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Supporting Information 

S1. Derivations of Plane- and Evanescent-Wave Optical Chirality Density 

The optical chirality density, 𝜒 =  
1

2
[𝐃 ∙ (𝛁 × 𝐄) + 𝐁 ∙ (𝛁 × 𝐇)], is directly proportional to the 

asymmetry in the excitation rate of a chiral molecule, where E, D, H, and B are the time-dependent 

electric and magnetic fields.1 In its time-averaged form, 𝜒 becomes: 

 𝜒̅ = −
𝜔

2
Im(𝓓∗ ∙ 𝓑), (S1) 

where 𝓓 and 𝓑 are the complex field amplitudes and 𝜔 is the angular frequency. We first derive 

the optical chirality density for a z-propagating plane wave with phase shift 𝜓, complex electric 

field amplitude 𝓔(r) = ℰ0𝑒
𝑖𝒌∙𝒓(𝑎, ei𝜓𝑏, 0)𝑇, wavenumber 𝑘 = |𝒌| = √𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2, vacuum 

permittivity 𝜀0, and |𝑎|2 + |𝑏|2 =  1. The spatial coordinate is denoted by r. From Maxwell’s 

equations, the corresponding complex magnetic field amplitude is 𝓗(r) =

𝑘

𝜇0𝜔
ℰ0𝑒

𝑖𝒌∙𝒓(−ei𝜓𝑏, 𝑎, 0)𝑇. Inserting this into eq S1 yields: 
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 𝜒̅𝑃𝑊 = 𝑎𝑏𝜀0𝑘|ℰ0|
2 sin(𝜓). (S2) 

Equation S2 reaches its extrema at 𝜒̅𝐶𝑃𝐿 = ±(𝜀0𝑘|ℰ0|
2)/2 for circularly polarized light with 𝑎 =

 𝑏 =  
√2

2
 and 𝜓 =

(2𝑛+1)𝜋

2
 for integers n. 

Next, we derive the optical chirality density for a z-decaying evanescent wave with 

𝓔(r) = (ℰ𝑥 , ℰ𝑦 , ℰ𝑧)
𝑇𝑒±𝑖𝒌∙𝒓 and 𝑘𝑥

2 + 𝑘𝑦
2 > 𝑘2. From Maxwell’s equations, the corresponding 

complex magnetic field amplitude is:  

 𝓗(𝐫) =  
−𝑖𝑒±𝑖𝒌∙𝒓

𝜇0𝜔
(

𝑖𝑘𝑦ℰ𝑧 + 𝑘𝑧ℰ𝑦
−𝑘𝑧ℰ𝑥 − 𝑖𝑘𝑥ℰ𝑧
𝑖𝑘𝑥ℰ𝑦 − 𝑖𝑘𝑦ℰ𝑥

). (S3) 

Using Euler’s formula, we write the complex electric field amplitude as: 𝓔(r) = 

(|ℰ𝑥|𝑒
𝑖𝜓𝑥 , |ℰ𝑦|𝑒

𝑖𝜓𝑦 , |ℰ𝑧|𝑒
𝑖𝜓𝑧)𝑇𝑒±𝑖𝒌∙𝒓, where 𝜓𝑚 is the phase shift along the m-axis with 

𝑚 𝜖 [𝑥, 𝑦, 𝑧]. Inserting this into eq S1 yields: 

 𝜒̅𝑒𝑣 = ±𝜀0|ℰ𝑧|(|ℰ𝑥|𝑘𝑦 sin(𝜑𝑥 −𝜑𝑧) − |ℰ𝑦|𝑘𝑥sin (𝜑𝑦 −𝜑𝑧)). (S4) 

Equation S4 reaches its extrema for one of two cases:  

 {
(𝑖)   𝜑𝑥 −𝜑𝑧 = 

(4𝑛+1)𝜋

2
  and  𝜑𝑦 −𝜑𝑧 = 

(4𝑛+3)𝜋

2

(𝑖𝑖)   𝜑𝑥 − 𝜑𝑧 = 
(4𝑛+3)𝜋

2
  and  𝜑𝑦 − 𝜑𝑧 =  

(4𝑛+1)𝜋

2

 (S5) 

for integers n. This results in the maximum optical chirality density: 

 𝜒̅𝑚𝑎𝑥,𝑒𝑣 = ±𝜀0|ℰ𝑧|(|ℰ𝑥|𝑘𝑦 + |ℰ𝑦|𝑘𝑥), (S6) 

which can exceed 𝜒̅CPL as kx and ky are theoretically unlimited for evanescent waves. 
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S2. Conservation Law of Optical Chirality in Lossy, Dispersive Media 

Optical chirality follows a conservation law analogous to Poynting’s theorem.1,2 For systems 

where light interacts with matter, the conservation law of optical chirality in lossy, dispersive 

media was previously introduced3 and the results are summarized in this section. 

In source-free systems for time-harmonic fields, the conservation law of optical chirality in 

lossy, dispersive media is written as: 

 −2𝜔∫ Im(𝜒𝑒 − 𝜒𝑚)d
3x + ∫ Re(𝓕 ⋅ 𝐧)d2x = 0

𝑆𝑉
, (S7) 

where the first term represents optical chirality dissipation and the second optical chirality flux, 

and 𝓔 and 𝓗 are complex field amplitudes. For the optical chirality dissipation, Im(𝜒𝑒 − 𝜒𝑚) =

1

8
[−∇𝜖′ ⋅ Im(𝓔 × 𝓔∗) − ∇𝜇′ ⋅ Im(𝓗 ×𝓗∗)] + 

1

4
𝜔(𝜖′𝜇′′ + 𝜖′′𝜇′)Im(𝓔∗ ∙ 𝓗), where in 

piecewise homogeneous, isotropic media, the first term is non-zero at interfaces.3,4 

The optical chirality flux is defined as 𝓕 =
1

4
[𝓔 × (∇ ×𝓗∗) −𝓗∗ × (∇ × 𝓔)], with 𝜖 =  𝜖′ +

i𝜖′′ as the complex electric permittivity and 𝜇 = 𝜇′ + i𝜇′′ as the complex magnetic permeability. 

In the far field, where our measurement takes place, 𝓕 can be approximated as the weighted 

superposition of left- and right-handed circularly polarized plane waves.5 Thus, the far-field (FF) 

optical chirality flux becomes: 𝓕𝑭𝑭 = |𝑙|
2𝓕𝑳𝑪𝑷𝑳 + |𝑟|

2𝓕𝑹𝑪𝑷𝑳, where 𝓕𝑳𝑪𝑷𝑳 and 𝓕𝑹𝑪𝑷𝑳 are the 

optical chirality flux of a left- (LCPL) and right-handed (RCPL) circularly polarized plane wave 

with weighting factors l and r for left- and right-handed circular polarization respectively. Thus, 

𝓕 becomes directly proportional to the third Stokes parameter:3 

 𝓕𝑭𝑭 = 
𝜔

𝑐
(|𝑙|2𝓢𝑳𝑪𝑷𝑳 − |𝑟|

2𝓢𝑹𝑪𝑷𝑳), (S8) 
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where 𝓢 is the Poynting vector. 

S3. Derivation of Dipolar Chiral Antenna Parameters 

The analytical calculations which model our system are based on the general model of a chiral 

dipole with electric- and magnetic-dipole moments 𝐩,𝐦, respectively, and polarizability tensor 

𝛂:6,7 

 (
𝐩
𝐦
) = (

αe iαc
−iαc

T αh
) (
𝓔
𝓗
), (S9) 

where αe, the electric polarizability, is dominant and αh, the magnetic polarizability, is negligible 

for the optical response studied here.8 Chiroptical properties are attributed to αc, the  

magnetoelectric polarizability.9 Because here we study 2D chiral coupled metallic nanoantennas, 

αc is induced by the coupling between the nanoantennas leading to 𝐦 ≈ 0. Using subscripts “inc” 

and “scat” for incident and scattered fields, respectively, we represent a chiral metallic 

nanoantenna in the quasi-static electric-dipole limit with 𝐩 =  αe𝓔𝐢𝐧𝐜 + iαc𝓗𝐢𝐧𝐜. Assuming an 

incident x-polarized plane wave propagating in +z with 𝑘 = 𝑘𝑧 (axes as in Figure 1 of the main 

text), the complex field amplitudes are  

 𝓔𝒊𝒏𝒄 =  ℰ0e
i𝑘𝑧(1,0,0), (S10) 

 𝓔𝒅 =  𝓔𝒊𝒏𝒄 + 𝓔𝒔𝒄𝒂𝒕 = (4 𝜋𝜖0𝑟
3)−1[3𝐧(𝐧 ∙ 𝐩) − 𝐩], (S11) 

and 𝓗𝐝 ≈ 𝓗𝐢𝐧𝐜. Resembling the nanorod dimer system studied here, 𝐧 = [0,0,1]T is chosen as 

the unit vector along the direction of propagation. 
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S3a. Dipolar Chirality Flux Efficiency 

To derive the expression for 𝜂ℱ̅,𝑑 in the main text (eq 9), we determine the optical chirality flux 

𝓕 =
1

4
[𝓔 × (∇ ×𝓗∗) −𝓗∗ × (∇ × 𝓔)] for the dipolar field quantities 𝓔𝒅 and 𝓗𝐝 defined above: 

 𝓕𝒅 =
3

16

𝑘|ℰ0|
2

𝜋

1

𝜖0𝜇0𝜔
 

(

 
 
 

𝑟𝑐𝑜𝑠𝜃

(𝑟2+𝜁2)
5
2 

(−𝛼𝑐
𝑖𝑘

𝜇0𝜔
𝑐𝑜𝑠𝜃 + 𝛼𝑒𝑠𝑖𝑛𝜃) 

𝑟𝑠𝑖𝑛𝜃

(𝑟2+𝜁2)
5
2  

(𝛼𝑐
𝑖𝑘

𝜇0𝜔
𝑐𝑜𝑠𝜃 − 𝛼𝑒𝑠𝑖𝑛𝜃)

−𝜁+𝑖𝑘(𝑟2+𝜁2)

(𝑟2+𝜁2)5/2
𝛼𝑐

𝑖𝑘

𝜇0𝜔 )

 
 
 

, (S12) 

where (𝑟, 𝜃, 𝜁) are the radial, polar, and longitudinal cylindrical coordinates. The flux integral 

ℱ̅𝑑 =  ∫ Re(𝓕𝒅 ⋅ 𝐧)d
2x

𝑆
 across the longitudinal cylindrical plane at 𝜁 (in the forward direction, 

𝐧 = [0,0,1]T), comparable to our measurement, then results in: 

 ℱ̅𝑑 =
3

16

|ℰ0|
2

𝜋

𝑘2

𝜖0𝜇0
2𝜔2
 
𝜃

3
[−

𝜁

(𝑟2+𝜁2)
3
2

Im(𝛼𝑐) +
3𝑘

(𝑟2+𝜁2)
1
2

Re(𝛼𝑐)], (S13) 

where the first term in eq S13 (∝
1

𝜁2
) becomes negligible for large 𝜁 in the far field.  

After inserting integration boundaries for 𝜃 𝜖 [0,2𝜋] we obtain: 

 ℱ̅𝑑 ≈ Re(𝛼𝑐)
3

8

𝜔

𝜇0𝑐

|ℰ0|
2

√𝑟2+𝜁2
 (S14) 

which leads to the expression for 𝜂ℱ̅,𝑑 in eq 9 of the main text, since 𝜂ℱ̅,𝑑 ≔ 
𝑐

𝜔𝑃𝑡𝑜𝑡
ℱ̅𝑑. 

S3b. Dipolar Chiral Antenna Aperture 

We now derive the expression for 𝜎𝑋̅,𝑑 (eq 10 in the main text). For a point dipole at the origin 

0, the optical chirality dissipation can be written as: 
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 𝛸̅ =  2𝜔∫ Im(𝜒𝑒 − 𝜒𝑚)𝛿(𝒙)d
3x

𝑉
 (S15) 

where 𝛿(𝒙) is the Dirac delta function. In the limit of a point dipole, the first term on the right-

hand side of eq 8 in the main text becomes negligible for the spatially constant material functions 

studied here. Therefore, we have: 

 Im(𝜒𝑒 − 𝜒𝑚) =  
1

4
𝜔(𝜖′𝜇′′ + 𝜖′′𝜇′)Im(𝓔𝐝,𝐢𝐧

∗ ∙ 𝓗𝐝,𝐢𝐧), (S16) 

where 𝓔𝐝,𝐢𝐧 and 𝓗𝐝,𝐢𝐧 are the fields inside the dipole.  The dipole moment causes a polarization 

field 𝓟 = αe𝓔𝐢𝐧𝐜 + iαc𝓗𝐢𝐧𝐜, where “inc” denotes the incident fields. This leads to an electric field 

within the dipole described by: 𝓔𝐝,𝐢𝐧 =
𝓟

(𝜖′+𝑖𝜖′′− 𝜖0)
 . Further, the magnetic field remains 

𝓗𝐝,𝐢𝐧 ≈  𝓗𝐢𝐧𝐜 and we can set 𝜇′′ = 0. Thus, we obtain: 

 𝑋̅𝑑 = −[(𝜖
′ − 𝜖0)Re(𝛼𝑐) + 𝜖

′′𝐼𝑚(𝛼𝑐)]
1

2

𝜖′′𝜇′

𝜇0
2

1

(𝜖′−𝜖0)2+𝜖′′
2 𝑘

2|ℰ0|
2  (S17) 

The second term of eq S17 becomes negligible, as 𝜖′′ ≪ 𝜖′ for metals such as silver studied here,10 

leading to: 𝑋̅𝑑 ≈ −Re(𝛼𝑐)
1

2

𝜖′′𝜇′

𝜇0
2

(𝜖′−𝜖0)

(𝜖′−𝜖0)2+𝜖′′
2 𝑘

2|ℰ0|
2. This results in eq 10 in the main text, since 

𝜎𝛸̅𝑑 ≔ 
𝛸̅𝑑

𝑝𝑖𝑛𝑐
. 

S3c. Dipolar Optical Chirality Density 

Finally, we derive the expression for 𝜒̅𝑑 (eq 11 in the main text), which was obtained by 

inserting the dipolar fields into eq. S1, in free space surrounding the dipole. Because 

 𝓔𝐝
∗ ∙ 𝓗𝒅 = 

𝑘2|ℰ0|
2

4 𝜋𝑟3𝜀0𝜇0
2𝜔2
𝑖𝛼𝑐
∗, (S18) 

we obtain the expression for 𝜒̅𝑑 given in eq 11 in the main text from 𝜒̅𝑑 = −
𝜔

2
𝜀0𝜇0Im(𝓔𝐝

∗ ∙ 𝓗𝒅). 
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S4. Sample Fabrication and Characterization 

For sample fabrication, Si(100) wafer pieces of 2 ×  2 cm size with a 150-nm-thick Si3N4 low-

pressure chemical vapor deposition mask were patterned. After ultrasonic cleaning in acetone and 

isopropanol, the substrates were pre-baked for 10 min at 180 °C. Next, ~280 nm of electron-beam 

resist (Allresist, CSAR 62 AR-P6200) were spin-cast onto each wafer (2000 r.p.m., 60 s), which 

was subsequently post-baked (180 °C, 5 min). The substrates were then exposed with an electron-

beam lithography system (Vistec, EBPG5200) and the resist was subsequently developed 

(Allresist, AR 600-546). The Si3N4 mask was then etched with reactive-ion etching for 8 min 

(Oxford Instruments, 55 mTorr, 100 W RF, 50 sccm CHF3, 5 sccm O2), after which the remaining 

resist was removed with NMP (Sigma-Aldrich, n-methyl-2-pyrrolidone, 90 min, 130 °C). 

The structured wafer was functionalized with a self-assembled monolayer of 

octadecyltrichlorosilane to decrease adhesion, as previously reported.11 50 nm of Ag was then 

deposited by thermal evaporation (Kurt J. Lesker, Nano36) at 25 Å/s. The Si3N4 mask creates a 

step-edge allowing selective removal of the undesired flat metal with adhsesive tape.12 Next, the 

Ag nanostructures were extracted onto a glass microscope slide by template stripping13 with 

ultraviolet-light-curable epoxy (Norland 88). The final sample consists of arrays of Ag nanorod 

antennas on a transparent substrate of glass and epoxy. 

Figure S1a,c shows scanning electron micrographs (SEMs) of the right-handed nanorod dimers 

(R-NRDs, a) and left-handed nanorod dimers (L-NRDs, c) studied here, with a 400 nm scale bar. 

For SEM imaging, the flat Ag was not removed from the samples, allowing for a conductive 

substrate to avoid charging and contamination effects in the electron microscope images. 
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Figure S1b,d shows extinction spectra of the samples taken on an inverted optical microscope 

(Ti-U, Nikon) with x-polarized excitation. The microscope employed an excitation objective 

(20 ×, 0.45 numerical aperture, NA) and a collection objective (10 ×, 0.3 NA). 

S5. Chirality Flux Efficiency Experimental Data Analysis 

With the experimental setup shown in Figure 2d in the main text, 𝜂ℱ̅ is detected by extracting 

the RMS (root mean square) voltage (𝑉𝑅𝑀𝑆) and phase 𝜑 from the lock-in amplifier with Labview 

at each wavelength. As 𝜂ℱ̅ is directly proportional to the 3rd Stokes parameter (𝑆3) in the far field 

(see eq S8), the desired information is obtained from the measurement with:14 

 
S3

𝑆0
=  

√2VRMS(50 kHz)

𝐽1[𝜑(50 kHz)]S0
, (S19) 

where 𝐽1 is the 1st order Bessel function and 𝑆0 is the 0th Stokes parameter. Because this system 

detects a fully polarized beam, we define 𝑆0 as the total intensity of modulated light at 50 kHz 

(circularly polarized) and 100 kHz (linearly polarized) with  

 𝑆0 =  √2[𝑉𝑅𝑀𝑆(50 kHz) + 𝑉𝑅𝑀𝑆(100 kHz)]. (S20) 

This leads to: 

 
ℱ̅

𝑆0
= 

VRMS(50 kHz)

 𝐽1[𝜑(50 kHz)][𝑉𝑅𝑀𝑆(50 kHz)+𝑉𝑅𝑀𝑆(100 kHz)]

𝜔

𝑐
. (S21) 

To compare spectra of samples with different lattice constants, we normalize eq S21 with the 

maximum value in each sample’s extinction spectrum. The extinction is measured as described in 

Section S4 above. 𝑃𝑒,𝑚𝑎𝑥,𝑛𝑜𝑟𝑚 is flat-field normalized power (unit 1) resulting in the experimental 

expression for 𝜂ℱ̅: 
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 𝜂ℱ,̅𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 
VRMS(50 kHz)

 𝐽1[𝜑(50 kHz)][𝑉𝑅𝑀𝑆(50 𝑘𝐻𝑧)+𝑉𝑅𝑀𝑆(100 𝑘𝐻𝑧)]

1

𝑃𝑒,𝑚𝑎𝑥,𝑛𝑜𝑟𝑚
, (S22) 

where the corresponding background 𝜂ℱ̅ signal collected from the sample-free substrate is 

subtracted from the expression in eq S22. The background signal arises from minimal residual 

birefringence in the optics and is below 1-2% of the incident light. The spectra were recorded with 

3-nm spectral resolution. 

S6. Circular Dichroism 

Circular dichroism (CD) spectra were measured by altering our home-built setup as shown in 

Figure S2a. For CD measurements, the photoelastic modulator (PEM, Hinds Instruments I/FS50) 

was placed before the sample, which leads to alternating excitation with R- and L-CPL in a 50 kHz 

cycle. Unlike in the 𝜂ℱ̅ measurement, which analyzes the degree of circular polarization scattered 

by the sample, in the CD measurement the photomultiplier tube (PMT, Hamamatsu R928) 

measures the total intensity of the outgoing beam, which is locked into the modulation frequency 

of the excitation beam. 

The inset of Figure S2a shows the principle of CD. As a chiral sample exhibits a different 

extinction for R- and L-CPL excitation, the intensity of light reaching the detector will vary in 

amplitude based on the excitation polarization. When this periodic amplitude modulation locks 

into the PEM electronic signal, the resulting RMS voltage corresponds to the differential extinction 

upon R- and L-CPL excitation. In other words, as the inset shows, the outgoing beam in a CD 

measurement is elliptical when averaged over a 50 kHz modulation cycle. 

The spectral CD data were extracted from the lock-in amplifier with Labview as a root mean 

square voltage (VRMS) and phase 𝜑, representing the retardation of the modulation in a 50 kHz 

cycle, and normalized by the direct-current (DC) voltage recorded at 0 kHz. This results in: 
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 𝐶𝐷 = 
𝑉𝑅𝑀𝑆(50 kHz)sin [𝜑(50 kHz)]

𝑉𝐷𝐶
, (S23) 

where the corresponding background CD signal, obtained from the sample-free substrate, is 

subtracted from eq S23. 

Figure S2b,c shows the CD spectra of all the R-NRDs (b) and L-NRDs (c) studied here. While 

CD spectroscopy yields mirror-symmetric spectra for NRDs of opposite handedness, the 

relationship to chiral evanescent fields cannot be drawn, unlike for 𝜂ℱ̅. Particularly, a comparison 

of the CD spectra of varying h does not show the monotonic behavior seen for 𝜂ℱ̅, which is directly 

related to the magnetoelectric polarizability and the chiral near fields. 

S7. Achiral Control Samples 

Several achiral control samples were measured to test our technique. Figure S3a-c shows 

scanning-electron micrographs for (a) single nanorods, (b) achiral NRDs with h = 60 nm, and (c) 

achiral NRDs with h = 80 nm. The scale bar is 400 nm. 

Figure S3d,e shows the 𝜂ℱ̅ and CD spectra for the studied achiral control samples, where the 

vertical-axis scaling corresponds to that in the main text. As expected, the 𝜂ℱ̅ and CD signals are 

negligible. Particularly, the small signals in the 𝜂ℱ̅ spectra verify that no linear birefringence occurs 

due to our excitation with x-polarized light (axes as in Figure 1 in the main text). The extinction 

spectra of the control samples are shown in Figure S3f. The maxima of these spectra are used for 

normalization purposes to compare 𝜂ℱ̅ of different samples. 

Finally, Figure S3g shows numerical colormaps of the optical chirality enhancement 

(𝜒̅/|𝜒̅𝐶𝑃𝐿|) for achiral NRDs with h = 60 nm (z = 0 plane, NRD center) for various wavelengths 



 11 

(𝜆). These maps show equal quantities of positive and negative 𝜒̅/|𝜒̅𝐶𝑃𝐿|. Particularly, the achiral 

coupling does not induce chiral evanescent fields. 

S8. Finite-Element Simulations 

The numerical computations performed in this work were conducted by the finite-element 

solver COMSOL Multiphysics 5.2 resulting in time-harmonic, electromagnetic near fields 

governed by Maxwell’s equations. Data from Johnson and Christy10 were used for the optical 

material constants of the studied Ag nanostructures. The nanostructures were placed on a dielectric 

substrate (refractive index nsubstrate = 1.3) occupying the entire half space below the nanoantenna, 

with air (nair = 1) occupying the half space above. As the experimental substrate includes a thin 

air-epoxy layer immediately below the Ag nanoantennas (see Section S4 for sample fabrication), 

nsubstrate is set as an effective refractive index slightly below that of silica glass. Linearly polarized 

plane-wave excitation (x-polarization propagating in +z, axes as in Figure 1 in the main text) was 

performed from a port at the lower domain boundary (z = -2250 nm plane). 

The computational domain was defined with periodic boundary conditions in x and y (Floquet 

periodicity) to replicate the experimentally studied nanoantenna array. As the edge-to-edge 

distance between outer NRD edges was chosen at 600 nm, the horizontal lattice constant increases 

with increasing h (horizontal nanorod spacing). In the ±𝑧 direction the computational domain is 

2250 nm in length, and is bounded by a perfectly matched layer (PML). First, the background 

fields were computed for a plane wave incident on the substrate (i.e. the Ag nanoantenna was 

omitted). Next, the scattered fields were obtained by subtracting the background fields from full-

field calculations with the Ag nanoantenna. 
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Far-field spectral data were extracted with 10 nm resolution by surface integration of the x-y 

plane at z = 2050 nm in COMSOL 5.2. Evaluation at different z-values showed convergence to the 

far field at the chosen z-plane with <4% relative numerical error in the relevant wavelength range. 

The computational 𝜂ℱ̅ values were obtained with the formula: 

 𝜂ℱ,̅ 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 =
∬𝑖(ℰ𝑥ℰ𝑦

∗−ℰ𝑦ℰ𝑥
∗)𝑛𝑧𝑑

2𝑥

∬(|𝓔𝑥|2+|𝓔𝑦|
2
)𝑑2𝑥

1

𝑃𝑒,𝑚𝑎𝑥,𝑛𝑜𝑟𝑚
  (S24) 

which normalizes the third Stokes parameter (proportional to the degree of circular polarization) 

with |𝓔𝑥|
2 + |𝓔𝑦|

2
 (proportional to the far-field intensity of x- and y-polarized light5) with 

[𝜂ℱ,̅ 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙] = 1. Furthermore, in accordance with the normalization procedure of the 

experimental data (see section S5, eq S22), we additionally divide by 𝑃𝑒,𝑚𝑎𝑥,𝑛𝑜𝑟𝑚 , the flatfield-

normalized maximum value of the average power flow. This is computed as 𝑃𝑒,𝑚𝑎𝑥,𝑛𝑜𝑟𝑚 = 1 −

𝑃𝑡𝑟𝑎𝑛𝑠,𝑚𝑖𝑛

𝑃𝑏𝑔
, where 𝑃𝑡𝑟𝑎𝑛𝑠,𝑚𝑖𝑛 is the minimum transmitted power and 𝑃𝑏𝑔 is the power of the 

background fields when no nanostructure is present. As bulk silver material constants are used, 

where absorption increases at low wavelengths,10 these values are found in the 400 to 500 nm 

range. The chiral antenna aperture, 𝜎𝛸̅ , was obtained for the nanorod dimers in COMSOL 5.2 with 

the conservation law of optical chirality (eq S7).4 We normalized the optical chirality dissipation 

by 𝑝𝑖𝑛𝑐 = 
𝑃𝑖𝑛𝑐

𝑉
, the incident power density evaluated as a surface integral through the z = 2050 nm 

plane, with V as the volume of the two nanorod antennas and we obtain units [𝜎𝑋,̅ 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙] = m
2 

for the chiral antenna aperture. 

The optical chirality enhancement (𝜒̅/|𝜒̅𝐶𝑃𝐿|) was calculated in MATLAB R2016b by 

extracting the electric- and magnetic-field data obtained in COMSOL 5.2 with the COMSOL 

Livelink for MATLAB. Spectral evaluation was performed by data extraction in 10 nm steps at 
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(0,0,0), which is the center point between nanorods (indicated as * in Figure 2c). Numerical 

colormaps of 𝜒̅/|𝜒̅𝐶𝑃𝐿| were obtained by data extrapolation onto a 100 × 100 grid in the z = 0 

plane, obtained with the MATLAB meshgrid function. 

A moving average filter (MATLAB smooth function) was applied to the spectral data to remove 

numerical noise. The side-length constraint of the mesh was chosen at 50 nm to achieve a relative 

numerical discretization error below 1% for the calculated quantities in the significant wavelength 

range. 

S9. Numerical Geometry Optimization 

The vertical shift v between nanorods (indicated in Figure S4a) was optimized numerically, 

where positive v resulted in R-NRDs and negative v resulted in L-NRDs. Figure S4b shows 𝜂ℱ̅ 

spectra (50 nm spectral steps, raw data) for varying v at h = 60 nm. A vertical shift v = 140 nm is 

chosen in this work as it yields the largest 𝜂ℱ̅ value for the studied parameter space. 

S10. Surface Lattice Resonances 

In this section, we discuss the effect of surface lattice resonances. Figure S5a shows numerical 

𝜂ℱ̅ spectra extracted at different angles for R-NRD with h = 60 nm. As a proof of principle, we 

consider tilted planes with normal vectors 𝒏 = [sin(sin−1(NA)) , 0, cos(sin−1(NA))], where NA 

corresponds to the numerical aperture of an experimental objective lens. We can compare the 𝜂ℱ̅ 

spectra for each NA by normalizing with |𝓔𝒙|
2 + |𝓔𝒚|

2
 (according to eq S24) through the 

respective tilted surface. Comparing the spectra for NA = 0,0.3,0.45 in Figure S5a (raw data), we 

find that the effect of the surface lattice resonance at 600 nm becomes more pronounced with 

increasing NA, as was seen in prior work.15 Thus, by collecting light numerically in the forward 
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direction (NA = 0) and experimentally at small angles (NA = 0.3), we minimize the effect of the 

surface lattice resonances and focus on the optical behavior of single NRDs. In experiment, the 

surface-lattice-resonance effect is damped due to fabrication imperfections.15 

Figure S5b shows numerical chiral-antenna-aperture (𝜎𝑋̅) spectra for R-NRDs with horizontal 

shifts h = 60 to 200 nm. Due to chirality conservation, the chiral antenna aperture is related to the 

optical chirality flux through the entire surface enclosing the studied structure. The surface lattice 

resonance is dominant for 𝜎𝑋̅, as the studied NRDs represent a 2D chiral system which scatters an 

optical chirality flux of opposite sign in forward and backward direction. Thus, the forward and 

backward components of the optical chirality flux predominantly cancel in the flux integral 

through a surface enclosing the entire NRD. Further, 𝜎𝑋̅ demonstrates that the surface lattice 

resonance exhibits a redshift with increasing h + p, where p is defined by the edge-to-edge distance 

between NRDs (indicated in Figure 2c in the main text). The spectral increase observed for 𝜎𝑋̅ at 

low wavelengths can be attributed to silver absorption inherent to the bulk material constants 

applied in the numerical calculations10 and a higher order mode of the surface lattice resonance.16  
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S12. Supplemental Figures 

 

Figure S1. (a) Scanning-electron micrographs of the right-handed nanorod dimers (R-NRDs) with h = 60 to 200 nm. 

The scale bars are 400 nm. (b) Extinction spectra of the R-NRDs with h = 60 to 200 nm. (c) Scanning-electron 

micrographs of the left-handed nanorod dimers (L-NRDs) for h = 60 to 200 nm. (d) Extinction spectra of L-NRDs 

with h = 60 to 200 nm. 
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Figure S2. (a) Schematic of the experimental setup modified to measure circular dichroism (CD). Inset: The sample 

is excited with alternating right- and left-handed circularly polarized light, modulated at 50 kHz by a photoelastic 

modulator (PEM). The differential extinction of a chiral sample results in an outgoing elliptical beam whose total 

intensity is measured by a photomultiplier tube (PMT). (b) CD spectra for R-NRDs, h = 60 to 200 nm. (c) CD spectra 

of L-NRDs, h = 60 to 200 nm.  



 18 

 

Figure S3. (a-c) Scanning-electron micrographs of achiral control samples with (a) single nanorods, (b) achiral 

nanorod dimers (NRDs) with h = 60 nm, and (c) achiral NRDs with h = 80 nm. The scale bars are 400 nm. (d) Chirality 

flux efficiency (𝜂ℱ̅) spectra for the achiral control samples shown in (a-c). As expected, achiral samples do not exhibit 

an 𝜂ℱ̅ signal. (e) CD spectra for the achiral control samples shown in (a-c). As expected, achiral samples do not exhibit 

a CD signal. Vertical axis scaling in (d,e) corresponds to that used in the main text. (f) Extinction spectra of the achiral 

control samples shown in (a-c). (g) Numerical colormaps of the optical chirality enhancement (χ̅/|χ̅CPL|) for achiral 

NRDs with h = 60 nm for various wavelengths (𝜆). In contrast to chiral NRDs, the coupling in this system does not 

induce an excess of one handedness of χ̅/|χ̅CPL|.  
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Figure S4. (a) Illustration of the vertical (v) and horizontal (h) nanorod shift that results in a 2D chiral coupled nanorod 

dimer (NRD). (b) Simulated 𝜂ℱ̅ spectra for h = 60 nm and various v with 50 nm wavelength steps. The geometry with 

v = 140 nm is chosen for further investigation in this work. 
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Figure S5. (a) Simulated chirality flux efficiency (𝜂ℱ̅) spectra evaluated at different angles (tilted planes in real space), 

representing signal collection with various numerical apertures (NAs). With increasing NA, the surface lattice 

resonance at 600 nm becomes more prominent. (b) Simulated chiral antenna aperture (𝜎𝑋̅) spectra for R-NRDs with 

horizontal shift h = 60 to 200 nm. The dominant 𝜎𝑋̅ resonance is determined by the surface lattice resonance, which 

exhibits a redshift with increasing h, as the distance p defined by the spacing between outer nanorod edges remains 

constant (see Figure 2c in the main text). 
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