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1 The Model
We consider a network of N neurons with firing rates represented by a vector of analog variables ~r. Standard normal
patterns of current {~ξk}pk=1 with ξki

iid∼ N (0, 1) are imprinted in the connectivity matrix as the corresponding firing
rates elicited by these current patterns, neglecting contributions of the recurrent connections. Hence, the firing rate
patterns corresponding to these current patterns are given by φ(ξki ), where φ is the static transfer function of single
neurons. In other words, the stored firing rate patterns are standard normal patterns of current {~ξk}pi=1 passed
through the static transfer function φ. Note that in the limit where h0 is large, these firing rate patterns become
distributed according to a log-normal distribution, since the transfer function is exponential in that limit. The rate
dependent learning rule is given by two firing rate dependent functions: 1) g which characterizes the dependence on the
firing rate of the pre synaptic neuron; 2)f which characterizes the dependence on the firing rate of the post synaptic
neuron. With this learning rule, assuming a linear summation of terms corresponding to the different patterns, as in
the Hopfield model (Hopfield, 1982) and many of its generalizations, the connectivity matrix is given by

Jij =
Acij
cN

p∑
k=1

f [φ(ξki )]g[φ(ξki )], (1)

where cij is a sparse directed Erdős-Rényi structural connectivity with each synapse present with probability c, and
the pair of functions f and g define together the learning rule. This is a generalization of classical Hebbian learning
rules such as the covariance (Sejnowski, 1977) and BCM (Bienenstock et al., 1982) since the synaptic strength of the
connections between pre and post synaptic neurons is proportional to the product of two functions of their activities.
This feature allows a nonlinear dependence of the synaptic strength with the pre and post synaptic activity, but
maintains the separability of the learning rule. The operation of f and g under a vector ~r, i.e. f(~r) or g(~r), is
element-wise. We assume that ∫ ∞

−∞
Dzg(φ(z)) = 0 (2)

which ensures that the average change in connection strength due to learning of a single pattern is zero. This could
be enforced by a homeostatic mechanism that controls the mean changes in the incoming inputs due to learning
(Toyoizumi et al., 2014; Vogels et al., 2011). In our model we assume that both functions f and g are bounded above
and below by qf/qg and qf − 1/qg − 1, respectively, where 0 < qf < 1, 0 < qg < 1. The constant A in Eq. (1) controls
the strength of the changes in the connectivity due to the learning rule.

The firing rate ri(t) of each neuron evolve according to standard rate equations (Hopfield, 1984), i.e.

τ ṙi = −ri + φ

Ii +

N∑
i 6=j

Jijrj

 . (3)

Thus, the steady or attractor state for the dynamics is given by

ri = φ

 N∑
i 6=j

Jijrj

 i = 1, . . . , N. (4)

2 Mean Field Analysis

2.1 Order parameters - delay period
Throughout this paper, we will perform a mean field analysis of the steady states of the network in the limits N , cN
and p going to infinity, 1 � Nc � N and p = α/cN where α remains of order 1. We consider exclusively steady
states that are correlated with a single pattern ~ξ1 but uncorrelated with all other patterns ~ξµ for µ > 1. States with
a non-zero correlation with one of the patterns are termed ‘retrieval states’, while the state with no correlation with
any of the patterns is termed ‘background state’. The steady state ~r given by Eq. (4) depends on the pattern being
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retrieved ~ξ1 (the ‘signal’) but also on two sources of frozen noise: 1) the disorder due to the random patterns stored
in the connectivity; 2) the disorder given by the structural connectivity C (where C is a binary matrix with entries
cij ∈ {0, 1}). The goal of the mean-field analysis is to compute whether and how the network state ~r is correlated
with ~ξ1, together with other quantities of interest such as the distribution of firing rates.

The first step in the mean field analysis consists in computing the statistics of the synaptic inputs,

hi = Ii +

N∑
i 6=j

Jijrj , (5)

where the connectivity matrix Jij is given by Eq. (1). We first start by the situation in which there are no external
inputs, Ii = 0. In a delay match to sample experiment, this describes the intervals before presentation of the stimulus,
and after this presentation (delay period)

To compute the statistics of synaptic inputs, it is useful to separate the contribution due to the first pattern ξ1i that
the network is trying to retrieve, with the contributions of all other patterns, which will act as noise on the retrieval
of the first pattern,

hi = Af(ξ1i )
1

cN

∑
j

cijg(φ(ξ1j ))rj + Yi (6)

where Yi describes the ‘noise’ term,

Yi =
A

cN

∑
µ>1

∑
j

cijf(ξµi )g(φ(ξµj ))rj

In the large cN limit, due to the law of large numbers, the first term in Eq. (6) converges in probability to Af(ξ1i )q,
where q is given by

q =
1

N

∑
i

g(φ(ξ1i ))ri. (7)

q is our first order parameter. It describes how correlated the network state is with a non-linear transformation of the
stored pattern ξ1i , g(φ(ξ1i )). This is a natural generalization of the overlap defined in classical models (Amit et al.,
1985) for networks with generalized Hebbian learning rules.

It is instructive to consider first the case in which ξ1 is the only stored pattern in the connectivity matrix. In this
case, the synaptic input to neuron i is uniquely determined by the learning rate A, the post-synaptic function f taken
at the firing rate induced by the pattern φ(ξ1i ), and q. To compute q, we can use Eq. (7), replace ri by φ(hi) where
hi = Af(ξ1i )q, and replace 1/N

∑
i by an integral over the distribution of ξi,

q =

∫
Dξg(φ(ξ))φ(Af(φ(ξ))q), (8)

where Dξ denotes the Gaussian measure dξe−ξ
2/2/
√

2π. Eq. (8) can be solved to obtain the possible values of q given
f , g and A. Note that q = 0 (corresponding to the background state) is always a solution to this equation, due to
Eq. (2).

In the case in which many patterns are stored in the connectivity matrix, we need to compute the statistics of the
noise term Yi. In the large p, N limits, this term becomes distributed according to a Gaussian distribution with zero
mean (since the average of g(φ(ξ)) over the distribution of ξs is zero) and a variance given by

Var(Yi) = αγM

where

γ ≡ A2

∫ ∞
−∞
Dξf2(φ(ξ)))

∫ ∞
−∞
Dξg2(φ(ξ))), (9)

and M is our second order parameter, which is equal to the average squared firing rate over the network,

M =
1

N

∑
i

r2i . (10)
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The final step is to compute the order parameters self-consistently. For this, we use the fact that Yi is a Gaussian
random variable with zero mean and variance αγM , replace ri by φ(qAf(φ(ξ1i )) + Yi in Eqs. (7,10) and replace the
sums over i by a double integral over the distributions of ξi and Yi, leading to

q =

∫ ∞
−∞

∫ ∞
−∞
DzDyg(φ(z))φ(qAf(φ(z)) +

√
αγMy) (11)

M =

∫ ∞
−∞

∫ ∞
−∞
DzDyφ2(qAf(φ(z)) +

√
αγMy). (12)

2.2 Distributions of firing rates - delay period
To compute the distribution of firing rates, we use the fact that the distribution of synaptic inputs conditioned on the
pattern being retrieved is Gaussian,

p
(
h|ξ1 = z

)
= N (Af(φ(z))q, αγM) , (13)

where the order parameters q and M are determined by the self-consistent equations (11) and (12).
Using the fact that the transfer function is non-decreasing, we obtain the distribution of steady state firing rates

conditional to the pattern ~ξ1 presented during the delay period

pr(r|ξ1 = z) =
1√

2παγM
exp

(
−
(
φ−1(r)−Af(z)q

)2
2αγM

)
dφ−1(r)

dr
. (14)

From this conditional probability distribution, we obtain the marginal distribution of firing rates at the steady
state, r,

pr(r) =

∫ ∞
−∞
Dz 1√

2παγM
exp

(
−
(
φ−1(r)−Af(z)q

)2
2αγM

)
dφ−1(r)

dr
. (15)

2.3 Order parameters and distributions of firing rates - presentation period
A similar analysis can be done in the situation when an external stimulus is presented to the network. We consider
here two scenarios, one in which the presented stimulus is one of the stored patterns, Ii = ξ1i (a ‘familiar’ stimulus),
and the other in which the stimulus is uncorrelated with the stored patterns (a ‘novel’ stimulus).

In the ‘novel’ case, the synaptic inputs are
hi = Ii + Yi (16)

where the external stimulus {Ii} is independently sampled from a normal distribution with mean zero and variance
I0 (i.e. Ii

iid∼ N (0, I20 )), where I0 is the amplitude of the stimulation. For consistency reasons we use I0 = 1 in all
the results shown in this paper, but show here calculations for arbitrary I0. The stimulus ~I is independent of all the
previous patterns learned {~ξk}pk=1. Therefore, the synaptic inputs are the sum of two uncorrelated Gaussian random
variables, one with variance I20 , the other with variance αγM . Hence, they are distributed according to a Gaussian of
variance

√
I20 + αγM .

Since the stimulus is uncorrelated with all stored patterns, the overlap q is equal to zero, while the other order
parameter M is given by

M =

∫ ∞
−∞
Dzφ2(

√
I20 + αγMz). (17)

The distribution of firing rates during the presentation period for a novel stimulus is a distribution of a Gaussian
of mean zero and variance

√
I20 + αγM passed through the non-linear function φ and is therefore given by

pnov
pres(r) =

1√
2π(I20 + αγM)

dφ−1(r)

dr
exp

(
− (φ−1(r))2

2(I20 + αγM)

)
. (18)
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In the ‘familiar’ case, the synaptic inputs during presentation of the pattern become

hi = I0ξ
1
i + qAf(φ(ξ1i )) + Yi (19)

where the first term in the r.h.s. of Eq. (19) is due to the external input, and the two other terms are identical to
the situation analyzed in the previous section. Again, we use in all results shown in this paper I0 = 1 but show the
calculations for arbitrary I0.

The distribution of the synaptic inputs, conditioned on the pattern ξ1i , has now a mean I0ξ1i + qAf(φ(ξ1i )), and a
variance αγM . This leads to the following equations for the order parameters q and M ,

q =

∫ ∞
−∞

∫ ∞
−∞
DzDyg(φ(z))φ(I0z +Af(φ(z))q +

√
αγMy) (20)

M =

∫ ∞
−∞

∫ ∞
−∞
DzDyφ2(I0z +Af(φ(z))q +

√
αγMy), (21)

while the distribution of firing rates is

pfam
pres(r) =

1√
2παγM

dφ−1(r)

dr

∫ ∞
−∞
Dz exp

(
− (φ−1(r)− I0z −Af(φ(z))q)2

2αγM

)
. (22)

3 MFT when f and g are described by step functions

3.1 Equations for arbitrary A, qf and qg

Here we take f and g to be step functions (i.e. βf , βg →∞) with the same threshold, i.e.:

f(η) =

{
qf η ≥ xf
−(1− qf ) η < xf

(23)

and

g(η) =

{
qg η ≥ xf
−(1− qg) η < xf .

(24)

The condition
∫∞
−∞Dξg(φ(ξ))) = 0 implies that

qg =

∫ xf

−∞
dr

dφ−1(r)
dr√
2π

e−
(φ−1(r))2

2 .

The mean field equations simplify to

q = qg(1− qg)
{∫ ∞
−∞
Dyφ

(
A
√
γ̃

[(
qf√
γ̃

)
q +
√
αMy

])
−
∫ ∞
−∞
Dyφ

(
A
√
γ̃

[
−
(

1− qf√
γ̃

)
q +
√
αMy

])}
(25)

M = (1− qg)
∫ ∞
−∞
Dyφ2

(
A
√
γ̃

[
q

(
qf√
γ̃

)
+
√
αMy

])
+ qg

∫ ∞
−∞
Dyφ2

(
A
√
γ̃

[
−
(

1− qf√
γ̃

)
q +
√
αMy

])
(26)

where
γ̃ =

∫ ∞
−∞
Dξ
(
g(φ(ξ))2

) ∫ ∞
−∞
Dξ
(
f(φ(ξ))2

)
= qg(1− qg)

[
q2f (1− qg) + (1− qf )2qg

]
.
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Defining

m0 ≡ q

rmqg(1− qg)
(27)

M0 ≡ M

r2m
(28)

Ā ≡ A
√
γ̃ (29)

ψ(x) ≡ φ(x)

rm
(30)

p ≡ 1− qg (31)

η ≡
√

qg(1− qg)
q2f (1− qg) + (1− qf )2qg

, (32)

we obtain

m0 =

∫ ∞
−∞
Dyψ

(
Ā
[
qfηm0 +

√
αM0y

])
−
∫ ∞
−∞
Dyψ

(
Ā
[
−(1− qf )ηm0 +

√
αM0y

])
(33)

M0 = p

∫ ∞
−∞
Dyψ2

(
Ā
[
qfηm0 +

√
αM0y

])
+ (1− p)

∫ ∞
−∞
Dyψ2

(
Ā
[
−(1− qf )ηm0 +

√
αM0y

])
. (34)

3.2 Equations for qg = qf

When qf = qg, the mean field equations read

m0 =

∫ ∞
−∞
Dyψ

(
Ā
[
(1− p)m0 +

√
αM0y

])
−
∫ ∞
−∞
Dyψ

(
Ā
[
−pm0 +

√
αM0y

])
(35)

M0 = p

∫ ∞
−∞
Dyψ2

(
Ā
[
(1− p)m0 +

√
αM0y

])
+ (1− p)

∫ ∞
−∞
Dyψ2

(
Ā
[
−pm0 +

√
αM0y

])
. (36)

Solutions to this equation are numerically explored in Fig. S6C,D of Data S1.

3.3 Recovering Tsodyks equations in the large A limit
In the limit Ā → ∞, the function ψ(Āx) become a step (Heaviside) function, ψ(Āx) → 1 if x > 0, 0 otherwise.
Consequently, the mean field equations become

m0 = Φ

(
−(1− p)m0√

αM0

)
− Φ

(
pm0√
αM0

)
(37)

M0 = pΦ

(
−(1− p)m0√

αM0

)
+ (1− p)Φ

(
pm0√
αM0

)
, (38)

where Φ(x) =
∫∞
x
dxe−x

2/2/
√

2π. These equations are identical to equations (20) and (21) derived by Tsodyks (1988)
in a sparsely connected network of binary 0,1 neurons (with a threshold θ0) storing binary random patterns with
coding level p, with θ0 = 0. Note that the full equations derived by Tsodyks can be recovered when the threshold of
the transfer function scales as h0 = Āθ0.

Using these equations, Tsodyks found that the capacity diverges in the sparse coding limit as αc ≈ θ20
2p log(1/p) (Tsodyks,

1988). In our network, the capacity cannot diverge in the p→ 0 limit due to the fact that θ0 = 0, since h0 is a fixed
parameter and therefore does not scale with Ā. However, optimizing the threshold of the transfer function together
with the parameters of the learning rule would allow one to reach the same scaling as the one obtained by Tsodyks
(1988). This would require setting h0 = Āθ0.
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To obtain the capacity of our network, i.e. the largest value of α for which we can find a solution of Eqs. (37,38)
with m0 > 0, we analyze the Jacobian of the right side of equations (37) and (38) in the limit m0 → 0 (i.e. when the
overlap approaches to zero) which gives

J =

( 1√
πα

0

0 0

)
.

For equations (37) and (38) to have a stable solution in the limit m0 → 0, the eigenvalues of the Jacobian have to
be less than one. This leads to the maximal capacity

αc =
1

π
≈ 0.318, (39)

for all p.
Since the trace of the Jacobian is zero at the critical point, then the phase transition is of the second order (see S7

A and B). The parameter p has no effect on the capacity for this limit and the capacity is much lower than what has
been found for the best-fit median parameters. For qf 6= qg, it is straightforward to show that the capacity is

αc =
η2

π
(40)

for all p.
This is always lower or equal than what is found in Eq. (39) since maxqf∈[0,1](η) = 1 with argmaxqf∈[0,1](η) = qg =

1− p.
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