Supplementary Information

Determining Relative Dynamic Stability of Cell States Using Boolean Network Model

Jae Il Joo^{1§}, Joseph X. Zhou^{2,3§}, Sui Huang^{2*}, Kwang-Hyun Cho^{1*},

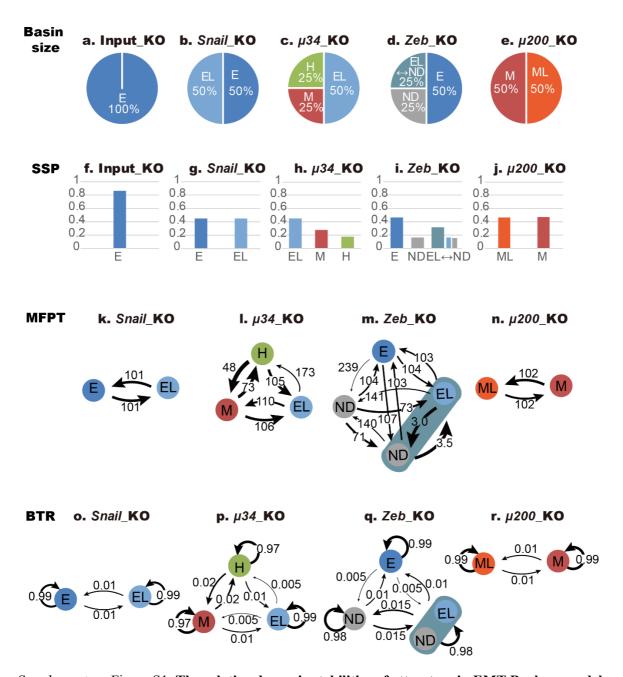
- ¹ Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- ² Institute for Systems Biology, Seattle, WA, USA
- ³ Kavli Institute for Theoretical Physics, UC Santa Barbara, California, USA
- § These authors contributed equally as first author
- *Authors for correspondence (KHC: ckh@kaist.ac.kr; SH: shuang@systemsbiology.org)

Supplementary Table S1. Derived logic tables for Boolean network model for EMT.

 $Snail(t+1) = Input(t) \text{ AND NOT } (Snail(t) \text{ AND } \mu 34(t))$

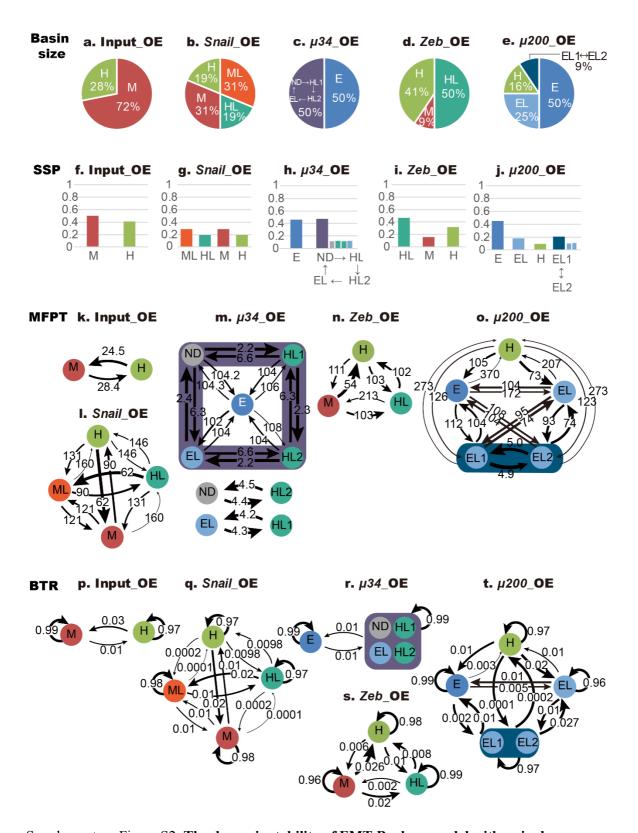
Input(t)	Snail(t)	$\mu 34(t)$	Snail(t+1)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

 $\mu 34(t+1) = NOT Snail(t) AND NOT Zeb(t)$


Snail(t)	Zeb(t)	μ34(t+1)
0	0	1
0	1	0
1	0	0
1	1	0

 $Zeb(t+1) = NOT \ \mu 200(t) OR (Snail(t) AND Zeb(t))$

Snail(t)	Zeb(t)	$\mu 200(t)$	Zeb(t+1)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1


 $\mu 200(t+1) = \text{NOT } Snail(t) \text{ OR } (Zeb(t) \text{ AND } \mu 200(t))$

Snail(t)	Zeb(t)	$\mu 200(t)$	μ200(t+1)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Supplementary Figure S1. The relative dynamic stabilities of attractors in EMT Boolean model with single KO mutation.

(a-e) The attracting basin size ratio of three attractors for each single gene knock-out. (f-j) The steady state probability distribution of three attractors for each single gene knock-out. For cyclic attractors, narrow bars represent steady state probability distribution of each state consisting the cyclic attractor and thick bar represent summed probability of them. (k-n) The mean first passage time between three attractors for each single gene knock-out. (o-r) The basin transition rates between three attractors for each single gene knock-out. States of cyclic attractor are grouped within the same color block. Note that we cannot analyze MFPT and BTR of the "Input node knock-out" case because the case had only one cell attractor.

Supplementary Figure S2. The dynamic stability of EMT Boolean model with a single gene over-expression

(a-e) The attracting basin size ratio of three attractors for each single gene over-expression. (f-j) The steady state probability distribution of three attractors for each single gene over-expression. (k-n) The mean first passage time between three attractors for each single gene over-expression. (o-r) The basin

transition rates between three attractors for each single gene over-express are grouped within one color block.	sion. States of cyclic attractor

Supplementary File. SBML-qual format of EMT Boolean model (sbml).

Supplementary Table S2. Data for the relative dynamic stability of EMT Boolean model with single mutation (xlsx).

Supplementary Table S3. 1-degree neighbor of wild type and mutated EMT network (xlsx).