing type I hair cells (n = 61); lack of SOX2 expression confirms 
type I hair cell identity. 

(C) ATP2B2 expression in short (blue), medium (green), and long (yellow) hair bundles. 

(D) Venn diagram of gene sets with increased expression at the mature extrastriolar states. For example, ATP2B2 is 
significantly higher expressed (Log2Ex fold-change > 2.5, Peto-Peto test P < 10-3) at the terminal end state of TrES than 
TrES*, but not compared to TrS. 

(E) Distributions of pseudotemporal cell distances in TrES. Shown are the boxplots of absolute differences between 
adjacent cells (pseudotime delta) within each state. The red arrow indicates a reasonable gap (strong outlier) along TrES 
in cluster i, indicating that this mature hair cell cluster may contain two sub-clusters. Whiskers extend to 1.5 times the 
interquartile range. 

(F) Spectral embedding of embryonic and posthatch cells. The manifold was predicted to unfold in an 11-dimensional 
latent space (eigenspace). To visualize a two-dimensional approximation of the manifold, t-distributed stochastic 



 7 

neighbor embedding (tSNE) was used. The branching trajectory structure is similar to E15 (TrS, TrES). Posthatch hair 
cells, shown as points colorized by ATP2B2 expression intensity, aggregate at the terminal ends of the trajectory. 
Embryonic cells are shown as grey circles. Mature extrastriolar cells with higher and lower ATP2B2 levels (TrES*) can 
be observed. Cells that were found unrelated to the trajectory (isolated clusters) are indicated by grey crosses; E15 
outliers correspond to state c, posthatch outliers were found to be compromised hair cells based on distinct and 
significant upregulation (6.2-fold, Wilcoxon rank sum test P < 5×10-38) of SH3GLB2 encoding endophilin 2, a protein 
that promotes mitophagy (Wang et al., 2016). 
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Figure S5. Transcript and Protein Expression of MYO3A and MYO7A. Related to Figure 6 

(A-K) CellTrails maps and expression profiles of MYO3A and MYO7A. Immunolabeling qualitatively and quantitatively 
validated the inferred dynamics in hair cells from medial extrastriolar regions and hair cells from the striola (n = 66 
MYO3A, nMES = 83 MYO7A, nstriola = 44 MYO7A measurements). Young hair cells with short bundles, irrespective of 
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future type, exhibit strong immunoreactivity for SOX2, which becomes downregulated in maturing type I hair cells (C, 
K). Arrows in immunolabeling images (D, I, J) indicate different bundle lengths (blue = short, green = medium, yellow 
= long). 

(L-Q) For each single-cell target protein quantification (ATP2B2, CALB2, MYO7A, MYO3A), the corresponding F-
ACTIN staining intensity was measured. The high positive correlation between bundle lengths and F-ACTIN levels 
indicates that unbiased and representative samples were obtained. 
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Figure S6. Use of Alternative Algorithms. Related to Figure 6 

(A-D) Lower-dimensional representation of 1,008 cells computed by SLICER, DPT, SCUBA, and Monocle (version 2 
with DDRTree). Shown are the states assigned by each algorithm, expression of the supporting cell marker TECTA and 
hair cell marker MYO7A (used to determine the directionality of the trajectory), FM1-43 dye labeling, and inferred 
pseudotime. All algorithms correctly order mature cells (FM1-43 high) at the terminal end or ends. 

(E) Monocle predicts six differentiation endpoints, resulting in six different trails (sequence of states is concordant to 
(D)). The heatmaps show the expression dynamics of genes that are fully validated markers of striolar and extrastriolar 
hair cell development and were selected according to Figure 6A; heatmaps are scaled per gene and across trails. 
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Figure S7. Framework Assessment. Related to Figure 2 

(A, B) Robustness analysis of spectral dimensionality reduction methods. Three noise levels were generated by 
sampling genes, shuffling the corresponding expression vectors, and by adding the permuted data to the original 
expression matrix, or by adding various degrees of Gaussian noise to the whole expression matrix (left panels). The 
absolute mean rank correlation between the top 10 reduced dimensions of the original data and the top 10 reduced 
dimensions of the data with a certain noise level was computed (right panels). The spectral embedding presented in this 
study shows significant higher robustness than diffusion maps, which were recently adapted for single-cell data 
analysis, and to the broadly used principal component analysis; n = 100 repeats per noise level; *** Wilcoxon rank sum 
test P < 10-28. 

(C) Visualization of the lower-dimensional manifolds derived by spectral methods. The intrinsic dimensionality was 
determined using the total eigengap (middle panels). The respective lower-dimensional manifolds were approximated 
and plotted in two-dimensions using tSNE (right panels); cells with high marker expression are indicated. Spectral 
embedding and diffusion maps show a branching trajectory towards striolar and extrastriolar hair cells; diffusion maps 
missed to identify the hair cell subtype (with higher levels of ATP2B2) at the terminal end in the extrastriolar branch. 
The left panel shows gene expression information for markers that were validated biologically in our study. 

(D, E) Data was simulated for a trajectory with 5 states (D) as well as a trajectory with 4 states (E). In both examples, 
minimizing the total centroid distance failed to identify the correct trajectory structure, while maximizing the total 
interface cardinality (i.e., the number of neighboring cells between states) succeeded.  

(F-K) CellTrails analysis of other datasets. (F, I) The left panels show the schematic of expected development 
hierarchies (Guo et al., 2010; Moignard et al., 2013). For each dataset the cell identity was annotated in the respective 
study (e.g., by FACS), but the age was latent. (G, J) CellTrails identified 5 and 8 trajectory states for hematopoiesis and 
embryogenesis, respectively. Pie charts represent the distribution of metadata per state; states were connected according 
to the predicted trajectory. CellTrails correctly reconstructs the branching linages and reveals lineage-specific 
expression dynamics of marker genes (H, K). For example, CellTrails maps delineate the mutual inhibitory expression 
pattern of the transcription factors Gata1 and PU.1 inducing hematopoietic progenitor linage commitment, as well as 
reveal continuous Gata2 expression during PreMegE maturation and loss of Gata2 expression during differentiation of 
LMPP-derived cell types; LT-HSC = long-term hematopoietic stem cell, PreMegE = pre-megakaryocyte erythroid, 
LMPP = lymphoid-primed multi-potent progenitor, GMP = granulocyte-monocyte progenitor, CLP = common 
lymphoid progenitor. 
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