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SUMMARY

How genes shape diverse plant and animal body
forms is a key question in biology. Unlike animal
cells, plant cells are confined by rigid cell walls,
and cell division plane orientation and growth rather
than cell movement determine overall body form.
The emergence of plants on land coincided with a
new capacity to rotate stem cell divisions through
multiple planes, and this enabled three-dimensional
(3D) forms to arise from ancestral forms constrained
to 2D growth. The genes involved in this evolu-
tionary innovation are largely unknown. The evolu-
tion of 3D growth is recapitulated during the
development of modern mosses when leafy shoots
arise from a filamentous (2D) precursor tissue. Here,
we show that a conserved, CLAVATA peptide and
receptor-like kinase pathway originated with land
plants and orients stem cell division planes during
the transition from 2D to 3D growth in a moss, Phys-
comitrella. We find that this newly identified role for
CLAVATA in regulating cell division plane orienta-
tion is shared between Physcomitrella and Arabi-
dopsis. We report that roles for CLAVATA in
regulating cell proliferation and cell fate are also
shared and that CLAVATA-like peptides act via
conserved receptor components in Physcomitrella.
Our results suggest that CLAVATA was a genetic
novelty enabling the morphological innovation of
3D growth in land plants.
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INTRODUCTION

The conquest of land was enabled by a series of innovations that

allowed plant forms to radiate and occupy new volumes of space

in the sub-aerial environment [1]. Among these, the innovation of

shooting systems with organs positioned radially around an up-

right stem stands out as a primer for massively increased plant

productivity and diversity [1]. Such three-dimensional (3D)

growth forms first arose as a consequence of a novel stem cell

function gained by land plants, namely the capacity to rotate

stem cell divisions through multiple plane orientations [1–3].

The algal sister lineages of land plants are unable to rotate

stem cell divisions through multiple planes and are therefore

generally constrained to smaller filamentous or mat-like (two-

dimensional [2D]) growth forms (Figure 1A) [1, 3]. The evolu-

tionary transition from 2D to 3D growth is recapitulated during

the development of modern mosses when a branching, filamen-

tous (protonemal) precursor tissue (2D) gives rise to 3D gamete-

producing leafy shoots (gametophores) [6]. Previous studies

have shown that gametophores and filament branches initiate

similarly as hemispherical outgrowths from parent filaments

and that their divergent 2D or 3D fates are specified stochasti-

cally by APETALA2-type (APB) transcription factor activity [7].

During a single-celled stage of outgrowth development, persis-

tent APB activity and cell swelling mark a switch to gametophore

fate (3D), whereas loss of APB activity marks filament fate (2D) [6,

7]. A strongly oblique cell division is the first reliable morpholog-

ical marker of gametophore development [6, 7]. This is followed

by a second oblique apical cell division, which is approximately

perpendicular to the first, after which division planes rotate dur-

ing two successive rounds of division to establish a tetrahedral

apical stem cell [6]. The tetrahedral apical cell divides in spiraling
gust 6, 2018 ª 2018 The Authors. Published by Elsevier Ltd. 2365
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A B Figure 1. The CLV Pathway Originated in

the Last Common Ancestor of Land Plants,

Concomitantly with 3D Growth

(A) Phylogenetic relationships among land plants

and their freshwater algal sister lineages redrawn

from [4] and [5], respectively. Although chlor-

ophytes and charophytes undergo stem cell di-

visions in a single orientation (2D growth), land

plants undergo stem cell divisions in multiple ori-

entations to generate elaborate three-dimensional

forms (3D growth).

(B) The number of CLV pathway homologs was

determined by BLAST against genome or draft

genome (G) and transcriptome (T) databases as

described in STAR Methods. Cha, charophytes;

Chl, chlorophytes; H, hornworts; L, liverworts; M,

mosses; VP, vascular plants.

See also Figures S1, S2, and S3 and Table S1.
planes to replace itself and produce daughter cells that generate

the 3D gametophore axis and leaves [6]. The mechanisms

regulating such novel and rotating stem cell division plane orien-

tations during evolutionary and developmental transitions to 3D

growth are unknown.

In Arabidopsis, the CLAVATA (CLV) and WUSCHEL (WUS)

pathways act in a feedback loop to regulate many aspects of

stem cell function, including cell fate [8, 9], proliferation [9–11],

and growth [12]. CLV3 encodes a small, secreted peptide that

is expressed in the upper cell layers of the central zone and

can move throughout the meristem [13–15]. CLV1 is expressed

in the underlying cell layers of the central zone and encodes a re-

ceptor-like kinase that acts as a receptor for CLV3 [11, 16]

in conjunction with CLV2, CORYNE (CRN), RECEPTOR-LIKE

PROTEIN KINASE 2 (RPK2), and BARELY ANY MERISTEM

(BAM) [17, 18].WUS activity promotesmeristem cell proliferation

[19], and CLV signaling restricts the size of the WUS expression

domain [13]. WUS acts non-cell autonomously, moving from the

organizing center to the uppermost meristem cell layers, where it

promotes CLV3 expression [20], thereby closing the feedback

loop that maintains meristem size.

RESULTS

The CLAVATA Pathway Originated in the Last Common
Ancestor of Land Plants
To determine how the CLV pathway evolved and identify poten-

tial roles for CLV in Physcomitrella stem cell function, we first

queried publicly accessible genome and transcriptome data-

bases from a wide range of green algae and land plants for

CLV3-like (CLE), CLV1/BAM, RPK2, CLV2, and CRN homologs

(Figure 1B; Table S1). We found no CLV pathway homologs in

the chlorophyte or charophyte algae sampled but found at least

one CLE homolog and one CLV1/BAM homolog in each early-

diverging bryophyte lineage and all other land plants, suggesting

that the core CLV signaling module comprises at least one CLE

peptide and a CLV/BAM receptor-like kinase. RPK2 homologs

were present in all land plants sampled except the hornwort,

Anthoceros agrestis. In Physcomitrella, we identified seven

genes with a conserved CLE domain encoding a 12-amino-
2366 Current Biology 28, 2365–2376, August 6, 2018
acid peptide motif similar to CLV3, but sequences outside the

conserved CLE domain were divergent (Figure 1; Table S1).

The genome encodes four CLV3-like peptides: PpCLEs 1, 2,

and 3 encode the peptide motif RMVPTGPNPLHN; PpCLE4

encodes the motif RMVPSGPNPLHN; PpCLEs 5 and 6 encode

the motif RLVPTGPNPLHN; and PpCLE7 encodes the motif

RVVPTGPNPLHN. Neighbor-joining phylogenetic reconstruc-

tions showed that, although hornworts and liverworts have

CLEs resembling the tracheary element differentiation inhibitory

factor (TDIF)-like CLEs that regulate vascular development in

Arabidopsis, Physcomitrella does not, consistent with an evolu-

tionary loss in mosses (Figure S1; Data S1). Receptor-like kinase

phylogenies were reconstructed bymaximum likelihood analysis

using amino acids from the conserved kinase domain (Figures

S2 and S3; Data S2 and S3). Clades encompassing CLV1/

BAM-like sequences from each land plant lineage or containing

RPK2-like sequences from each lineage except hornworts were

resolved. Both CLV1/BAM and RPK2 phylogenies were broadly

congruent with current hypotheses of land plant evolution [4, 21],

thereby indicating orthology. Two Physcomitrella genes were

incorporated in the CLV1/BAM clade, and these were named

Physcomitrella CLAVATA1a and 1b (PpCLV1a and PpCLV1b).

One RPK2 homolog was found and named PpRPK2, but no

CLV2 or CRN homologs were found. These sequence data indi-

cate that the core components of the CLV pathway first arose in

the last common ancestor of land plants, alongside the evolu-

tionary innovation of 3D growth [22].

Physcomitrella CLAVATA Pathway Components Are
Expressed during the 3D Growth Phase
To investigate Physcomitrella CLV activity, we first analyzed

gene expression patterns in relation to the transition between

2D filamentous and 3D gametophore growth (Figures 2, S4,

and S5). By RT-PCR, we detected PpCLE1, 2, and 7 peptide-

encoding gene expression in gametophores (Figure S4). We

were unable to detect expression of PpCLEs 3, 4, and 5,

but we found PpCLE6 expression in protonemal filaments.

Receptor-encoding genes PpRPK2, PpCLV1a, and PpCLV1b

were co-expressed in gametophores, although PpRPK2

expression was evident earlier than PpCLV1a and PpCLV1b



Figure 2. CLV Pathway Components Are Expressed in Physcomitrella Protonemata and Gametophores

(A– J’) GUS staining of PpCLE1::NGG (A, G,M, S, Y, and E’), PpCLE2::NGG (B, H, N, T, Z, and F’),PpCLE7::NGG (C, I, O, U, A’, andG’),PpCLV1a::NGG (D, J, P, V,

B’, and H’), PpCLV1b::NGG (E, K, Q, W, C’, and I’), and PpRPK2::NGG (F, L, R, X, D’, and J’) lines revealed complex expression dynamics.

Although PpCLE::NGG and PpCLV1a::NGG signal accumulated in protonemal tissues close to buds (G–J and M–P; arrows indicate signal in protonemata),

PpCLV1b::NGG and PpRPK2::NGG signal accumulated mainly in the apical region of buds (Q and R). At two later stages of gametophore development (S–X and

Y–J’), all promoters were active in gametophores, although the patterns and intensity of activity varied between reporters and by developmental stage.

PpCLE1::NGG lines stained most strongly in leaves (S, Y, and E’), PpCLE2::NGG lines stained most strongly in leaves and gametophore bases (T, Z, and F’), and

PpCLE7::NGG lines accumulated stain in rhizoid tips (arrow in U), leaf bases (arrow in A’), and hairs around the apex and the gametophore axis (G’).

PpCLV1a::NGG lines did not stain intensely at early stages of gametophore development (P and V) but accumulated signal in gametophore axes and leaves at

later stages (B’ and H’). In contrast, PpCLV1b::NGG and PpRPK2::NGG lines accumulated signal in gametophore axes and leaves from early stages of

development (W and X), and strong signal was detected in branches initiating at gametophore bases (arrows in X, C’, and D’).

All tissues in (A)–(D’) were stained in a solution containing 0.5mMFeCN for times specified in (A)–(F), and gametophores in (E’)–(J’) were stained three times longer

in a solution containing 2 mM FeCN.

The scale bars in (A)–(F) represent 1mm, the scale bars in (M)–(R) represent 100 mm, and insets in (G)–(L) indicate position of buds in (M)–(R). The scale bars in (S)–

(J’) represent 1 mm. See also Methods S1 and Table S4.
in day 10 filamentous tissues (Figure S4). These results were

broadly consistent with reports from transcriptome data (Fig-

ure S5) [23, 24]. We also constructed promoter::NLSGFPGUS

(promoter::NGG) fusion lines for PpCLE1, PpCLE2, PpCLE7,

PpCLV1a, PpCLV1b, and PpRPK2 as RT-PCR showed that

these 6 genes were upregulated at around the time of gameto-

phore initiation (see Strategy for generation of promoter::

NLSGUSGFP reporter lines in Methods S1; Figure 2). In

3-week-old spot cultures (Figures 2A–2F), PpCLE1::NGG,

PpCLE2::NGG, PpCLE7::NGG, and PpCLV1a::NGG lines accu-
mulated local signal in various protonemal cell types around

the buds (Figures 2G–2J and 2M–2P). PpCLV1b::NGG and

PpRPK2::NGG lines accumulated signal in buds, and the signal

was strongest toward the apex (Figures 2K, 2L, 2Q, and 2R).

Whereas all lines accumulated signal in gametophore axes

and leaves (Figures 2S–2J’), there was variation in the pattern,

timing, and intensity of signal accumulation between lines.

Notably, PpCLE1::NGG, PpCLE2::NGG, PpCLE7::NGG, and

PpCLV1a::NGG signal accumulation in gametophores was de-

layed with respect to PpCLV1b::NGG and PpRPK2::NGG lines
Current Biology 28, 2365–2376, August 6, 2018 2367
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(Figures 2M–2X). These beta-glucuronidase (GUS) accumula-

tion patterns suggested highly dynamic foci of expression for

PpCLEs 1, 2, and 7 and PpCLV1a, PpCLV1b, and PpRPK2 in

Physcomitrella, prompting us to investigate roles for CLV

pathway components in gametophore initiation and develop-

ment, i.e., during the transition to 3D growth.

Physcomitrella Mutants Lacking CLAVATA Function
Have a Defective 2D to 3D Growth Transition
To identify the functions of CLV pathway components, we used

artificial microRNAs (AmiRNAs) to silence expression of

PpCLEs 1, 2, and 3 and PpCLEs 4, 5, 6, and 7 (see Strategy

for generating PpcleAmiR lines in Methods S1). We used a

CRISPR-Cas9 approach to disrupt the function of PpCLV1 pa-

ralogs (see CRISPR/Cas9 strategy for generating Ppclv1 mu-

tants in Methods S1), and gene targeting was used to abrogate

PpRPK2 function (see Strategy for generating Pprpk2 KO lines

in Methods S1). PpcleAmiR1-3, PpcleAmiR4-7, Ppclv1a1b, and

Pprpk2 lines were able to form dense protonemal tissues and

thus had a relatively normal 2D growth phase (Figures 3A–

3E). However, all four mutant classes had defective develop-

ment during the 3D growth phase, with a reduction in the

overall number of mature gametophores and defects in game-

tophore development (Figures 3A–3E and 3U). Further exami-

nation revealed many more gametophore buds with 1 or fewer

leaves in PpcleAmiR1-3, PpcleAmiR4-7, and Pprpk2 mutants

than in wild-type (WT) plants (Figure 3U), and Ppclv1a1b mu-

tants had many small gametophores arrested at a later stage

of development (Figure 3U). These data suggested early de-

fects in gametophore development with potential feedback

onto the gametophore initiation process. To determine how

WT and mutant phenotypes diverged during development, we

imaged gametophore buds at 2-cell, 4-cell, and a later stage

of bud development [6] (Figures 3F–3T). Although WT gameto-

phores initiated normally and showed characteristic oblique cell

division plane orientations, the plane of the first division was

strongly disrupted in PpcleAmiR1-3 and PpcleAmiR4-7 mu-

tants, and it was set at a shallow angle relative to the main

growth axis (compare Figure 3F to Figures 3G and 3H). A sec-

ond round of cell division from the apical cell also had misset

division planes that were frequently parallel rather than perpen-
Figure 3. The CLV Pathway Regulates Cell Division Plane Orientations

(A–E) Although WT plants (A) developed many normal gametophores, PpcleAm

obvious gametophores. The scale bar represents 0.35 cm.

(F–T) PpcleAmiR1-3, PpcleAmiR4-7, Ppclv1a1b, and Pprpk2 mutants have cell d

(F–J) The first division of each bud is indicated by a yellow arrow and is set at a str

oblique in PpcleAmiR1-3 (G) and PpcleAmiR4-7 (H) mutants.

(K–O) Whereas (K) the second division (blue arrow) from the apical cell (asterisk)

PpcleAmiR4-7 (M) and Ppclv1a1b (N) mutants, it is roughly parallel to the first. P

(P–T) The stereotypical divisions that normally generate the tetrahedral shape of t

misset in PpcleAmiR1-3 (Q), PpcleAmiR4-7 (R), and Ppclv1a1b (S), and Pprpk2 (

(U) Bar chart and boxplot showing that gametophore initiation was disrupted in Pp

gametophores with >1 leaf was counted in 5 WT and mutant plants from a sing

counted from a 5-mm2 area in 3 WT and mutant plants from a single line represe

test; p < 0.005.

(V and W) Confocal micrographs of WT (Col-0) (V) and clv1/bam1/bam2/bam3 m

meristem and ground tissue layers. The box in (W) indicates themeristem, and arro

orientations in the cortex layer (shaded green). The scale bar represents 20 mm.

See also Figure S6, Methods S1, and Table S4.
dicular to the first division plane, and a subset of gametophores

therefore formed finger-like projections in place of gameto-

phores (compare Figure 3K to Figures 3L and 3M). At develop-

mental stages where the tetrahedral shape of the apical cell is

normally established [6], mutants also had defects indicating

problems with growth and cell fate specification, appearing to

reiterate divisions normally characteristic of the first gameto-

phore initial (compare Figure 3P to Figures 3Q and 3R).

Ppclv1a1b mutant phenotypes diverged from WT after the

2-cell stage, subsequently showing a similar pattern of division

to PpcleAmiR1-3 and PpcleAmiR4-7 mutants (Figures 3K–3N

and 3P–3S), and some cells reverted to filament identity (Fig-

ure 3S). Pprpk2 mutant defects were less severe than Ppcle

and Ppclv1a1b defects at the earliest developmental stages,

and at later stages, swollen cell shapes suggested growth de-

fects as well as division plane defects (Figure 3T). The mutant

phenotypes above suggest key roles for the Physcomitrella

CLV pathway in modulating cell division planes, cell fate,

growth, and proliferation during the 2D-3D developmental tran-

sition. The formation of long projections of swollen cells in

Ppcle mutants (e.g., Figures 3L and 3M) suggests that gameto-

phore identity is attained normally, as cell swelling is a char-

acteristic of gametophore rather than filament initials. The

manifestation of plane orientation defects in the first division

suggests that WT and mutant gametophore development

diverge at the single-celled stage, after cell fate is specified.

Roles for CLAVATA in Regulating Cell Division Plane
Orientation Are Conserved between Physcomitrella and
Arabidopsis

As roles for CLV in cell division plane orientation were previously

unreported, we sought to identify conservation of function with

Arabidopsis. To this end, we examined Arabidopsis clv1/bam1/

bam2/bam3 quadruple mutant meristems, in which the function

of the entire CLV/BAM gene clade is lost [25]. Whereas division

plane orientations are normally stereotypic in root meristems,

we detected strongly disordered planes in the stem cell niche

and ground tissue layers of clv1/bam1/bam2/bam3mutant roots

(Figures 3V, 3W, and S6). Thus, a newly identified role for CLV in

cell division plane orientation is conserved between Physcomi-

trella and Arabidopsis.
during 3D Growth in Physcomitrella and Arabidopsis

iR1-3 (B), PpcleAmiR4-7 (C), Ppclv1a1b (D), and Pprpk2 (E) mutants had no

ivision plane defects at the onset of 3D morphogenesis.

ongly oblique angle in WT (F), Ppclv1a1b (I), and Pprpk2 (J) plants, but is weakly

is normally oblique and roughly perpendicular to the first, in PpcleAmiR1-3 (L),

prpk2 (O) mutants look normal at this stage.

he gametophore apical cell at the 6- to 10-celled stage of development (P) are

T) mutants. The scale bar represents 30 mm.

cleAmiR1-3, PpcleAmiR4-7, PpCLV1a1b, and Pprpk2mutants. The number of

le line representing each mutant class. Gametophore buds with <1 leaf were

nting each mutant class. ANOVA, Tukey’s Honest Significant Difference (HSD)

utant (W) root tips showing disordered cell division plane orientations in the

wheads indicate the developmental onset of abnormal periclinal division plane

Current Biology 28, 2365–2376, August 6, 2018 2369



Figure 4. Gametophore Phenotypes in PpAmiRcle, Ppclv1, and Pprpk2 Mutants

(A–G) Light micrographs showing height differences between WT (A), PpcleAmiR1-3 (B), PpcleAmiR4-7 (C), Ppclv1a (D), Ppclv1b (E), Ppclv1a1b (F), and Pprpk2

(G) gametophores dissected from 1-month-old plants. The scale bar represents 1 mm.

(H–N) Light micrographs of gametophore bases with arrows showing overproliferation in Ppclv1b (L), Ppclv1a1b (M), and Pprpk2 (N) mutants. WT (H),

PpcleAmiR1-3 (I), PpcleAmiR4-7 (J) and Ppclv1a (K) gametophores show no such overproliferation. The scale bar represents 0.5 mm.
Physcomitrella Mutants with Disrupted CLV Function
Have Defective Gametophore Development
In Arabidopsis and other flowering plants, the CLV pathway is

known for its role in maintaining the size of the meristematic

stem cell pool [26], and increases in the number of stem cells

lead to highly enlarged meristems in both clv1 and clv3 (cle)

mutants. However, Physcomitrella does not fit the Arabidopsis

paradigm of meristem function because the shoot apex

comprises a single apical stem cell. The apical cell cleaves

merophyte daughter cells in a spiral pattern, and merophytes

subsequently divide to generate leaf initials and stem tissues

[6]. To investigate whether roles for CLV in regulating stem

cell function are conserved between Physcomitrella and

Arabidopsis, we imaged one of the largest gametophores

from 1-month-old WT and mutant plants using light and

confocal microscopy and found that mutant gametophores

were reduced in height and had developmental defects (Fig-

ure 4). Although PpcleAmiR1-3, PpcleAmiR4-7, and Pprpk2

mutants were most severely reduced in height (Figures 4B,

4C, and 4G), Ppclv1a and Ppclv1b mutants had milder defects

(Figures 4D and 4E). PpcleAmiR1-3, PpcleAmiR4-7, Ppclv1a1b,

and Pprpk2 mutants had defective leaf development, and

Ppclv1b, Ppclv1a1b, and Pprpk2 mutants also had strong cell

fate and/or proliferation defects, developing a callus-like

mass at the gametophore base (Figures 4L–4N). Closer inspec-

tion revealed that these masses arose by the activity of many

ectopic apical cells at the gametophore base (Figure 5). These

loss-of-function data suggest that CLV has roles in regulating

stem cell function that are conserved between Physcomitrella

and Arabidopsis.

CLE Peptides Can Suppress Cell Proliferation in
Physcomitrella Gametophores
To further assay conservation in CLV function, we undertook a

gain-of-function approach by applying synthetic CLE peptides

to growing plants (Figures 6 and S7). After 4 weeks of growth,
2370 Current Biology 28, 2365–2376, August 6, 2018
we found that treatment with a 1-mM concentration of CLE had

no appreciable effect on plant spread or the number of gameto-

phores initiating, indicating that protonemal development is

normal (Figure S7). However, although solute controls, a ran-

domized peptide and Arabidopsis CLE41 (a TDIF CLE) have no

appreciable effect on gametophore development, Arabidopsis

CLV3 and all of the Physcomitrella CLEs cause gametophore

dwarfing and a strong reduction in leaf size correlating with a

reduction in leaf cell number (Figure 6). Although this phenotype

superficially resembles the stunted gametophore phenotypes of

PpcleAmiR1-3 and PpcleAmiR4-7mutants (Figures 4B and 4C),

we found no evidence of developmental arrest or meristematic

overproliferation following CLE application and no difference

in the number of gametophores initiating was detected following

CLE treatment (data not shown). These data show that

CLEs act through a conserved signaling module to regulate

cell proliferation specifically during the 3D growth phase in

Physcomitrella.

CLE Peptides Can Act through Receptor Components
that Are Conserved between Physcomitrella and
Arabidopsis

Previous studies in Arabidopsis have shown that application of

CLV3-like, but not TDIF-like, CLEs to roots can arrest meri-

stem function [27]. To assay conservation in peptide function,

we germinated Arabidopsis seeds on Murashige and Skoog

(MS) medium plates containing solute or peptides at a 1 mM

concentration. Although solute controls, a randomized pep-

tide, and CLE41 caused no arrest of root development,

CLV3 and all of the Physcomitrella CLEs caused a significant

reduction in root length in Arabidopsis resulting from

collapse of the root meristem (Figures 7A–7C, 7E, and 7F).

Physcomitrella CLEs therefore regulate growth and proli-

feration in a similar manner to CLV3 in Arabidopsis. To confirm

that PpCLEs can act through a conserved receptor machi-

nery, we used peptide treatment assays on Arabidopsis and



Figure 5. Overproliferation Phenotypes in PpAmiRcle, Ppclv1, and Pprpk2 Mutants

(A–E) Light micrographs of mutant gametophore morphology showing that gametophores (B) arrest, (C and E) develop multiple axes (pink arrows), and (C–E)

develop swollen bases relative to (A) WT plants. The scale bar represents 200 mm.

(F and G) Confocal micrographs showing (F) overall gametophore morphology and (G) a branch initiating in a leaf axil in WT plants.

(H) Schematic showing Physcomitrella gametophore apex organization with an apical cell (pale yellow) and rotating division plane orientations.

(I–T) Confocal micrographs showing (I–K) PpcleAmiR1-3 mutant gametophore morphologies, with (I) overproliferation at the gametophore base and (J and K)

disorganized growth with ectopic meristems.

(L–N) PpcleAmiR4-7 mutant gametophore morphologies with (L) split leaf phenotypes and (M and N) meristem overproliferation and termination.

(O–Q) Ppclv1a1b mutant gametophore morphology (O), with multiple growth axes and multiple meristems at the gametophore base (P and Q).

(R–T) Pprpk2 mutant gametophore morphology with multiple growth axes (R) and multiple meristems at the gametophore base (S and T).

Yellow arrowheads indicate regions of overproliferation or ectopic meristems. Yellow boxes show regions magnified from (J), (M), (P), and (S) to (K), (N), (Q), and

(T). The scale bars represent 50 mm.
Physcomitrella rpk2 mutants (Figure 7). Whereas treatment of

WT Arabidopsis plants with CLV3-like peptides strongly

inhibited root growth, rpk2 mutants showed less growth

inhibition when treated with Arabidopsis and Physcomitrella

peptides (Figures 7A–7C, 7E, and 7F). These data are in line

with previously published results showing that RPK2

acts among other receptors to contribute to CLV signaling in

Arabidopsis [17] and show that Physcomitrella CLEs can

also act via RPK2 in Arabidopsis. To determine whether

Physcomitrella CLEs act via PpRPK2, we performed similar

experiments in WT, Ppcle, and Pprpk2 mutant backgrounds.
Ppcle mutant gametophores are roughly the same size as

Pprpk2 mutant gametophores, and we reasoned that, if

PpCLEs act via PpRPK2, we should detect a response in

Ppcle mutants, but not Pprpk2 mutants. As in previous

experiments, we found strong inhibition of gametophore

development in WT plants (Figure 7D). Potentially due to

lack of positional information, treatment of Ppcle mutants

with CLE peptides did not rescue developmental defects but

nevertheless induced a gametophore dwarfing response,

consistent with an intact receptor machinery (Figures 7D and

7G–7I). In contrast, Pprpk2 mutants showed no morphological
Current Biology 28, 2365–2376, August 6, 2018 2371
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Figure 6. Physcomitrella CLEs Suppress Cell Proliferation

(A) Treatment of Physcomitrella plants with 1 mM CLV3-like CLEs from Arabi-

dopsis and Physcomitrella, but not TDIF-like CLEs, causes gametophore and

leaf stunting. The scale bar represents 100 mm.
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response to CLE application, suggesting that PpCLEs act via

PpRPK2 in regulating 3D growth (Figures 7D and 7G–7J).

DISCUSSION

How Might CLV Pattern Cell Division Plane Orientation?
We propose that the CLV pathway regulates the 2D to 3D devel-

opmental transition in Physcomitrella by orienting gametophore

cell division planes and regulating growth and fate. How ligands

and receptors act together to do this is not yet clear. One possi-

bility is that CLE ligands diffuse to create a concentration

gradient that division planes are patterned against. A similar

mechanism involving CLEs patterns cambial meristems in Arabi-

dopsis [28], where CLE41 is synthesized in the phloem and dif-

fuses to bind PXY receptors in neighboring procambial cells,

thereby imparting spatial information for periclinal division [28].

Constitutive or ectopic expression of CLE41 disrupts this posi-

tional information, resulting in disordered cambial division planes

[28]. In Physcomitrella, similar patterning could be achieved by

sub-cellular localization of receptors to create a graded CLV

response in bud initials, or at later stages of development,

patterning could be provided by receptor expression in different

portions of buds.

It is also possible that CLV signaling does not directly modu-

late cell division planes but that CLV influences cell division

planes via hormone signaling, cell geometry, and/or cell me-

chanics. Auxin signaling and the activity of microtubule-inter-

acting proteins, such as CLIP-associated proteins (CLASPs),

are known to specify cell division planes in Arabidopsis em-

bryos [29], and auxin signaling modulates the activity of previ-

ously identified factors necessary for correct division plane

orientation in Physcomitrella buds, including DEK1 and NOG1

[30, 31]. There appears to be a complex interplay between

auxin and cytokinin in Physcomitrella [32–34], and several phe-

notypes suggest that this interplay is disrupted in Ppcle, Ppclv,

and Pprpk2 mutants. For instance, cell fate and proliferation at

the gametophore base are perturbed (Figures 4 and 5) and leaf

cell proliferation is perturbed in plants treated with CLEs (Fig-

ure 6), and these aspects of development are auxin and cyto-

kinin regulated [33, 34]. Linking CLV signaling to the hormone

pathways regulating growth and fate will be important in unrav-

elling mechanisms of cell division plane specification during 3D

growth.

CLAVATA-Regulated Stem Cell Function Is an Ancestral
Feature of Land Plants
The data we present are important in two evolutionary contexts.

First, they show that the CLV pathway originated with land plants

and that CLV-regulated stem cell proliferation and function is
(B) Leaf series from gametophores treated with CLEs expressed during

gametophore development. The scale bar represents 1 mm.

(C) Cell outlines of half-leaves in CLE-treated gametophores (leaf 9 was used).

The scale bar represents 100 mm.

(D) Height measured from R25 gametophores treated with CLEs (n R 25;

ANOVA; Tukey’s HSD; p < 0.005).

(E) Leaf 9 cell numbers in CLE-treated half-leaves (n = 3; ANOVA; Tukey’s HSD;

p < 0.05).

See also Figure S7.



Figure 7. Physcomitrella CLE Peptides Act via a Conserved Receptor Machinery
(A and B) Treatment of Arabidopsis seedlings with 1 mMCLV3-like CLEs from Arabidopsis and Physcomitrella, but not TDIF-like CLEs, suppresses root meristem

proliferation in WT Arabidopsis (n = 30; ANOVA; Tukey’s HSD; p < 0.0005). The scale bar in (A) represents 1 cm and scale bar in (B) represents 100 mm; black bars

in (B) represent approximate position and extent of root meristem.

(C and inset in A) Arabidopsis rpk2-4 mutants are resistant to treatment with 1 mM CLE peptides; n R 15; ANOVA; Tukey’s HSD; p < 0.0005. The scale bar

represents 100 mm in (C).

(D) Gametophores in plants treated with 10 mM CLEs are stunted in WT, PpcleAmiR1-3, and PpcleAmiR4-7 mutants, but not Pprpk2 mutants (n R 20; ANOVA;

Tukey’s HSD; p < 0.0005). The scale bar represents 100 mm.

(E and F) Quantitative data on root length in WT (E) and rpk2 mutant plants (F), supporting inferences from images shown in (A).

(G–J) Quantitative data on gametophore length in WT (G), PpcleAmiR1-3 (H), PpcleAmiR4-7 (I), and Pprpk2 (J), mutant plants supporting inferences from images

shown in (D).
likely to be an ancestral feature of land plants. The acquired ca-

pacity of land plants to orient stem cell divisions in multiple

planes enabled diversification by permitting plants to develop

upright axes with organs arranged in multiple orientations, a

crucial step in shoot evolution [1]. Stem cell division plane de-

fects in Ppcle mutants specifically affect the transition to 3D

growth and the 3D growth phase, and morphological responses

to peptide application are also specific to the 3D growth phase.

Thus, in an ancient land plant group, CLV regulates a develop-

mental transition that mirrors an evolutionary transition. The

data suggest that CLV was a genetic novelty for a key morpho-

logical innovation of land plants.
CLAVATA-Regulated Meristem Functions Originated
prior toWOX- and KNOX-RegulatedMeristem Functions
Second, the data are important in the context of evolving gene

regulatory networks for land plant meristem function. Whereas

the first land plant meristems comprised a single gametophytic

stem cell, the multicellular sporophyte meristems of vascular

plants combine stem cell andmore generally proliferative capac-

ities [1]. Class I KNOX genes regulate meristematic proliferation

in vascular plants [35, 36], but these roles are not shared be-

tween bryophytes and vascular plants. Moss KNOX (MKN)

genes are primarily expressed in sporophyte tissues [24, 37],

and although loss-of-function mkn2 mutants have elongation
Current Biology 28, 2365–2376, August 6, 2018 2373



defects in sporophytes, they have normal gametophytes [37].

WOX genes are key regulators of stem cell proliferation in Arabi-

dopsis [19]. However, this function was acquired by the recently

derivedWUS gene clade [38, 39], and the downstream pathways

regulated by CLV in Physcomitrella are likely to be distinct from

those in Arabidopsis as Ppwox13L mutant gametophores

develop normally [40]. Thus, class I KNOX- and WOX-regulated

meristem functions were both acquired after the bryophyte-

vascular plant divergence. CLV was important in the origin of

land plant meristem functions in the gametophyte stage of the

life cycle, and we speculate that CLV was recruited to regulate

stem cell function in the sporophyte stage of the life cycle prior

to the origin of KNOX- and WOX- regulated meristem functions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli strain DH5a Widely distributed N/A

E. coli strain DB3.1 Widely distributed N/A

E. coli strain DH10B Widely distributed N/A

Chemicals, Peptides, and Recombinant Proteins

Taq polymerase Widely available N/A

Phusion High-Fidelity DNA polymerase ThermoFisher Cat#F530S

Novagen KOD Hot Start polymerase Sigma-Aldrich Cat#71086

Superscript II reverse transcriptase ThermoFisher Cat#18064022

Restriction enzymes for cloning New England Biolabs N/A

DNase Fermentas Cat#EN0525

MS medium Melford Cat#M0221

Plant agar Duchefa Cat#P1001

Driselase (basidiomycetes sp.) Sigma-Aldrich Cat#8037

Polyethylene glycol (PEG) 6000 Sigma-Aldrich Cat#81255

G418 disulphate Melford Cat#G0175

Hygromycin B Melford Cat#H7502

Blasticidin S Melford Cat#B1220

a-32P dCTP GE Healthcare Cat#PB10205

X-GlcA Melford Cat#MB1021

Propidium iodide Sigma-Aldrich Cat#P4864

Synthetic CLE peptides (95% purity) Genecust N/A

Lugol’s stain Fisher Scientific Cat#12801823

Critical Commercial Assays

RNeasy RNA extraction kit QIAGEN Cat#74104

Plasmid Plus Midi kit QIAGEN Cat#12943

Amersham Rediprime II DNA labeling kit GE Healthcare Cat#RPN1633

Dig-High Prime DNA labeling and detection starter kit II Sigma-Aldrich Cat#11585614910

Dig Easy Hyb Sigma-Aldrich Cat#11585762001

Experimental Models: Organisms/Strains

Physcomitrella patens Gransden Widely available N/A

PpCLE1::NGG line This study N/A

PpCLE2::NGG line This study N/A

PpCLE7::NGG line This study N/A

PpCLV1a::NGG line This study N/A

PpCLV1b::NGG line This study N/A

PpRPK2::NGG line This study N/A

PpcleamiR1-3 mutant This study N/A

PpcleamiR4-7 mutant This study N/A

Ppclv1a mutant This study N/A

Ppclv1b mutant This study N/A

Ppclv1ab double mutant This study N/A

Pprpk2 mutant This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Arabidopsis thaliana Col-0 Widely available N/A

Arabidopsis thaliana rpk2-4 mutant [17] N/A

Arabidopsis thaliana clv1,bam1,bam2,bam3 mutant [25] N/A

Oligonucleotides

A list of oligonucleotides is given in Table S4 N/A N/A

Recombinant DNA

PIG1NGGII construct [41] N/A

PpCLE1::NGG construct This study N/A

PpCLE2::NGG construct (NptII) This study GenBank: MH310732, MH310732

PpCLE7::NGG construct This study N/A

PpCLV1a::NGG construct This study N/A

PpCLV1b::NGG construct This study N/A

PpRPK2::NGG construct (AphIV) This study GenBank: MH310733

pRS300 [42] N/A

pGREEN (Hyg) [43] N/A

pGREEN (Kan) [43] N/A

pBJ36 [44] N/A

pBRACT211 [45] N/A

pJH125 This study N/A

pJH131 This study N/A

PpcleAmiR1-3 construct This study GenBank: MH310734

PpcleamiR4-7 construct This study GenBank: MH310735

U3::Ppclv1a sgRNA5 construct This study GenBank: MH310736

U3::Ppclv1a sgRNA7 construct This study GenBank: MH310737

U6::Ppclv1b sgRNA construct This study GenBank: MH310738

pACT::Cas9 construct [46] N/A

pNRF [47] N/A

pBHRF108 [48] N/A

pDONR2.1 Invitrogen N/A

pGEMT-EASY Promega Cat#A1360

Software and Algorithms

tBLASTn [49] N/A

SignalP [50] v4.0

MEGA [51] v7.0.26

Figtree http://tree.bio.ed.ac.uk/software/figtree/ v1.4.3

AmiR design software http://wmd3.weigelworld.org/cgi-bin/

webapp.cgi

N/A

CRISPR design software [52] http://crispor.tefor.net/

ImageJ http://imagej.net/Welcome V1.4.8

Adobe Photoshop Adobe N/A

Adobe Illustrator Adobe N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jill Har-

rison (jill.harrison@bristol.ac.uk). Please note that the transfer of transgenic materials will be subject to MTA and any relevant import

permits.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Arabidopsis plant growth
Columbia (Col-0), rpk2-4 (cli) or clv1/bam1/bam2/bam3 mutants [17, 25] were used for Arabidopsis experiments. Homozygous

rpk2-4 mutants were confirmed using a BamHI dCAPs screen with a PCR fragment amplified using primers AtRPK2-BamHIF and

AtRPK2-BamHIR (see primer list). Seeds were surface sterilized in 5% (v/v) sodium hypochlorite for 10 min and washed three times

with sterile de-ionised water. They were then stratified at 4�C in darkness for 48 hr and sown on 0.5 XMS plates containing 0.8% agar

[53]. Plants were grown vertically for 7 days at 25�C in a 16 hr light/ 8 hr dark cycle prior to observation (rpk2 experiments) or at 22�C
under continuous light (clv1/bam1/bam2/bam3 experiments).

Physcomitrella plant growth
The Gransden strain of Physcomitrella patens [54] was used for all experiments. Plants were grown in sterile culture on BCDAT plates

at 23�C in continuous light at 30-50 mmols-1 in Sanyo MLR-351 growth cabinets. BCDATmedium comprises 250mg/L MgSO4.7H2O,

250mg/L KH2PO4 (pH6.5), 1010mg/L KNO3, 12.5mg/L, FeSO4.7H2O, 0.001%Trace Element Solution (0.614mg/L H3BO3, 0.055mg/L

AlK(SO4)2.12H2O, 0.055mg/L CuSO4.5H2O, 0.028mg/L KBr, 0.028mg/L LiCl, 0.389mg/L MnCl2.4H2O, 0.055mg/L CoCl2.6H2O,

0.055mg/L ZnSO4.7H2O, 0.028mg/L KI and 0.028mg/L SnCl2.2H2O), 0.92 g/L C4H12N2O6 and 8g/L agar with CaCl2 added to a

1mM concentration after autoclaving. Protonemal cultures for transformation were grown on BCDAT plates overlaid with autoclaved

cellophane disks and molecular and phenotypic analyses were undertaken using 1 mm spot cultures unless otherwise stated.

METHOD DETAILS

Sequence retrieval
CLE genes

Previously described Arabidopsis thaliana and Oryza sativa CLE sequences were respectively retrieved from TAIR and RAP-DB [55].

Selaginella moelendorffii [56], Glycine max [57, 58] and Picea abies [59] CLEs were retrieved from NCBI. To extend taxon sampling

within land plants and identify previously unknown CLEs, the CLE domains of Arabidopsis thaliana CLV3 and CLE41 were used as

tBLASTn queries with an e-value cutoff of e-100 to screen transcriptome or draft genome assemblies of a basal angiosperm (Ambor-

ella trichopoda), a fern (Diplazium wichurae), a hornwort (Anthoceros agrestis), a moss (Physcomitrella patens v1.6 [60]) and a liver-

wort (Marchantia polymorpha). Positive hits were used in reciprocal BLASTs until no new sequences were retrieved. All sequences

retrieved were checked for the presence of a signal peptide [61] using SignalP [50, 62]. Newly identified CLE sequences were named

with a two-letter prefix denoting the genus and species and numbered (Table S1). A recent cluster analysis [63] succeeded our an-

alyses with slight variation in CLE numbers between species for reasons explained in [63]. An updated version of the Physcomitrella

genome (v 3.1 [64]) also succeeded our analyses, and this includes two furtherPpCLEs that encode the sameCLEmotif as PpCLEs 1,

2 and 3. While these were not included in this study, V3 gene IDs including PpCLE8 and PpCLE9 are listed in Table S3. Transcrip-

tomes and draft or complete genomes of charophyte (Coleochaete nitellarum, Spirogyra sp., Chara braunii) and chlorophyte algae

(Ulva linza, Chlamydomonas reinhardtii, Volvox carteri, Ostreoscoccus tauri and Chlorella vulgaris) were also searched but no

CLEs were found. A previously annotated Chlamydomonas reinhardtii CLE [65] was re-analyzed and discarded due to lack of sim-

ilarity to other CLEs and a premature in-frame stop codon. A full list of taxa and databases searched is given in Table S2.

CLV1/RPK2 genes

ArabidopsisCLV1 and RPK2 sequences were used to query the databases listed above using tBLASTn searches with an e-value cut-

off of e-1000. As the LRR-Receptor kinase family is large, only sequences that retrievedCLV1 orRPK2 as a top hit in reciprocal BLASTs

to Arabidopsis were used in further analyses. Newly identified CLV1-like and RPK2-like genes were named with a two-letter prefix

denoting the genus and species and given an alphabetical epithet (Table S1). A list of taxa searched is given in Table S2.

Phylogenetic reconstruction
To infer CLE relationships, the conserved 12 amino acid CLE motif from 193 CLEs was used in neighbor joining reconstructions

compiled with the JTT model in MEGA7.0.26 [51] (Figure S1; Data S1). This approach was taken because there is little conservation

in CLE structure outside the CLE motif and so few characters can only yield limited phylogenetic signal (see [63]). To infer CLV/BAM

relationships, 525 conserved amino acid residues from 36 genes were used in maximum likelihood reconstructions with the JTT

model in MEGA7.0.26 [51] (Figure S2; Data S2). To infer RPK2 relationships, 782 conserved amino acid residues from 18 genes

were used in maximum likelihood reconstructions with the JTT model in MEGA7.0.26 [51] (Figure S3; Data S3). For all analyses

100 bootstrap replicates were performed and support values over 50% (CLE tree) or 70% (CLV1/BAM and RPK2 trees) are repre-

sented above the branches.

Molecular biology
RT-PCR

Total RNAwas isolated from 4 day-old protonemal cultures and 10, 21 or 28 day old spot cultures using theQIAGENRNeasymethod.

RNA was DNase treated prior to reverse transcription with SuperScript II following manufacturer’s guidelines. Semiquantitative
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RT-PCR was undertaken using UBIQUITIN (Pp1s56_52V6.1) as a loading control. Where possible, primers were designed to span

introns to detect genomic contamination, and sequences are listed in Table S4.

Genomic DNA extraction

Genomic DNA was extracted from protonemal cultures using a CTAB (Hexadecyltrimethylammonium bromide) protocol. Snap-

frozen tissue was ground in liquid nitrogen and transferred to tubes containing prewarmed extraction buffer (2% CTAB,

1.4 M NaCl, 100 mM Tris pH8.0, 20 mM EDTA pH8.0, 2% PVP and 1 mg/mL RNaseA), with no more than 100 mg of tissue

per mL of buffer. Samples were incubated for 10 min at 65�C and an equal volume of 24:1 chloroform:isoamyl alcohol was added

and mixed with each sample to form an emulsion. The tubes were centrifuged at high speed (> 10,000 rpm) for 10 min, and the

aqueous phase was transferred to a fresh tube prior to DNA precipitation with an equal volume of isopropanol and repeated centri-

fugation. DNA was washed with 70% ethanol and dissolved in water, 10 mM Tris pH 8.0 or 10 mM Tris pH 8.0 with 1 mM Na2EDTA.

Generation of promoter::NGG constructs

Promoter sequences from PpCLE1 (2.1 kbp), PpCLE2 (2.1 kbp), PpCLE7 (2 kbp), PpCLV1a (2 kbp), PpCLV1b (2.8 kbp) and PpRPK2

(1.4 kbp) were PCR amplified using a proof-reading Taq polymerase and primers listed in Table S4 and cloned directly or via pGEMT

Easy into the SmaI site of PIG1NGGII [41] or derivatives with alternative selection cassettes and sequenced prior to linearization and

transformation as illustrated in Methods S1.

Generation of AmiR constructs

To generate PplcleAmiR1-3 and PplcleAmiR4-7 constructs, resistance cassettes from pGREEN [45] were first inserted into a blunt-

ended HindII site of pBJ36 [44]. A soybean UBIQUITIN promoter from pBRACT211 [45] was inserted into the SmaI site to drive

AmiRNA expression and the resultant plasmids were named pJH125 (KanR) and pJH131 (HygR). AmiRNAswere designed according

to [42], generated by degenerate PCR using a proof-reading Taq polymerase and the pRS300 plasmid as a template, cloned into

pGEMT-EASY and transferred as XmaI/BamHI fragments into pJH125 or pJH131. Silencing constructs were checked by sequencing

and digested with SacI for transformation as illustrated in Methods S1.

Generation of CRISPR constructs

Small cassettes containing two BsaI restriction sites and sgRNAs [66] driven by the PhyscomitrellaU3 or U6 promoter and flanked by

attB sites were synthesized and cloned into pDONR201. sgRNA sequences were selected and screened for off target hits in the

Physcomitrella V3 genome using http://crispor.tefor.net/. To clone guide RNAs into expression cassettes, two primers consisting

of guide sequences with overhangs for U3 and U6 promoters were annealed and ligated into U3 or U6 expression vectors pre-

digested with BsaI. Constructs were checked by sequencing and co-transformed with pACT::Cas9 [46] to engineer mutants as illus-

trated in Methods S1.

Generation of RPK2 KO construct

50 and 30 flanking regions were PCR amplified with a proof-reading Taq polymerase and cloned sequentially into pGEMT-EASY using

primers listed in Table S4. The resultant plasmid was digested with PmeI and AscI, and the AphIV cassette from pBHRF-108 [48] was

ligated betweenPpRPK2 flanking regions. This plasmidwas checked by sequencing and linearized for transformation as illustrated in

Methods S1.

Transgenic line generation and phenotype analyses
Moss transformation and line authentication

For gene targeting and AmiR approaches, 10-20 mg of plasmid DNA was isolated using the QIAGEN Plasmid Plus Midi system and

linearized as illustrated in Methods S1. For CRISPR approaches, 5-7 mg of Cas9 and pNRF, and 2-3 mg of each gRNA-expressing

construct were purified and pooled for transformation [46] at a concentration of at least 1 mg per mL. All solutions for the transforma-

tion procedure were prepared prior to commencing transformation [67]. First, a polyethylene glycol (PEG) solution was prepared by

adding 10 mL of mannitol/CaNO3 solution (8%mannitol, 0.1 M Ca(NO3), 10 mM Tris pH7.2) to 2 g of molten PEG 6000, and the tube

containing the solution was left in a water bath at 45�C. To isolate protoplasts, homogoenous protonemal cultures were grown for

5 days to a week post passage. A 1% driselase solution was prepared in 25 mL 8% mannitol, and the supernatant was removed

and filter sterilized into to a clean 50mL falcon tube following centrifugation. Tissue from 4-6 plates was transferred into the driselase

solution and the tissue suspension was left for 30-40 min with intermittent mixing to allow cell wall digestion. The mixture was then

transferred into a fresh tube through a 50 mm filter to remove cell and cell wall debris. Protoplasts were sedimented by centrifugation

for 3 min at 120 g, resuspended and washed three times in 10 mL of 8.0% mannitol prior to counting with a hematocytometer. Pro-

toplasts were then sedimented and resuspended to a density of 1.23 106 permL inMMMsolution (0.5Mmannitol, 0.15MMgCl2 and

0.1%MES pH5.6). 300 mL aliquots of protoplasts were dispensed into falcon tubes prior to addition of DNA and 300 mL PEG solution,

and cells were then heat shocked for 5 min at 45�C. Transformation mixtures were progressively diluted with 1 mL of 8% mannitol

solution and washed. Protoplasts were then sedimented by centrifugation as above andwashed four more times. After the final wash

and spin, protoplasts were resuspended in 5mL liquid BCDmedium (constituents as specified above but without ammonium tartrate

or agar) with 8% mannitol, 10 mM CaCl2 and 0.5% glucose, wrapped in aluminum foil and left at 23�C overnight. The next day, the

protoplast suspension was plated onto BCDAT plates overlain with cellophane and containing 8%mannitol and 5 g/L glucose, using

c.1 mL per plate. Plants were grown under standard conditions until regenerants comprised 10-20 cells. Cellophane discs were then

transferred onto BCDAT plates containing antibiotics for selection (25 mg/mL Hyg, 50 mg/mL G418, 100 mg/mL BSD). Plants were

grown for 2 weeks on selection plates prior to transfer onto BCDAT plates lacking antibiotic for 2 weeks and then back on to selection
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plates for a further 2 weeks. All lines were screened by PCR, RT-PCR, Southern analysis or sequencing as illustrated in Methods S1.

PCR conditions were standard and primer sequences are listed in Table S4.

Southern hybridization

For PpcleAmiR Southerns, 10-15 mg genomic DNA was digested with EcoRV and fractionated in 0.8% agarose by gel electropho-

resis. DNA in each gel was depurinated with 0.2MHCl for 20min and denatured with 0.4MNaOH for 20min prior to neutralization for

20 min in a solution containing 3 M NaCl and 1 M Tris pH 7.5. Gels were inverted onto a Whatman paper wick inserted into a bath of

20 X SSC solution, and DNA was transferred onto a nitrocellulose membrane by overnight Southern blotting. DNA was UV cross-

linked to the membrane and the membrane was rinsed in water prior to immersion in pre-hybridization solution (3 X SSC, 1%

SDS, 0.1% sodiumpyrophosphate, 5 X Denhardt’s and 200 mg permL sheared salmon spermDNA). The probe template was excised

with EcoRV and BamHI from the PpcleAmiR1-3 construct and the probe was synthesized using an Amersham Rediprime II DNA la-

beling kit as per manufacturer’s instructions. Hybridization was undertaken in a 3 X SSC buffer at 58�C and this was followed by two

20min washes at 58�C in 3 X SSC and 2 X SSC buffers respectively. Membranes were wrapped in SaranWrap and used to expose X-

ray film, and film was then developed using a film processor. For promoter::NGG and Pprpk2 Southerns, 2.5-3 mg genomic DNAwas

digested as illustrated in Methods S1. Probe templates comprising PIG1 flanking sequence, PpRPK2 coding sequence or a hygrom-

ycin resistance cassette were PCR amplified and labeled using the Roche DIG High Prime system. Hybridization was undertaken

overnight at 42�C using the Roche DIG Easy Hyb system. Washing and detection were performed using the manufacturer’s protocol

from the Roche DIG High Prime DNA labeling and Detection Starter kit II.

Physcomitrella plant imaging

To assess whole plant and gametophore phenotypes, 4 to 5 week-old spot cultures were imaged using a Keyence VHX-1000E digital

microscope with a 20-50 X or 50-200 X objective. To analyze bud phenotypes, confocal imaging was undertaken on tissue stained

with 0.5 mg/ml propidium iodide using a Leica TCS SP5 microscope with excitation from the 488 or 514 laser line and emission

collected at 600-650 nm or using a Zeiss 710 LSM with excitation from a 514 laser line and emission collected at 566-650 nm. To

analyze leaf phenotypes, leaves were removed form gametophores, arranged in heteroblastic series, cleared in 1% chloral hydrate

overnight, washed in deionised water and treated with 2M NaOH for 2 hr. They were then washed with water and stained with 0.05%

toluidine blue for 2 min before destaining for 10 min in water. The stained leaves were then mounted on a slide under a coverslip and

imaged to visualize cell outlines. Adobe Illustrator was used to trace leaf outlines to produce silhouettes for illustration purposes (Fig-

ure 6). Quantitative analyses of leaf size were performed using ImageJ, and cell numbers were evaluated using the ‘analyze particles’

option [68]. Leaf size comparisons were undertaken using leaves from the same point in the heteroblastic leaf series [33] as stipulated

in figure legends.

Arabidopsis plant imaging

Root length was scored from scanned images of plants grown on½XMSplates using ImageJ [68]. To visualize rpk2meristems, roots

were stained with Lugol’s stain, cleared, and imaged using a 20 X objective on a Leica DMRXAmicroscope with DIC [69]. clv1/bam1/

bam2/bam3 roots were stained with 15 mM propidium iodide and imaged using a C-Apochromat 40 X/1.20 W Korr objective on a

Zeiss LSM710 microscope. Excitation and emission windows for propidium iodide were 560 nm and 566-719 nm respectively.

Confocal images were analyzed and processed using ImageJ and Adobe Photoshop.

GUS staining and imaging

Physcomitrella plants grown on BCDAT were cut out of plates with agar and incubated at 37�C in a 100 mM phosphate buffer with

10 mM Tris pH8.0, 1 mM EDTA pH8.0, 0.05% Triton X-100, 1 mg/mL X-GlcA (5-Bromo-4-chloro-3-indolyl-b-D-glucuronic acid) and

potassium ferri/ferrocyanide using concentrations and times indicated in Figure 2 and legend. Plants were bleached in 70% ethanol

and dissected andmounted in 0.3% lowmelting point agarose prior to imagingwith a Keyence VHX-1000 digital microscopewith a 0-

50 X or a 50-200 X objective.

CLE peptide application

Synthetic CLE peptides (Genecust, >95% purity) were dissolved in phosphate buffer (50 mm, pH6.8) to stock concentrations of 1 mM

and 10 mM. Plants were grown on BCDAT plates containing peptides diluted to concentrations specified in the main text.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analyses were undertaken as stipulated in main text and SI figures and figure legends.

DATA AND SOFTWARE AVAILABILITY

Genome and transcriptome data were searched as described inMethod Details and details of data repositories are listed in Table S2.
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Figure S1: NJ tree showing relationships between land plant CLEs (related to Figure 1). 193 CLE motifs 
were aligned and a neighbour-joining analysis was undertaken as described in SI Methods. A Marchantia 
polymorpha CLE was used to root the tree, Physcomitrella patens was selected to represent mosses, Anthoceros 
agrestis was selected to represent hornworts, Selaginella moellendorfii was selected to represent lycophytes, 
Diplazium wichurae was selected to represent monilophytes, and seed plant sequences were retreived from Picea 
abies, Amborella trichopoda, Glycine max, Oryza sativa and Arabidopsis thaliana. 100 bootstrap replicates were 
performed, but bootstrap support was very low as there are few characters, and support values of > 50 are shown. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: ML tree showing relationships between land plant BAM/CLV1-like proteins (related to Figure 
1). 36 BAM/CLV1-like receptor-like kinase sequences were aligned, and data were analysed using the maximum 
likelihood method with the JTT matrix-based model as described in SI Methods. All positions containing gaps 
and missing data were removed prior to analysis, leaving a total of 525 in the final dataset. The tree with the 
highest log likelihood is shown. Marchantia polymorpha was sampled to represent liverworts, Physcomitrella 
patens was sampled to represent mosses, Anthoceros agrestis was selected to represent hornworts, Selaginella 
moellendorfii was selected to represent lycophytes, Diplazium wichurae was selected to represent monilophytes, 
and seed plant sequences were retreived from Picea abies, Amborella trichopoda, Glycine max, Oryza sativa and 
Arabidopsis thaliana. The tree was rooted on MpCLV1 in line with current estimates of land plant phylogeny, 
and bootstrap values of > 70 from 100 replicates are shown next to branches. Branch lengths represent the 
number of substitutions per site. 



 
 

 

Figure S3:  ML tree showing relationships between land plant RPK2-like proteins (related to Figure 1). 18 
RPK2-like receptor-like kinase sequences were aligned and the phylogenetic tree was reconstructed using the 
maximum likelihood method with the JTT matrix-based model as described in SI Methods. All positions 
containing gaps and missing data were removed prior to analysis, leaving a total of 782 in the final dataset. The 
tree with the highest log likelihood is shown. Marchantia polymorpha was sampled to represent liverworts, 
Physcomitrella patens was sampled to represent mosses, Anthoceros agrestis was selected to represent 
hornworts, Selaginella moellendorfii was selected to represent lycophytes, Diplazium wichurae was selected to 
represent monilophytes, and seed plant sequences were retreived from Picea abies, Amborella trichopoda, 
Glycine max, Oryza sativa and Arabidopsis thaliana. The tree was rooted on MpRPK2 in line with current 
estimates of land plant phylogeny, and bootstrap values of > 70 from 100 replicates are shown next to branches. 
Branch lengths represent the number of substitutions per site.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Expression of CLV signalling components in Physcomitrella gametophytic tissues as evaluated 
by RT-PCR (related to Figure 2). PpCLEs 1, 2 and 7 were expressed in gametophores. PpCLV1a, PpCLV1b 
and PpRPK2 were also expressed in gametophores and PpRPK2 expression was also detected in 10-day old 
protonemal tissues, which is when gametophores first start to initiate under our growth conditions.



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S5: Expression of CLV signalling components in Physcomitrella tissues evaluated by eFP Browser 
data [S1] (related to Figure 2). (A) Expression patterns of PpCLEs 1-7. (B) Expression patterns of receptor 
components. (C) Quantitative comparison of PpCLE1-7 expression levels. (D) Quantitative comparison of 
PpCLV1a, PpCLV1b and PpRPK2 expression levels.  



 
 

 

Figure S6: Quantification of cell division plane orientation defects in ground tissue layers in Arabidopsis 
clv1/bam1/bam2/bam3 roots (related to Figure 3). (A) Diagram showing the nature of cell division plane 
orientation defects in wild-type versus clv1/bam1/bam2/bam3 plants. (B) Equivalence of developmental stages 
used in comparisons between wild-type and mutant plants. (C) Quantitative data showing differences in the 
number of periclinal cell divisions (PCDs) in wild-type versus mutant plants. 



 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure S7: Treatment with CLE peptides had no appreciable effect on protonemal morphology (related to 
Figure 6). (A) Light micrographs of plants treated with a synthetic random peptide, CLE41, CLV3 or 
Physcomitrella CLEs showing morphology. Scale Bar = 1 cm. (B and C) The area of plants treated with 1 µM or 
10 µM CLEs was no different from controls (n ≥ 20). (D and E) CLE treatment did not effect gametophore 
initiation. For D, gametophores from 5 plants were counted for each treatment, and for E, a 5 mm square from 
the edge of 5 plants was counted for each treatment. 



 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Table S1: List of newly identified CLE, CLV and RPK2 genes, gene IDs and species of origin (related to 
Figure 1). 

Gene name Gene ID Source

CLE
PpCLE1 Pp1s87_125V6.1 Physcomitrella patens
PpCLE2 Pp1s86_83V6.1 Physcomitrella patens
PpCLE3 Pp1s74_50V6.1 Physcomitrella patens
PpCLE4 Pp1s6_223V6.1 Physcomitrella patens
PpCLE5 Pp1s275_39V6.1 Physcomitrella patens
PpCLE6 Pp1s292_57V6.1 Physcomitrella patens
PpCLE7 Pp1s27_259V6.1 Physcomitrella patens
AaCLE1 MG571535 Anthoceros agrestis
DwCLE1 scaffold-UFJN-2003654-Diplazium_wichurae Diplazium wichurae
DwCLE2 scaffold-UFJN-2087917-Diplazium_wichurae Diplazium wichurae
AmtCLE1 >lcl|evm_27.model.AmTr_v1.0_scaffold00022.262 Amborella trichopoda
AmtCLE2 >lcl|evm_27.model.AmTr_v1.0_scaffold00030.123 Amborella trichopoda
AmtCLE3 >lcl|evm_27.model.AmTr_v1.0_scaffold00021.96 Amborella trichopoda
AmtCLE4 >lcl|evm_27.model.AmTr_v1.0_scaffold00007.246 Amborella trichopoda
AmtCLE5 >lcl|evm_27.model.AmTr_v1.0_scaffold00002.301 Amborella trichopoda
AmtCLE6 >lcl|evm_27.model.AmTr_v1.0_scaffold00021.106 Amborella trichopoda
AmtCLE7 >lcl|evm_27.model.AmTr_v1.0_scaffold00010.83 Amborella trichopoda
AmtCLE8 >lcl|evm_27.model.AmTr_v1.0_scaffold00067.109 Amborella trichopoda
CLV

DwCLV1A scaffold-UFJN-2012643 Diplazium wichurae
DwCLV1B scaffold-UFJN-2014575 Diplazium wichurae
GmCLV1C NP_001235065.1 Glycine max
GmCLV1D NP_001237688.1 Glycine max
GmCLV1E NP_001235080.1 Glycine max
GmCLV1F NP_001237715.1 Glycine max
GmCLV1G XP_003530709.1 Glycine max
GmCLV1H XP_006602289.1 Glycine max
GmCLV1I XP_003518489.2 Glycine max
GmCLV1J XP_003545159.1 Glycine max

FON1 Os06g50340.1 Oryza sativa
OsCLV1A Os03g0228800 Oryza sativa
OsCLV1B Os07g0134200 Oryza sativa
OsCLV1C Os05g0595950 Oryza sativa
PpCLV1A Pp1s5_68V6.1 Physcomitrella patens
PpCLV1B Pp1s14_447V6.1 Physcomitrella patens
PaCLV1A MA_64117p0010 Picea abies
PaCLV1B MA_943683p0010 Picea abies
PaCLV1C MA_52165p0010 Picea abies
PaCLV1D MA_120550p0010 Picea abies
SmCLV1 XP_002965214.1 Selaginella moellendorffii
SmCLV2 XP_002971751.1 Selaginella moellendorffii
SmCLV3 XP_002970036.1 Selaginella moellendorffii
AaCLV1A MG571536 Anthoceros agrestis

AmtCLV1A evm_27.model.AmTr_v1.0_scaffold00055.1 Amborella trichopoda
AmtCLV1B evm_27.model.AmTr_v1.0_scaffold00033.36 Amborella trichopoda
AmtCLV1C evm_27.model.AmTr_v1.0_scaffold00071.179 Amborella trichopoda
AmtCLV1D evm_27.model.AmTr_v1.0_scaffold00068.165 Amborella trichopoda
AmtCLV1E evm_27.model.AmTr_v1.0_scaffold00056.126 Amborella trichopoda
RPK2

DwRPK2A scaffold-UFJN_2014694 Diplazium wichurae
DwRPK2B scaffold-UFJN_2002858 Diplazium wichurae
GmRPK2A XP_003548492.2 Glycine max
GmRPK2B XP_003530440.2 Glycine max
GmRPK2C XP_003551760.1 Glycine max
GmRPK2D XP_003543956.1 Glycine max
GmRPK2E XP_003554916.1 Glycine max
OsRPK2A Os07g0602700 Oryza sativa
OsRPK2B Os03g0756200 Oryza sativa
PaRPK2A MA_13025p0010 Picea abies
PaRPK2B MA_10427820p0020 Picea abies
PaRPK2C MA_129592p0010 Picea abies
SmRPK2 XP_002982473 Selaginella moellendorffii

AmtRPK2A evm_27.model.AmTr_v1.0_scaffold00154.29 Amborella trichopoda
AmtRPK2B evm_27.model.AmTr_v1.0_scaffold00016.228 Amborella trichopoda



 
 

 

Table S2: List of taxa, publications and databases searched for sequence data (related to Figure 1). 

 

 

 

 

 

 

 

 

 

 

Table S3: List of Physcomitrella CLAVATA pathway V3 genome gene IDs (related to Figure 1). 
 

 

 

 

 

 

 

 

Table S1:  List of Physcomitrella CLAVATA pathway component gene IDs.
Gene name V1.6 genome V3 genome Peptide encoded
PpCLE1 Pp1s87_125V6.1 Pp3c7_11040V1.1 PpCLE 1/2/3
PpCLE2 Pp1s86_83V6.1 Pp3c1_13720V1.1 PpCLE 1/2/3
PpCLE3 Pp1s74_50V6.1 Pp3c3_10020V1.1 PpCLE 1/2/3
PpCLE4 Pp1s6_223V6.1 Pp3c26_11430V1.1 PpCLE 4
PpCLE5 Pp1s275_39V6.1 Pp3c22_4590V1.1 PpCLE 5/6
PpCLE6 Pp1s292_57V6.1 Pp3c19_6950V1.1 PpCLE 5/6
PpCLE7 Pp1s27_259V6.1 Pp3c21_5600V1.1 PpCLE 7
PpCLE8 not found Pp3c11_15310V1.1 PpCLE 1/2/3
PpCLE9 not found Pp3c4_31330V1.1 PpCLE 1/2/3
PpCLV1a Pp1s5_68V6.1 Pp3c13_13360V1.1  PpCLV1a
PpCLV1b Pp1s14_447V6.1 Pp3c6_21940V1.1 PpCLV1b
PpRPK2 Pp1s311_57V6.1 Pp3c7_5570V1.1 PpRPK2

Class Species Publication Database searched
Seed plant Arabidopsis thaliana [S2] Strabala et al. (2006) NCBI
Seed plant Oryza sativa [S3] Yu et al. (2002) NCBI 
Seed plant Glycine max [S4] Mortier et al. (2011) NCBI 
Seed plant Amborella trichopoda [S5] Amborella Genome Project (2013) Phytozome
Seed plant Picea abies [S6] Strabala et al. (2014)  NCBI

Monilophyte Diplazium wichurae 1kp project 1kp project 
Lycophyte Selaginella moellendorffii [S7] Miwa et al. (2009) NCBI
Hornwort Anthoceros agrestis Draft genome assembly (Szövényi) Draft genome assembly (Szövényi)

Moss Physcomitrella patens [S7] Miwa et al. (2009) COSMOSS
Liverwort Marchantia polymorpha [S8] Bowman et al. (2017) Phytozome

Charophyte alga Coleochaete nitellarum 1kp project 1kp project
Charophyte alga Spirogyra sp. [S9] Delaux et al. (2015) Dunand lab
Charophyte alga Chara braunii Draft genome assembly (Rensing) Draft genome assembly (Rensing)
Chlorophyte alga Ulva spp. 1kp project 1kp project
Chlorophyte alga Chlamydomonas reinhardtii [S10] Merchant et al. (2007)  Phytozome
Chlorophyte alga Volvox carteri [S11] Prochnik et al. (2010)  Phytozome
Chlorophyte alga Ostreococcus tauri [S12] Palenik et al. (2007)  Phytozome
Chlorophyte alga Chlorella vulgaris [S13] Blanc et al. (2010)  Phytozome



 
 

 

CLV1bPR GGTTATTCATGTTTTCTAGACACTGTTGCT
PpRPK2
RPK25’PF cttaagATTATTTTTTGTTACCTTGTATTTT
RPK25’PR gtttaaacTCTCCCCTAACTCCTCCTCA

C. Promoter::NGG screening primers
PIGF2 AGGACACCCTTTCCAAACACATT
PIGR1 AAAAACCAATCTGGGAATAGCTTG
G6TERM4F TAGGGTTCTATAGGGTTTCGCTCA
CLE1SCREENR ACAGATTGCAGTTCCGTATGCTC
CLE2SREENR TAAGCATGCAGCTCTAGGAAACG
CLE7SCREENR CCATTGGCTATTAAAATGGCTTGA
RPK2SCREENR TCTCATTTGCAAGTATAATCCAAGC
CLV1ASCREENR CGAGTGCAACGAGATTCAAA
CLV1BSCREENR GCAATCGGACAGACCTTTGAGTA

D.  PpcleAmiR construction
PpcleAmiR1-3
123-I gaTTGGGAACCATGCGGTCGGAGtctctcttttgtattcc
123-II gaCTCCGACCGCATGGTTCCCAAtcaaagagaatcaatga
123-III gaCTACGACCGCATGCTTCCCATtcacaggtcgtgatatg
123-IV gaATGGGAAGCATGCGGTCGTAGtctacatatatattcct
amiR-A CTGCAAGGCGATTAAGTTGGGTAAC
amiR-B GCGGATAACAATTTCACACAGGAAACAG
PpcleAmiR4-7
7-I gaTTGAAGCGGATTAGGACCTGGtctctcttttgtattcc
7-II gaCCAGGTCCTAATCCGCTTCAAtcaaagagaatcaatga
7-III gaCCCGGTCCTAATCGGCTTCATtcacaggtcgtgatatg
7-IV gaATGAAGCCGATTAGGACCGGGtctacatatatattcct
amiR-A CTGCAAGGCGATTAAGTTGGGTAAC
amiR-B GCGGATAACAATTTCACACAGGAAACAG

E. PpcleAmiR screening
Kanamycin resistance cassette
Kan-F GGCATGATTGAACAAGATGAT
Kan-R TATCGGGAAACTACTCACACAT
Hygromycin resistance cassette
Hyg-F AGGGCGAAGAATCTCGTGCT
Hyg-R GCTTAGCGAACTGTGGACGA
PpcleAmiR amplification 
AmiRscrF CGGTCGGAGTCTCTCTTTTG
AmiRscrR CGCTCGGTGTGTCGTAGATA
PpcleAmiR expression cassette 
UbiOCSF GCCGAACCAGCTTTCTTGTA
UbiOCSR GTTGAATGGTGCCCGTAACT
PpUBI CDS
Pp-Ubi-intF GCCATGCAGATCTTCGTGAA
Pp-Ubi-intR CTACGCAGCCAAGAACCGA

F. Ppclv1a1b construction and 
PpCLV1a sgRNA-1 GGCAGACAGTGCCCGAGGCTCTCT

Primer name Primer sequence
A. Primers for RT-PCR
cDNA synthesis primer [S14]
QT CCAGTGAGCAGAGTGACGAGGACTCGAGCT
PpCLE1
PpCLE1F GTAGCATTGAGGTTCACGACA
PpCLE1R CACGGGAATATGACTTGAGA
PpCLE2
PpCLE2F CAGATGCGGTTGAGAAAGAGA
PpCLE2R GACTTGAGACCGATTGCTGTT
PpCLE3
PpCLE3F GTAATCCTCGCCATTTTCCA
PpCLE3R GGGTTTCGTGGATTCGTGAT
PpCLE4
PpCLE4F CGAAGGCAGACGACAGGTGA
PpCLE4R GACCTGCGACCTGTTGCTATT
PpCLE5
PpCLE5F ACGTTGGTGCTGGATTGTGAT
PpCLE5R TCTGCCTCCACATCCCAAAT
PpCLE6
PpCLE6F GTAGGAATGGTCGTCGTCGT
PpCLE6R GAACCAAGCGCTTCGACAT
PpCLE7
PpCLE7F TGCTTGTCCATGGTGATTGT
PpCLE7R CCCGACTGTGATCCAACTTT
PpCLV1a
PpCLV1aF CAACATCGCAATCCAGGCT
PpCLV1aR CCACTCTCAGGACCAATACAA
PpCLV1b
PpCLV1bF GGCAATCTCCCCACCCT
PpCLV1bR CTCCTCGTCCAAGCAGTCTA
PpRPK2
PpRPK2F GTGGACCCGTTTCGTGTGTT
PpRPK2R GGCTGGTGGACCCTGATAA
PpUBI
PpUbi-intF GCCATGCAGATCTTCGTGAA
PpUbi-intR CTACGCAGCCAAGAACCGA

B. Promoter::NGG construction
PpCLE1
CLE15’PF gtttaaacGGCACCATCTCCATCACTATCT
CLE15’PR gcgatcgccacgtgGGTAAGGCTCCATGCACCGT
PpCLE2
CLE25’PF CGCTGCTGATTCACCACCTCAA
CLE25’PR GGCATAATGTGGGGAGAAGGA
PpCLE7
CLE75’PF CTTGTGACATTCTAATAAGTGCTTATCC
CLE75’PR CCCTTCCGAAAAACTGATACCA
PpCLV1a
CLV1aPF tatggatccTCTGTCAAATTTATTACCACTT
CLV1aPR tatggatccGAGGAAAGCATGAGCACTGA
PpCLV1b
CLV1bPF TTTTGGATCAGCCATCCCTATAAGGCTCAG



 
 

 

 

PpCLV1a sgRNA-1* AAACAGAGAGCCTCGGGCACTGTC
PpCLV1a sgRNA-2 GGCACCACGGGCATGTCCTGATAC
PpCLV1a sgRNA-2* AAACGTATCAGGACATGCCCGTGG
PpCLV1b sgRNA GGCAGAAGTGCGAGACCCTCTTC
PpCLV1b sgRNA* AAACGAAGAGGGTCTCGCACTTC

G. Ppclv1a1b screening
PpCLV1a sgRNA targets fwd (exon 4) AACGGCTCAATTCCTCCAGA
PpCLV1a sgRNA targets rev (exon 5) TTAGACACTCCACCCTTGCG
PpCLV1b sgRNA target fwd TGGAGAGACGCAACTTCCAT
PpCLV1b sgRNA target rev TTAAGACGCCCCAAATCAGC

H. Pprpk2 construction
5’ flanking region
PpRPK2-5’F ATCGATGGCTCTGGAGGTGAGTGACA
PpRPK2-5’R GTTTAAACAGTTCGAGACAACACAAGAATGC
3’ flanking region
PpRPK2-3’F GTTTAAACGGCGCGCCGATGGTCGGCATAGTAAACG
PpRPK2-3’R ATCGATCAGGACGACAAGGCGGA

I. Screening Pprpk2 lines
Hygromycin resistance casette
Hyg-F AGGGCGAAGAATCTCGTGCT
Hyg-R GCTTAGCGAACTGTGGACGA
3’ integration site analysis
Hygromycin-F CGCACAATCCCACTATCCTT
PpRPK2downstream-R CAAGAGTCAGCCAATGATGCA
PpRPK2 CDS 
PpRPK2F GTGGACCCGTTTCGTGTGTT
PpRPK2R GGCTGGTGGACCCTGATAA
PpUBI CDS
PpUbi-intF GCCATGCAGATCTTCGTGAA
PpUbi-intR CTACGCAGCCAAGAACCGA

J. Southern blot probes
PpRPK2 probe
PpRPK2probe-F GTGGACCCGTTTCGTGTGTT
PpRPK2probe-R GGCTGGTGGACCCTGATAA
Hygromycin probe
Hygprobe-F CGCACAATCCCACTATCCTT
Hygprobe-R GATGTTGGCGACCTCGTATT

dCAPS primers 
AtRPK2-BamHI-F CACATCTTGAGAGATTTCTGCTTTGTAGGTGGATC
AtRPK2-BamHI-R GAGAAGTCACTATGTTCATGGATAT

K. Identification of Arabidopsis rpk-2 homozygotes

CLV1bPR GGTTATTCATGTTTTCTAGACACTGTTGCT
PpRPK2
RPK25’PF cttaagATTATTTTTTGTTACCTTGTATTTT
RPK25’PR gtttaaacTCTCCCCTAACTCCTCCTCA

C. Promoter::NGG screening primers
PIGF2 AGGACACCCTTTCCAAACACATT
PIGR1 AAAAACCAATCTGGGAATAGCTTG
G6TERM4F TAGGGTTCTATAGGGTTTCGCTCA
CLE1SCREENR ACAGATTGCAGTTCCGTATGCTC
CLE2SREENR TAAGCATGCAGCTCTAGGAAACG
CLE7SCREENR CCATTGGCTATTAAAATGGCTTGA
RPK2SCREENR TCTCATTTGCAAGTATAATCCAAGC
CLV1ASCREENR CGAGTGCAACGAGATTCAAA
CLV1BSCREENR GCAATCGGACAGACCTTTGAGTA

D.  PpcleAmiR construction
PpcleAmiR1-3
123-I gaTTGGGAACCATGCGGTCGGAGtctctcttttgtattcc
123-II gaCTCCGACCGCATGGTTCCCAAtcaaagagaatcaatga
123-III gaCTACGACCGCATGCTTCCCATtcacaggtcgtgatatg
123-IV gaATGGGAAGCATGCGGTCGTAGtctacatatatattcct
amiR-A CTGCAAGGCGATTAAGTTGGGTAAC
amiR-B GCGGATAACAATTTCACACAGGAAACAG
PpcleAmiR4-7
7-I gaTTGAAGCGGATTAGGACCTGGtctctcttttgtattcc
7-II gaCCAGGTCCTAATCCGCTTCAAtcaaagagaatcaatga
7-III gaCCCGGTCCTAATCGGCTTCATtcacaggtcgtgatatg
7-IV gaATGAAGCCGATTAGGACCGGGtctacatatatattcct
amiR-A CTGCAAGGCGATTAAGTTGGGTAAC
amiR-B GCGGATAACAATTTCACACAGGAAACAG

E. PpcleAmiR screening
Kanamycin resistance cassette
Kan-F GGCATGATTGAACAAGATGAT
Kan-R TATCGGGAAACTACTCACACAT
Hygromycin resistance cassette
Hyg-F AGGGCGAAGAATCTCGTGCT
Hyg-R GCTTAGCGAACTGTGGACGA
PpcleAmiR amplification 
AmiRscrF CGGTCGGAGTCTCTCTTTTG
AmiRscrR CGCTCGGTGTGTCGTAGATA
PpcleAmiR expression cassette 
UbiOCSF GCCGAACCAGCTTTCTTGTA
UbiOCSR GTTGAATGGTGCCCGTAACT
PpUBI CDS
Pp-Ubi-intF GCCATGCAGATCTTCGTGAA
Pp-Ubi-intR CTACGCAGCCAAGAACCGA

PpCLV1a sgRNA-1 GGCAGACAGTGCCCGAGGCTCTCT
F. Ppclv1a1b construction and sequencing



 
 

Table S4: List of primers used in this study (related to Figures 2-4 and STAR methods). 
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