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Defects on both sides of the point contact

If we include scattering over defects present both before (left) and after (right) the point

contact, the expression for the transmission T (E, V ) will be:

T (E, V ) = T0+
Nr∑
p=0

ap sin

(
2Lp

√
2m(E + eV/2)

h̄
+ φp

)
+

Nl∑
q=0

Aq sin

(
2Lq

√
2m(E − eV/2)

h̄
+ Φq

)
(1)

Where Nl and Nr are the numbers of defects on the left and right of the point contact,

respectively. As long as eV � EF the sine terms in the summation for the left and right

defects have the same dependence on V, so a defect sitting on the left will give the same

frequency dependence (within a constant phase factor) as a defect at the same radial distance

on the right. So, in our model, we used the expression with defects sitting only on one side

of the point contact. Depending on whether defects sit on the left or right side of the point
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contact, the di�erential conductance depends only on the either TH or TL, as demonstrated

in the main text. When a generalised expression for transmission as given above is used,

with defects sitting on both the sides, then the di�erential conductance depends on both TH

and TL.

Noise derivative comparison
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Figure S1: Comparison of the numerical derivative of the experimental noise data and dSI/dV
derived from the quantum interference model described in the main text for (a) Ex1, (b) Ex2
and(c) Ex3 discussed in the main text. The curves are o�set for clarity.
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Two-channel �t

We will include here a second constant transmission channel to our model described in main

text to explain the nonlinear shot noise data shown in Figure 3. The transmission value for

this second channel is extracted from the experimental dataset. For this we need to solve a

set of equations for the low bias noise and di�erential conductance:

SI = 4
e3

h
V [T1(1− T1) + T2(1− T2)] (2)

Next, one can input T2 in terms of T1 using Landauer's conductance formula i. e. T2 =

G0 − T1, here G0 = G(0V ). This gives:

SI

V
= 4

e3

h
[T1(1− T1) + (G0 − T1)(1−G0 + T1)] (3)

In the above equation the left hand side is the slope of measured experimental noise close

to zero bias. This can be obtained from experiment. Thus we are left with a quadratic

equation in T1. On solving this we can get the zero bias transmission for the two channels

involved in transport i. e. T1 and T2.

However, we don't know how the transmission of two channels will evolve at higher bias.

Therefore, we make an assumption that the second channel transmission remains constant

at all bias and the �rst channel transmission is responsible for the measured di�erential

conductance shifted down by a value equal to the transmission of second channel. This

constant transmission assumption adds to the noise calculated by the model, but it smooths

out the non-linearity as shown in Figure S2. The reduced non-linearity obtained by adding

a constant second channel demonstrates that the assumption of this second channel being

constant is likely invalid. Also qualitatively we can see that the non-linearities would be

enhance when the second channel transmission decreases at high bias, as suggested by the

calculations by Brandbyge et al. [1]

Making the complementary assumption (i. e. constant large transmittance �rst channel
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and taking the non-linearity originating only from the smaller transmittance second channel)

will give the same result. The way we can see this is through equation 4 in main text. This

equation is for a single channel transmission. In a two channel case where one channel is

constant, the same equation can be used with the T0 term now incorporates constant part

of both the channels while the sine terms in the summation provide together the non-linear

part. Now, irrespective of whether we assign this non-linear part to �rst or second channel,

we will get the same result for noise. However, it is important to keep in mind that the

transmission of both channels should lie in the range [0,1].
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Figure S2: Two channel �t after assuming a constant transmission contribution from the second
channel for (a) Ex1, (b) Ex2 and(c) Ex3. The points for which the noise spectra show non-white
character are shown with �lled circles.
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