Supplementary materials

	Positive Negative		ative	P-value	log(P-value)	
Position	0	1	0	1	I value	log(i value)
-25	22938	3574	237968	33246	1.1392E-08	7.943411816
-24	23046	3466	238766	32448	1.6362E-07	6.786161828
-23	22873	3639	236820	34394	1.4368E-06	5.842594305
-22	23127	3385	237734	33480	4.6296E-02	1.334459712
-21	23080	3432	238822	32392	2.1623E-06	5.665074778
-20	22956	3556	237311	33903	2.2359E-05	4.650551911
-19	23028	3484	238524	32690	3.0275E-07	6.51891752
-18	23179	3333	239392	31822	6.1149E-05	4.213613994
-17	23008	3504	236945	34269	6.9935E-03	2.155306589
-16	23071	3441	238012	33202	5.2626E-04	3.278799655
-15	23109	3403	238447	32767	3.6345E-04	3.439555375
-14	22890	3622	236473	34741	8.5695E-05	4.067044889
-13	23017	3495	237358	33856	1.0991E-03	2.958949538
-12	23112	3400	238708	32506	7.1291E-05	4.146964601
-11	22977	3535	237141	34073	3.3893E-04	3.469884854
-10	23116	3396	238467	32747	5.0566E-04	3.296143673
-9	23203	3309	239626	31588	6.3040E-05	4.200380539
-8	23035	3477	237721	33493	3.4257E-04	3.465256475
-7	23160	3352	238377	32837	1.1075E-02	1.95565113
-6	23203	3309	239175	32039	1.4083E-03	2.85131802
-5	22963	3549	236486	34728	7.1140E-03	2.147883425
-4	22918	3594	237319	33895	9.2043E-07	6.036007285
-3	23134	3378	239047	32167	2.8166E-05	4.55028225
-2	23520	2992	245937	25277	2.3900E-24	23.62160012

Table S1. Fisher's Exact Test Result on Training Data

-1	24019	2493	249450	21764	1.5465E-14	13.81065704
m ⁶ A	24282	2230	250170	21044	1.8411E-04	3.734925499
1	22970	3542	234720	36494	6.7129E-01	0.173092105
2	23288	3224	234679	36535	1.4922E-09	8.826160222
3	22898	3614	234283	36931	9.4765E-01	0.02335424
4	22851	3661	235042	36172	3.1919E-02	1.495950385
5	23055	3457	236480	34734	2.8121E-01	0.550972658
6	23086	3426	237858	33356	3.3538E-03	2.47446888
7	23025	3487	236516	34698	9.5986E-02	1.017791585
8	23134	3378	238543	32671	9.8694E-04	3.005710269
9	23202	3310	239179	32035	1.3133E-03	2.881649017
10	23050	3462	237082	34132	2.7208E-02	1.56530172
11	23058	3454	237720	33494	1.4655E-03	2.834011725
12	23140	3372	239222	31992	1.1026E-05	4.957564887
13	23030	3482	237314	33900	3.0605E-03	2.514212071
14	23183	3329	238305	32909	4.5754E-02	1.339568637
15	23092	3420	239299	31915	7.3293E-08	7.134938054
16	22993	3519	237004	34210	2.1694E-03	2.663658376
17	23130	3382	237953	33261	2.0281E-02	1.692903976
18	23200	3312	238704	32510	1.6251E-02	1.789117825
19	22976	3536	236972	34242	9.4642E-04	3.023916026
20	23227	3285	237804	33410	7.3193E-01	0.13552882
21	23225	3287	239274	31940	2.9910E-03	2.524182748
22	23077	3435	237502	33712	1.3765E-02	1.861217582
23	23205	3307	238094	33120	2.1604E-01	0.665466371
24	23223	3289	239057	32157	8.7203E-03	2.059467838
25	23024	3488	237090	34124	7.5174E-03	2.123929588

(This table shows the Fisher's exact test results on training data. There are 26512 positive and 271214 negative samples in training dataset, and we count the SNP variant states (0 or 1) of each position in positive and negative samples respectively. Then Fisher's exact test is used to evaluate the distribution

difference of SNP states between positive and negative sample, then a P-value is calculated to demonstrate the difference level. A lower P-value means a higher SNP state distribution difference at the position.)

position	Fisher's exact	MRMR	Average	Rank
2	1 1	1	1	1
-2	2	5	35	2
-1	6	<u></u>	65	3
-24	10	/ 	0.5	
	7	12	95	5
2	3	23	13	6
-25	4	23	13	7
-11	19	9	14	8
-4	8	21	14.5	9
-15	21	11	16	10
-9	15	17	16	11
-23	9	25	17	12
16	30	8	19	13
25	36	2	19	14
-13	26	15	20.5	15
m ⁶ A	18	27	22.5	16
11	29	16	22.5	17
18	40	6	23	18
-18	14	33	23.5	19
6	33	14	23.5	20
15	5	42	23.5	21
-20	12	36	24	22
-6	28	20	24	23
9	27	22	24.5	24
-3	13	37	25	25
13	32	18	25	26
-12	16	35	25.5	27
-8	20	31	25.5	28
1	49	3	26	29
22	39	13	26	30
-17	34	19	26.5	31
19	24	32	28	32
-14	17	40	28.5	33
12	11	48	29.5	34
20	50	10	30	35
-16	23	41	32	36
-10	22	43	32.5	37
24	37	28	32.5	38
21	31	38	34.5	39
	44	30	37	40
/	46	29	57.5	41

Table S2. Position SNP Specificity Ranking with MRMR and Fisher's Test

8	25	51	38	42
3	51	26	38.5	43
10	42	-2	20	44
5	48	34	41	45
-5	35	49	42	46
-7	38	47	42.5	47
17	41	45	43	48
-22	45	44	44.5	49
4	43	50	46.5	50
23	47	46	46.5	51

Table S3. Features Space used in HMpre

Feature No.	Feature name	
1-204	4-bit Binary Encoding	
205-408	Chemical Property with Density function	
409-488	K-mer (2-mer, 3- mer)	
489-500	SNP	
501-502	Site Location	
503-509	Information Theory Feature	

Table S4. 10-fold cross validation results of conventional feature combinations with new features

Feature Space	precision	recall	F1	ACC	мсс
4-bit +3 new	0.2577	0.5217	0.345	0.8236	0.2777
ODE + 2 manual	0.2(01	0.5002	0.2444	0.0275	0 2757
OPF +3 new	0.2601	0.5083	0.3441	0.8275	0.2757
K-mer + 3 new	0.2098	0.3996	0.2751	0.8124	0.1916
4-bit +OPF +3 new	0.2598	0.2586	0.3445	0.8268	0.2763
4-bit +K-mer +3 new	0.2651	0.5311	0.3536	0.8271	0.288
OPF +K-mer +3 new	0.2664	0.5187	0.352	0.8299	0.2852
Proposed feature space	0.2669	0.5248	0.3538	0.8293	0.2877

(This table shows 10-fold cross validation results of different conventional feature combinations with new features. As is shown in the table, a single conventional feature with 3 new features has relatively lower performance than combinational conventional features. However, the proposed feature space achieves the best overall performance with highest precision, recall, F1 and ACC, so the three conventional features are all important in the prediction.)

Algorithm S1. SNP Specificity Identification Algorithm

Algorithm: SNP Specificity Identification Algorithm				
Input: 51-bit SNP variant sequences of <i>n</i> training samples and <i>t</i> test samples, each				
sequence is $(v_1, v_2,, v_{51})$ where v_k denote the SNP state (0 or 1, variant or not) of k-th				
position in samples; training sample label set C.				
1: Combine the SNP sequences of training samples into $n*51$ Matrix S_{θ} ;				
2: for $i = 1$ to 51 do				
3: Calculate probabilistic density function $p(x_i)$ for column <i>i</i> in S_0 ;				
4: Calculate $p(y)$ for C and joint probability $p(x_i, y)$;				
5: Define mutual information: $M_i(x_i, y) = \sum_{x_i=0}^{1} \sum_{y=0}^{1} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)}$				
6: end for				
7: Give the feature number <i>m</i> of target subsets <i>S</i> ;				
8: for $j = 1$ to <i>m</i> do				
9: for s_i in S_0 do				
10: Put <i>si</i> into <i>S</i>				
11: Dependency between S and C: $D = \frac{1}{ S } \sum_{x_i \in S} M_i(x_i; y)$				
12: Redundancy among S: $R = \frac{1}{ S ^2} \sum_{x_i, x_j \in S} M_i(x_i; x_j)$				
13: Computing $\phi = D - R$				
14: end for				
15: take the s_m which has maximum \emptyset as the <i>j</i> -th column of <i>S</i>				
16: mrmr rank $(s_m)=j$				
17: importance (s_m) = \emptyset				
18: Remove s_m from S_0				
19: end for				
20: for <i>k</i> =1 to 51 do				
21: count number of variant at position k in datasets:				
22: training samples have <i>p</i> variants and <i>q</i> non-variants				
23: testing samples have <i>p</i> ' variants and <i>q</i> ' non-variants				
24: p-value = fisher test (p, q, p', q')				
25: end for				
26: fisher test rank = sort(p-value)				
27: specificity rank of position v = average (mrmr rank(v), fisher test rank(v))				
28: take top 12 SNP-specific positions as SNP feature				
Output: SNP feature				

Fig. S1. Distribution of feature importance scores in XGBoost Classifier learning stage. here are 508 features in total and several colours represent features constructed by different coding algorithms. The importance scores of most features are less than 50 in 4-bit Binary and OPF features. Even some features have an average score much less than average, and these features correspond to the m6A and adjacent two sites. The three centre positions of samples are always 'AAC' or 'GAC', so their importance scores are indeed low. And the highest three features are frequency of adenine in transcript, relative site location and relative entropy features. Meanwhile, density features in OPF has are latively high importance, which indicates the nucelotide density of each site make sense in prediction. The importance scores of K-mer and SNP features are almost more than 4-bit Binary and Chemical Property features, which have low significance in the model tree construction.