Supplementary materials

Table S1. Candida albicans strains used in this study

Table S2. Plasmids used in this study

Table S3. Primers used in this study

Figure S1. Cell morphology of *yaf9* **or** *swr1* **mutants and revertants.** The strains were cultured overnight at 25 °C in YPD (up panels), and induced in YPD (middle panels) or YPD with 10% serum (down panels) at 37 °C for 3 hrs. Cell-morpha were observed and photographed.

Figure S2. Functional analysis of Eaf1 K173 mutants. (a) Effects of K to R, to Q, to N, or to H mutation at residue 173 of Eaf1 on Yaf9-Eaf1 interaction. HA tagged Eaf1, Eaf1^{K173R}, Eaf1K^{173Q}, Eaf1^{K173N} or Eaf1^{K173H} was co-expressed with Yaf9-myc, and cultured in YPD at 25 °C for Co-IP. **(b)** Cell morphology of wild-type, *eaf1^{K173A}*, *eaf1^{K173N}*, *eaf1^{K173H}*, *eaf1* mutants and *eaf1* revertant. Overnight cultured cells were inoculated into YPD and cultured at 37 °C with or without serum for 3 hrs.

Figure S3. The role of auto-acetylation of Esa1 during hyphal development. (a) Sequence comparison of regions around auto-acetylated lysine residue of *C. albicans* Esa1 (CaEsa1) and *S. cerevisiae* Esa1 (ScEsa1). **(b)** CaEsa1 is auto-acetylated at lysine 296. Cells carring Esa1-Myc or Esa1^{K296R}-Myc were cultured in YPD at 25 °C and the WCEs were collected, immunoprecipitated with anti-Myc, and probed with anti-Ac-K. **(c)** The Eaf1 acetylation was abolished in *esa1^{K296R}* mutant, but enhanced in *esa1^{K296Q}* mutant. Eaf1-Myc was introduced into cells of wild-type, *esa1*, *esa1^{K296R}*, and *esa1^{K296Q}* mutant, cultured in YPD at 25 °C or in YPD plus 10% serum at 35 °C for Co-IP or IB. **(d)** The Esa1^{K296R} mutant blocks hyphal initiation, while the Esa1^{K296Q} mutant inhibits hyphal elongation. The cells of wild-type, *esa1*, *esa1^{K296Q}*, and *hda1* mutant were cultured in YPD at 25 °C for 6 hrs or in YPD plus 10% serum at 35 °C for 3 hrs, observed by microscopy.

Figure S4. Cell morphology of Eaf1^{K173R}, Eaf1^{K173Q} and *brg1* **carring Eaf1^{K173R} mutant induced in different media.** An overnight culture of wild-type, Eaf1^{K173R}, Eaf1^{K173Q}, *brg1* and *brg1* carring Eaf1^{K173R} was induced at 37 °C in YPD for 3 hrs, YPD with 10% serum for 3 hrs, YPD with 5 nM rapamycin for 4 hrs, YEP with 2% GlcNAc for 4 hrs or Lee's with 2% mannitol for 6 hrs. Cell-morpha were observed and photographed.

Figure S5. Sequence alignment around the acetylable lysine in Eaf1

orthologues across eukaryotes. The acetylable residue K173 is conserved in Eaf1 orthologues among polymorphic fungi, but is occupied by a non-acetylable residue arginine (R) in non-dimorphic yeast-like fungi or glutamine (Q) in filamentous fungi. The lysine residue is neither conserved among Eaf1 orthologues from protista, nor the Eaf1 orthologues from higher eukaryotes or p400-like proteins.

Figure S1

Figure S4

Figure S5

Polymorphic fungi Yeast-like	Candida albicans Candida dubliniensis Spathaspora passalidarum Candida tropicalis Scheffersomyces stipitis Candida krusei Saccharomyces cerevisiae Candida glabrata Kluyveromyces marxianus	SHK. SHK. SHK. CHK. SHK. AHK. AHK. SQK.	VLM VLM VLM VLM VLM T. LT ALT ALT	TENF TENF TENY TDNF TDNF TDAF SDM T. NI	ESA ESA ESA ESA E.A INN INN	. LAI . LAI . LLI . LAI . LLI SLII ALNI ALNI ALNI	EGKI EGKI EGKI EGKI EGKI EGKV EARI ESRI	. AVI . AVI . AVI . AVI . AVI S. VI TVVC TVVS	YSR YSR YSR YSR YSR YSR HSR G. SR S. SR S. SR	IEEI IEEL IEEL IEEL IEEL IEEL IEEL IEEL	KRQC KRQC KRQC KRQC KRQC KRKN LRRLC RRLC	GKWS GKWS GKWS GKWS GKWS GLWS GLWS GLWS GLWS	L RQH L RQH L RQH L RQH L RQH L RQH L RQH L RQH L RQH	PQKFYD PQKFYD PQKFYD PSKFYD PSKFYD PRKLVD PKRFID PKRFVD PKRFVD
fungi	Cryptococcus neoformans Ustilago maydis Schizosaccharomyces pombe Coccidinidas immitis	SS <mark>K(</mark> ADK(AHK)	CVL. C. LM YVL	ΓCD. ΓSD. SDN	WKV WRV WSH	AMDH AFNH AYRH	EMRH EQRF EX3RG	I. VRA C. VRA SLH.	MER MAR HLT	IEAK IEKI V. A.	KAEN KAQO KEKO	NR <mark>WS</mark> GEWS GIWS	LRQH FRQH FRQH	PKKARG PKKQKG PKRQNE
Filamentous fungi	Eucculoudes iminitis Blastomyces dermatitidis Paracoccidioides brasiliensis Histoplasma capsulatum Talaromyces marneffei Aspergillus fumigatus Fusarium graminearum Metarhizium anisopliae	AHK AHK AHK AHK AHK AHK ANK	Γ. L. ? Γ. L. ' Γ. L. ' Γ. L. ? Γ. L. ? Γ. L. ? ΓΥ ' ΓΙ. Α.	STAN TTAN TTAN TTAN STSN STSN TTSN TTPD	HMT HFV HFV HLL HLL ANL ADI	DYAI EYQI EYQI EYQI EYQI EYQI AIQI VIRJ	E. QA E. QM E. QM E. QM E. QM E. QM DHQA DHQA	INTR IDCRS IDCRS IGCRI IDCR IDCR IDCR IDCR IDCR IDCR I IDCR I IDCR I IDCR I IDCR I IDCR I IDCR I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I IDCRS I I IDCRS I I IDCRS I I IDCRS I I I I I I I I I I I I I I I I I I I	ΓLKR SLKR SLKR LLKR ΓLRR ΓLRR /LRR /LRR	L YQI I YQI I YQI I YQI I YAI I YAI I YAI V YHI V YHI	LQHS(LQHA) LQHA) LQHA) LQHA) LQNS) LQNA) LQQHI LQQHI	GRWP VRWP VRWP VRWP VRWP VRWP OKWS OKWS	LRQI LRQI LRQI LRQI LRQI LRQI LRQI LRQI	LQRSPE LQRSAE LQRSAE LQRSTE MERSAE LKRSVE PKRCPE LKRCPE
Fungi-like	Phytophthora infestans Phytophthora nicotianae Phytophthora parasitica Plasmopara halstedii	A. K A. K A. K A. K	THMT THMT THMT S <mark>RL</mark> T	YIVS YIVS YIVS YIVS YIVS	AGK AGK AGK AGK	RAR RAR RAR RAR	SAMT SAMT SAMT SAMT	E SS PSS. PSS. E SS	Γ <mark>ΑΕ</mark> D ΑΕC ΑΕC ΑΕC SVAS	AD AD AD TDS(KSS KSS KSS G <mark>KSS</mark>	r. WS r. WS r. WS r. WS	LRE/ LRE/ LRE/ FHE/	AAFRDL AAFRDL AAFRDL AAFRDL
Metazoa	Homo sapiens Mus musculus Danio rerio Strongylocentrotus purpuratus Caenorhabditis elegans Drosophila melanogaster	NATS NAAS N AVYE SVLF GGGS	SQDS SQDC SQES OYTIC SCGC SGTPN	SSQD GSQDI SSQDI GSQEN GGETI NSA. A	TLT KLAI KQAI MIVI N.VI AQ.I	E.QI E.QI E.Q/ E.R/ E.R/ E.K/	ITL. ITL. Akl. Akq. Akq. Akq.	ENQV ENQJ ESHV EAQV EAHV EVYV	/HQ <mark>R</mark> HQR /HQR /MQR /LA <mark>R</mark> /MQR	I AEI I ADI I AEI I AEI I AEI I AEI I SEI	RKA RKE RKE RRD RRD QRE	GLWS GLWS GQWS GLWS GLWS GLWT	Q <mark>RRI</mark> LRRI ASRI AKRI NS <mark>RI</mark> E <mark>RRI</mark>	PKLQE PKLQE PKLQE PRVQE PKCVE PKLQE
Plants	Eaf1 Arabidopsis thaliana Pie1	<mark>KED/</mark> K. SI	AILE <mark>I</mark> KP <mark>DNI</mark>	EA <mark>R</mark> I ESRA	IQA 	KK <mark>K</mark> <mark>K</mark> l	RIAE RQK1	ELS <mark>CO</mark> TLE	GT <mark>AP</mark> . AP	V <mark>E</mark> V. KEPI	. <mark>REK</mark> R <mark>R</mark> PK	SQ <mark>WE</mark> Th <mark>we</mark>	O <mark>FVL</mark> HVL	EEMAWL EEMAWL
Protozoa	Tetrahymena thermophila Cryptosporidium parvum Acanthamoeba castellanii	RLII . MLN WVQ0	E <mark>KL</mark> . NRL. GRVG	YMER YMAE Alqr	RP. G Ekal Regi	YPF SIL WSG	FATN RSG RRA	VRLS NAI <mark>F</mark> GKV <mark>F</mark>	STNK PYPE PEP.	PVF PQGS PRG.	IQHV SVRS .KT	L <mark>WD</mark> F QWDF HWD y	א <mark>ער</mark> א F <mark>LL</mark> ג ע <mark>ער</mark> פ	K <mark>ev</mark> ywr Demtwm Cemawm
Protophyta	Micromonas pusilla Ectocarpus siliculosus	AET TKA	IARA FKDV	K <mark>AIF</mark> R <mark>A</mark> RI	KDSI LRLV	KAVI Vl <mark>e</mark> i	LGAK Rkpf	(<mark>I</mark> AA) R <mark>I</mark> LP	G <mark>p</mark> yc . <mark>Pv</mark> k	SAN PPR	<mark>RRK</mark> S RRKT	H <mark>WD</mark> L <mark>WD</mark>	YV <mark>L</mark> V FL <mark>L</mark> I	/ <mark>EMR</mark> WM D <mark>EMR</mark> LI

Strain	Genotype	Source
SC5314	Wild type	1
CAI4	ura3::λ imm434/ ura3:: λ imm434	1
BWP17	ura3::λimm434/ura3::λ imm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	2
CWX1	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG ESA1/esa1::HIS1	3
CWX2	ura3::λimm434/ura3::λ imm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG esa1::HIS1/esa1 ::hisG-URA3-hisG	3
CWX3	ura3::λimm434/ura3::λ imm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG esa1::HIS1/esa1 ::hisG	3
CLY3	ura3::λ imm434/ura3::λ imm434 yng2:: hisG /yng2::hisG-URA3-hisG	4
CLY4	ura3::λ imm434/ura3::λ imm434 yng2:: hisG /yng2::hisG	4
CWX10	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG SWR1/swr1::HIS1	This study
CWX11	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG swr1::HIS1/swr1 ::hisG-URA3-hisG	This study
CWX12	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG swr1::HIS1/swr1 ::hisG	This study
CWX13	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG EAF1/eaf1::HIS1	This study
CWX14	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG eaf1::HIS1/eaf1 ::hisG-URA3-hisG	This study
CWX15	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG eaf1::HIS1/eaf1 ::hisG	This study
CSC1	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG eaf7::HIS1/eaf7 ::ARG4	4
CWX16	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG bdf1::HIS1/bdf1 ::hisG-URA3-hisG	This study
CWX17	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG bdf1::HIS1/bdf1 ::hisG	This study
CWX18	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG YAF9/yaf9::HIS1	This study
CWX19	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG yaf9::HIS1/yaf9 ::hisG-URA3-hisG	This study
CWX20	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG yaf9::HIS1/yaf9 ::hisG	This study
CWX21	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG htz1::HIS1/htz1 ::hisG-URA3-hisG	This study
CWX22	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG htz1::HIS1/htz1 ::hisG	This study
CWX23	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study

Table S1. Candida albicans strains used in this study

hda1::HIS1/hda1 ::hisG-URA3-hisG

CWX24	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	hda1::HIS1/hda1 ::hisG	
CWX25	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	rpd3::HIS1/rpd3::hisG-URA3-hisG	
CWX26	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	rpd3::HIS1/rpd3::hisG	
CWX27	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	rpd31::HIS1/rpd31::hisG-URA3-hisG	
CWX28	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	rpd31::HIS1/rpd31::hisG	
CWX29	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	eaf1::HIS1/eaf1 ^{K173R} ::URA3	
CWX30	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	eaf1::HIS1/eaf1 ^{K173Q} ::URA3	
CWX31	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	eaf1::HIS1/eaf1 ^{K489R} ::URA3	
CWX32	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	eaf1::HIS1/EAF1-YAF9::URA3	
CWX33	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	yaf9::HIS1/yaf9 dYEATS::URA3	
CWX34	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	esa1::HIS1/esa1 ^{K296R} ::URA3	
CWX35	ura3::λimm434/ura3::λimm434 his1::hisG/his1::hisG arg4::hisG/arg4::hisG	This study
	esa1::HIS1/ esa1 ^{ĸ296Q} ::URA3	
brg1	his1/his1 leu2/leu2 arg4/arg4 URA3/ura3::λimm434 IRO1/iro1::λimm434	5
	brg1::CdHIS1/brg1::CmLEU2	
CWX36	his1/his1 leu2/leu2 arg4/arg4 ura3::λimm434/ura3::λimm434 IRO1/	This study
	iro1::λimm434 brg1::CdHIS1/brg1::CmLEU2 eaf1::hisG/eaf1 ^{ĸ173R} ::URA3	

Plasmid	Description	Source
pCUB6	Replacement of S. cerevisiae URA3 by C. albicans URA3 in pNKY50	2
pSWR1-KO	0.50 kb and 0.55 kb KO fragments of C. albicans SWR1 and hisG-URA3-hisG	This study
	in pBluescript SK(+)	
pEAF1-KO	0.53 kb and 0.6 kb KO fragments of C. albicans EAF1 and hisG-URA3-hisG	This study
	in pBluescript SK+	
рҮАҒ9-КО	0.55 kb and 0.50 kb KO fragments of <i>C. albicans YAF9</i> and <i>hisG-URA3-hisG</i>	This study
	in pBluescript SK(+)	This study
рвонт-ко	0.56 KD and 0.53 KD KO fragments of <i>C. albicans BDF1</i> and <i>hisG-UKA3-hisG</i>	This study
pHT71-KO	0.50 kb and 0.50 kb KQ fragments of C. albicans HTZ1 and hisG-URA3-hisG	This study
p1121 NO	in pBluescript SK(+)	This study
pPR671	C. albicans ACT1 promoter,13×myc-FLAG, HIS1,	4
	for gene expression under ACT1 promoter control at RP10 locus in genome	
p671-ARG4	C. albicans ACT1 promoter,13×myc-FLAG, ARG4	3
pPR673	C. albicans ACT1 promoter, 13×myc-FLAG, URA3	4
p671-YAF9	1.42 kb containing 5' region and ORF of YAF9 in p671,	This study
	for YAF9-MYC expression from its own promoter at YAF9 locus	
p673-YAF9	1.42 kb containing 5' region and ORF of YAF9 in p673	This study
p671-ARG4-YAF9	1.42 kb containing 5' region and ORF of YAF9 in p671-ARG4	This study
p671-EAF1	3.4 kb containing 5' region and ORF of <i>EAF1</i> in p671	This study
p673-EAF1	3.4 kb containing 5' region and ORF of <i>EAF1</i> in p673	This study
p671-ARG4-EAF1	3.4 kb containing 5' region and ORF of <i>EAF1</i> in p671-ARG4	This study
p671-SWR1	5.4 kb containing 5' region and ORF of SWR1 in p671	This study
p673-SWR1	5.4 kb containing 5' region and ORF of SWR1 in p673	This study
p671- ARG4-	5.4 kb containing 5' region and ORF of SWR1 in p671-ARG4	This study
SWR1		
p671-ESA1	2.18 kb containing 5' region and ORF of ESA1 in p671	This study
p673-ESA1	2.18 kb containing 5' region and ORF of ESA1 in p673	This study
p671-	2.18 kb containing 5' region and ORF of ESA1 in p671-ARG4	This study
ARG4-ESA1		
P673-HDA1	2.5 kb containing 5' region and ORF of <i>HDA1</i> in p673	This study
pBES116	C. albicans URA3 vector for integration at ADE2 locus in genome	6
pBES116-YAF9	0.765 kb full length YAF9 in pBES116 for YAF9 expression from its own promoter at YAF9 locus	This study
pBES116-YAF9 dYEATS	0.549 kb Yaf9 fragment lacking YEATS domain in pBES116	This study

Table S2. Plasmids used in this study

pBES116-EAF1	2.06 kb full length <i>EAF1</i> in pBES116 for <i>EAF1</i> expression from its own promoter	This study
pEAF1 muts	Eaf1 ^{K173R} , Eaf1 ^{K173Q} , Eaf1 ^{K173A} , Eaf1 ^{K173H} , Eaf1 ^{K173N} and Eaf1 ^{K489R} mutation in pBES116-EAF1	This study
pBES116-ESA1	2.18 kb ESA1 in pBES116 for ESA1 expression from its own promoter	3
pEAF1-YAF9	EAF1 and YAF9 fusion fragment in pBES116 for Eaf1-Yaf9 fusion expression from EAF1 promoter	This study
pBA1	<i>C. albicans ADH1</i> promoter in BES116, for gene expression under <i>ADH1</i> promoter control at <i>ADF2</i> locus	7
pBA1-YAF9	0.765 kb full length YAF9 in pBA1 for YAF9 expression from ADH1 promoter	This study
pEaf1-myc	Eaf1-Myc fusion in pBA1	This study
pEaf1-myc muts	Lysine to arginine substitution at K173, K447, K478, K481, K482, K489 and K552 in pEaf1-myc	This study
pEsa1-myc	Esa1-Myc fusion in pBA1	This study
pEsa1-K296R-myc	Lysine to arginine substitution at K296 in p Esa1-myc	
pEsa1-HA	Esa1 with 3HA at C-terminus from its own promoter, URA3	This study
pSwr1-HA	Swr1 with 3HA at C-terminus from its own promoter, URA3	This study
pYaf9-HA	Yaf9 with 3HA at C-terminus from its own promoter, URA3	This study
pEaf1-HA	Eaf1 with 3HA at C-terminus from its own promoter, URA3	This study
pEaf1-HA muts	Eaf1 $^{\text{K173R}},$ Eaf1 $^{\text{K173Q}}$, Eaf1 $^{\text{K173A}}$ and Eaf1 $^{\text{K489R}}$ mutation in pEaf1-HA	This study
pHda1-HA-URA	Hda1 with 3HA at C-terminus from its own promoter, URA3	This study
pHda1-HA-HIS	Hda1 with 3HA at C-terminus from its own promoter, HIS1	This study
pGST-Eaf1	2.06 kb full length EAF1 in pGEX-4T1 for GST-Eaf1 expression in E. coli	This study
pGST-Eaf1 muts	Eaf1 ^{K173R} and Eaf1 ^{K173Q} mutation in pGST-Eaf1	This study
pMBP-Yaf9	0.765 kb full length YAF9 in pSJ8 for MBP-Yaf9 expression in E. coli	This study
pMBP-dYEATS	0.549 kb Yaf9 fragment lacking YEATS domain in pSJ8	This study
pMBP-YEATS	0.218 kb Yaf9 fragment containing YEATS domain in pSJ8	This study

Primers Sequence Purpose and features F1 5'- ATTAGTAACACATCCCTCTCATATACCGCAATGGAGACCAG KO SWR1 by PCR method AAAATTTGGAAGACGGCAAgttttcccagtcacgacgtt **R**1 5'- AACTTACCAAAGTAATCTGTAGTAAACTCTCCCTCTTGAATA ACAACGTTATCCAACTGTtgtggaattgtgagcggata F2 5'- tgca agatet etgcag CTGCAGGAAAAGTATCCGTA pSWR1-KO-5' region 5'- tgca agatet GCTGGCTGGTTCGTTTCCCA R2 F3 5'- cgat ggatcc GACTAGAAATACAGTGGCCA pSWR1-KO-3' region R3 5'- cgat gcatgc ctgcag GTTCAAGTACACAACGTGCT 5'-GTGGCGAAATACTTGGCACAGTCTCTAAAACCACATACGCCA KO EAF1 by PCR method F4 ACCCAATGCCAAACACCAgttttcccagtcacgacgtt R4 5'-AAAGAAATACAACGCCACCGAAATGGACCCGCCACAACCGC AACTATGAAAAGAAGTTTAtgtggaattgtgagcggata F5 5'- tgca agatet etgcag CCAACCCTGCAAACCCTCTAA pEAF1-KO-5' region R5 5'- tgca agatctGGTTTGGTTAAGAAGAAGAAG F6 5'- cgat ggatccGTCAGACAACGACCTTAAACA pEAF1-KO-3' region R6 5'- cgat gcatgc ctgcagCTAACGGATAGTCTTGGGGGC F7 5'- CCAATGGTATAGATAGAGATGTTTTAAAGTAATAGGTAATTA KO YAF9 by PCR method GGATATGCAAATATAAATgttttcccagtcacgacgtt 5'- CCCATGAATGATGATAGCACTAGTTCTAGTTCTAGTTCTAGTT **R**7 CTAGTTGTTATTTTAAAtgtggaattgtgagcggata F8 5'-tgca agatct ctgcag GATAGAGATGTTTTAAAGTAA pYAF9-KO-5' region **R**8 5'-tgca agatct GAATGAGTTGATGACATGGAT F9 5'-cgat ggatcc GAAAAATTAGCCCTCCTACAA pYAF9-KO-3' region R9 5'-cgat gcatgc ctgcag GCACTAGTTCTAGTTCTAGTT F10 5'-CCATCAATTTATAATCTTTAATAATTTAGAAAAAATTCCCT KO BDF1 by PCR method TTCTCATCAAACTGGgtttttcccagtcacgacgtt R10 5'GTCTCTCGTTTTTGTTGGAATCTTCGGAGTTTTGAAACCTTAAGCT TTTTTTTTTAATTT<u>tgtggaattgtgagcggata</u> F11 5'- tgca agatct ctgcag GCTTGTTAAGAATGCTATCA pBDF1-KO-5' region R11 5'- tgca agatet GATGTGAACTTTGTTGGTTA F12 5'- cgat ggatcc GGTCAGCAAGGGTCCGACAA pBDF1-KO-3' region R12 5'- cgat gcatgc ctgcag GGTTAATTGTTGTTGTTTATCTA F13 5'- CCAAAATTATTGCACTGGACACCACCTCTGTTCACTGCAAAC Endogenous Esa1-HA CAATTACGGTTTGGGTGGCGCGGCGGCGGCGCGCATCTTT R13 5'- CGATAAAAGTATTAGAATATGGGGAACATCCTATTAAATATA TATCTATATATATATATTAGGGGGGATCCACTAGTTCTAGA F14 5'-GATGGCATTGGTCACATTGATGAGTATATGTTACGGTTTATTT Endogenous Swr1-HA CGGATGGATATTATTTA<u>CGCGGTGGCCGCCATCTTT</u> 5'-GCAAGAGATTTTTATAAAAGAAAGGGCCATTTGCTTAATAT R14 GTAATACAAGGAGTAACTAGGGGGGATCCACTAGTTCTAGA F15 5'- ATGTCATCAACTCATTCAAGAAGAATAAAATTTGTATCGATAT Endogenous Yaf9-HA CAGTACCTATATTATATCGCGGTGGCGGCCGCATCTTT

Table S3. Primers used in this study

R15	5'-TTATTGTAGGAGGGCTAATTTTTCTTGTTCGAGTAATTTATATTG	
	ATTTCGTTGATTTTC GGGGGGATCCACTAGTTCTAGA	
F16	5'- ATGAACGATACTTGGAGGTCTCGATTAAAGGAGATTCTGCATA	Endogenous Eafl-HA
	TCACTGCAGACCCATTCCCGCGGTGGCGGCCGCATCTTT	
R16	5'-CTACTTACGCGTTGTTTGGCGACCCTGACATGGGCGATGCAGTT	
	TGGTTTTTTGGTGTG GGGGGGATCCACTAGTTCTAGA	
F17	5'- gct ggatcc GACGAAAATTTTTCCTTGATA	Endogenous Esa1-myc
R17	5'- ggag acgcgt cg GATAATGGCTTTTCTGGCGAA	
F18	5'- gct ggatcc GAGATGAGTATAATACAATCA	Endogenous Swr1-myc
R18	5'- ggag acgcgt cg TAAATAATATCCATCCGAAATA	
F19	5'- gct ggatcc TTGATGAAAAATTATCTACTC	Endogenous Yaf9-myc
R19	5'- ggag acgcgt cgTTGTAGGAGGGCTAATTTTTCT	
F20	5'- gct ggatcc GACAATACCAACGACGAAGA	Endogenous Eaf1-myc
R20	5'- ggag acgcgt cg CGCGTTGTTTGGCGACCCTGA	
F21	5'-gat gcggccgc GACAATACCAACGACGAAGACA	pBES116-EAF1
R21	5'-gat ggtacc TTACGCGTTGTTTGGCGACCC	
F22	5'-gat gcggccgc TTGATGAAAAATTATCTACTC	pBES116-YAF9
R22	5'-gat ggtaccTCATGTAGGAGGGCTAATTTTTCT	
F23	5'-GTGACATTTAAATTACATGAAAACTTATGAAAAATCCA	pBES116-YAF9 dYEATS
R23	5'-ATGTAATTTAAATGTCACTCTTGAATGAGTTGATGACAT	
F24	5'-gat gcggccgcGACAATACCAACGACGAAGACA	pEAF1-YAF9
R24	5'- TCAGGGTCGCCAAACAACGCG ATGTCATCAACTCATTCAAGA	
F25	5'-TCTTGAATGAGTTGATGACATCGCGTTGTTTGGCGACCCTGA	
R25	5'-gatggtaccTCATGTAGGAGGGCTAATTTTTCT	
F26	5'-ACAGTCTGCCAGACTTCATCTGCTCTCCATTGACG	Hda1-HA
R26	5'-CTGACTGACTGACTGCTGGTGGAAGTTTCAAAGCA	
F27	5'-CTTGCCTTACCTCGGTTTGAAAAATAAAAGAACGAGCCTA	
R27	5'-TGTGTACGAGTTGCAATCTTCGGAAGAGGAGTAGTCTTCA	
F28	5'-GTATGGCAAGAGACCATCAAACG	
R28	5'-TCAGCACAGGGATATGGGAAGTA	
F29	5'- gct ggatcc TTATAGAGAAGAATGACTCA	Hda1-Myc
R29	5'- ggag acgcgt cgATCTTCGGAAGAGGAGTAGT	
F30	5'-gatc agatct ATGGCGGTAGCAGAAATCAAA	pBA1-YAF9
R30	5'-gatc atcgat TTACCACCCAAACCGTAATTG	
F31	5'-CAGTCAGTCAGTCAGGATAACGCAGGAAAGAACAT	PUC18 backbone
R31	5'-AGTCTGGCAGACTGTCTTAAGGGATCCAAGCTTCCC	
	GGGTTCTTAGACGTCAGGTGGCA	
F32	5'-TGCAACTCGTACAAAGCGCGCCAATTAGATCCGTG	URA3 amplification
R32	5'-CCGAGGTAAGGCAAGTTCTTTCCTGCGTTATCCTG	
F33	5'-gatgaattcATGTCATCAACTCATTCAAGA	pMBP-Yaf9
R33	5'-gatctcgagTCATGTAGGAGGGCTAATTTTTCT	
F34	5'-gctggatccATGAACGATACTTGGAGGTCT	pGST-Eaf1
R34	5'-ggagacgcgtctaGTTGTTTGGCGACCCTGACAT	
F35	5'-CCAGTTACTTCTGGATCATC	<i>HWP1</i> , qRT PCR

R35	5'-TCGGTACAAACACTGTTAGA	
F36	5'-TGGTGTTGCGTGGTCATTG	EAF1, qRT PCR
R36	5'-ATCGGTGGTTCTCTGGAGTC	
F37	5'-GCTCAGTACCTCGCCAGTT	EAF1-YAF9, qRT PCR
R37	5'-GTTCTGGTGGTGTTGTTGGTT	
F38	5'-GCTTTTGGTGTTTGACGAGTTTCT	ACT1, qRT PCR
R38	5'-GTGAGCCGGGAAATCTGTATAGTC	

Reference

1. Fonzi, W. A., Irwin, M. Y. Isogenic strain construction and gene mapping in Candida albicans. *Genetics* 1993; **134**:717-728.

2. Wilson, R. B., Davis, D., Mitchell, A. P. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. *J. Bacteriol.* 1999; **181**:1868-1874.

3. Wang, X., Chang, P., Ding, J., Chen, J. Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. *Eukaryot. Cell* 2013; **12**:438-449.

4. Lu, Y. *et al.* Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation in Candida albicans. *Mol. Biol. Cell* 2008; **19**:4260-4272.

5. Homann, O. R., Dea, J., Noble, S. M., Johnson, A. D. A phenotypic profile of the Candida albicans regulatory network. *PLoS Genet.* 2009; **5**:e1000783.

6. Feng, Q., Summers, E., Guo, B., Fink, G. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. *J. Bacteriol.* 1999; **181**:6339-6346.

7. Cao, F. *et al.* The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. *Mol. Biol. Cell* 2006; **17**:295-307.