A method for treatment monitoring using circulating tumour DNA in cancer patients without targetable mutations

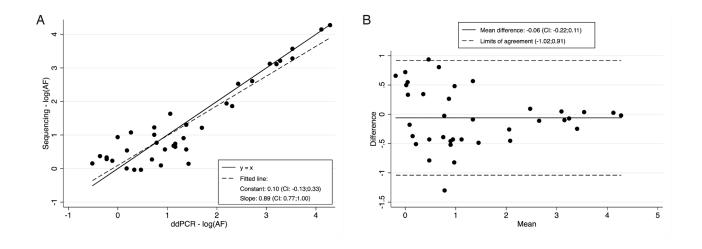
SUPPLEMENTARY MATERIALS

SUPPLEMENTARY FILE 1

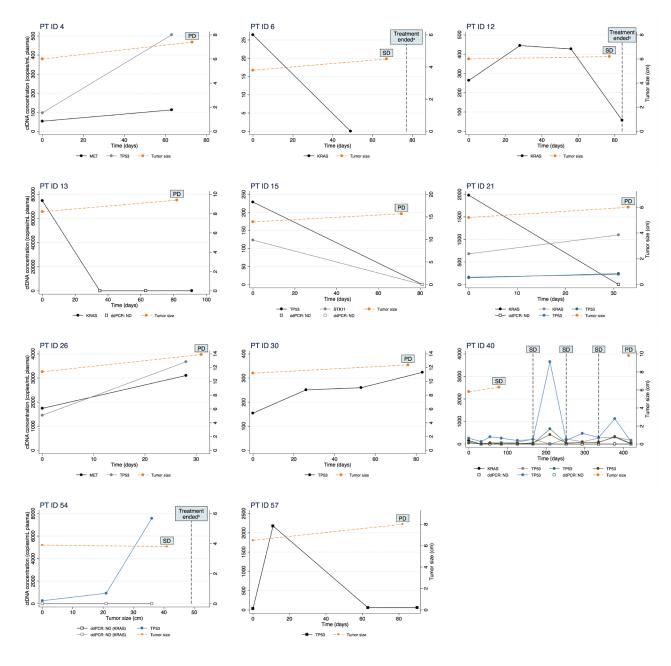
cfDNA quantification

The *beta-2-microglobulin* (*B2M*) gene was quantified by droplet digital PCR (ddPCR) in duplicates. Primers and probes for quantification was: 5'-TAA AAC TTA ATG TCT TCC TTT TTT TTC TC-3' (forward), 5'-AAA CAT TTT CTC AAG GTC AAA AAC TTA-3' (reverse) and HEX/ZEN- 5'-CCT CCA TGA TGC TGC TTA CAT GTC TC-3'-IBFQ (probe). ddPCR amplification was performed in a 20 μl multiplex reaction containing 5 μl of purified cfDNA, 900 nM of primers, 200 nM of probe and 2X ddPCR Supermix for probes (no UTP).

Cycling steps for the ddPCR was as follows: initially an enzyme activation at 95°C for 10 min (1 cycle) followed by 40 cycles of denaturation and annealing (each cycle at 94°C for 30 s and 60°C for 1 min) and finally enzyme deactivation at 98°C for 10 min (1 cycle).


Sequencing

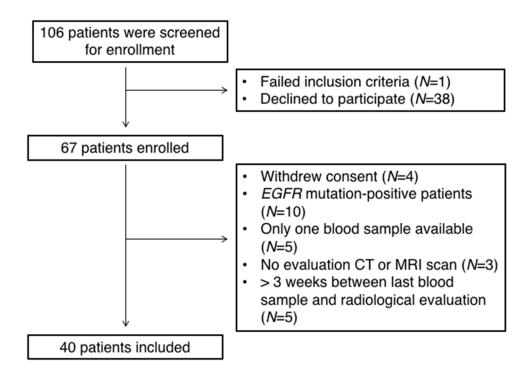
Signal processing, base calling and read alignment was conducted using the Torrent SuiteTM Software (version


5.0.4). The Ion AmpliSeq Colon and Lung Cancer panel v2 template (Thermo Fisher Scientific). Hg19 was used as reference. The AmpliSeq CHPv2 peripheral/CTC/CF DNA single sample workflow in the Ion ReporterTM Software (version 5.0) was used to call variants (Thermo Fisher Scientific). Reference and hotspot BED-files were supplied with the kit. Default settings were retained.

Droplet digital PCR conditions

Reactions were a mix of the 2X ddPCR Supermix for Probes (no UTP, Bio-Rad), the relevant assay and 5 μL cfDNA in a total reaction volume of 20 μL following the manufacturer's recommendations. Droplets were prepared using the QX200TM AutoDGTM. PCR was performed on either the Mastercycler Nexus Gradient instrument (Eppendorf, Hamburg, Germany) or the GeneAmp PCR System 9700 instrument (Applied Biosystems, Darmstadt, Germany). Results were obtained from the QX200TM Droplet Reader, and analysis was performed as recommended by the manufacturer using QuantaSoftTM Software version 1.7.4. As positive controls, Gene Strands (Eurofins Genomics, Ebersberg, Germany) diluted in donor cfDNA were used.

Supplementary Figure 1: Comparison of measurements obtained from NGS and ddPCR. (A) Linear regression was performed to investigate the correlation between measurements. (B) Bland-Altman plot was performed to investigate agreement between the methods. There is a tendency of lower agreement between the methods at low ctDNA AFs.



Supplementary Figure 2: Changes in ctDNA concentration measured by ddPCR (left y-axis) during erlotinib treatment are illustrated for 11 patients. Time is depicted as days after treatment start. Change in tumor size measured on a CT scan is illustrated (right y-axis).

A: Treatment ended due to worsening of performance status.

B: Treatment ended due to toxicity.

Abbreviations: PD, Progressive Disease; SD, Stable Disease.

Supplementary Figure 3: Flow diagram of patient selection.

Supplementary Table 1: Complete ddPCR information on patient samples

See Supplementary File 1

Supplementary Table 2: ddPCR assay information

See Supplementary File 2