Understanding the Mechanism of Action of the Anti-Dandruff Agent Zinc Pyrithione against *Malassezia restricta*

Minji Park¹, Yong-Joon Cho², Yang Won Lee^{3, 4,*}, Won Hee Jung^{1,*}

¹Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea

²Korea Polar Research Institute, Incheon, 21990, Korea

³Department of Dermatology, School of Medicine, Konkuk University, Seoul, 05029, Korea

⁴Research Institute of Medicine, Konkuk University, Seoul, 05029, Korea

Short title: Mechanism of Action of Zinc Pyrithione

Keywords:

Anti-dandruff, Malassezia, mechanism of action, zinc pyrithione

* Correspondence to:

Won Hee Jung, PhD, Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea, e-mail: whjung@cau.ac.kr

Yang Won Lee, MD, PhD, Department of Dermatology, School of Medicine, Konkuk University, Seoul, 05029, Korea, e-mail: 20050078@kuh.ac.kr

	Fe	Zn	Mn	Cu
- ZPT	199.50 ± 2.31	413.55 ± 9.01	6.74 ± 0.12	2.48 ± 0.16
+ ZPT 1.5 μM	172.20 ± 1.34	392.55 ± 3.85	6.52 ± 0.06	6.34 ± 0.10
$+$ ZPT 3 μ M	183.29 ± 3.13	314.35 ± 4.34	6.93 ± 0.11	9.38 ± 0.06

Supplementary Table S1. Cellular metal analysis in ZPT treated S. cerevisiae W303

*All values represent weight (µg) per dry weight (g).

Supplementary Table S3. Validation of RNA Sequencing data by qRT-PCR

	Description	Fold (ZPT 20 µM/ZPT 0 µM)	
Gene		RNA	
		Sequencing	qKTFCK
MRES_03205	Lipase (MrLip1)	0.16	$0.49{\pm}0.07$
MRES_03670	Lipase (MrLip5)	0.14	0.32 ± 0.08
MRES_03690	Zinc-regulated transporter 1	0.65	0.48 ± 0.06
MRES_04670	Lipase (MrLip3)	0.08	0.37 ± 0.07
	Zn2+ transporter Znt1 and related Cd2+/Zn2+	3 14	4 30+0 15
	transporters	5.14	4.50±0.15
MRES_08605	Iron/manganese superoxide dismutases	0.07	0.16 ± 0.03
MRES_11310	Ferric reductase	0.19	0.19 ± 0.01
MRES_14620	Fe-S cluster assembly scaffold protein IscU	6.38	11.13±0.95
MRES_16530	Lipase	0.14	0.27 ± 0.02

Supplementary Table S4. Primers used for qRT-PCR

Primer	Target gene	Sequence (5'-3')
qRT.MRES_06100.F	MDES 06100	GCACCACACGTTCTACAACGA
qRT.MRES_06100.R	MRES_00100	GTGAGAAGGACAGGGTGCTCTT
qRT.MRES_03205.F	MDES 02205	GCTGCGCGGCTCTTGTA
qRT.MRES_03205.R	MRES_05205	TCGAACTACCGGCATGAAAGT
qRT.MRES_03670.F	MDES 02670	GCCTCAAGGCTGGTCAGAAC
qRT.MRES_032670.R	MRES_03070	TTGAGCACGTGAAGCTTGGT
qRT.MRES_03690.F	MDES 02600	ATGAGCTTGGGCAGGAGTGT
qRT.MRES_03690.R	MRES_03090	CGTACGCCATCGGGTAATTC
qRT.MRES_04670.F	MDES 04670	CACGGCGCCGACATTC
qRT.MRES_04670.R	MKES_04070	ACGCGTGGCCCATCAC
qRT.MRES_04925.F	MDES 04025	CGCTGTGCGCCTCGTAA
qRT.MRES_04925.R	MRES_04925	GCTGCCATCCATACGAATACTG
qRT.MRES_08605.F	MDES 08605	AGCCAGGGCGGTGGTAA
qRT.MRES_08605.R	MRES_08003	CCTTTTCGATGGCCTGCTT
qRT.MRES_11310.F	MDES 11210	GCTGGCGTCCAGGACAAC
qRT.MRES_11310.R	MKES_11510	TGCGTAGCAGCCATTCCA
qRT.MRES_14620.F	MDES 14620	CAACGTCGGCTCGTTTGC
qRT.MRES_14620.R	MIKES_14020	GCACCAACGAGGCCGATA
qRT.MRES_16530.F	MDES 16520	TTCACTGCGCTGGGAACA
qRT.MRES_16530.R	WIKES_10550	GGGTTGTAGAACCTGTCGTCATC

Supplementary Figure S1. (a) Morphology of *M. restricta* KCTC 27527 cells in the absence or presence of 10 μ M ZPT with 50 μ M TPEN or 100 μ M BCS. (b) The diameter of 100 cells was measured, and averages were compared. (c) Morphology of *M. restricta* KCTC 27527 cells in the presence of 0.5 mM and 1 mM ZnCl₂ and CuCl₂. The scale bar represents 5 μ m.

Supplementary Figure S2. The scanned full-length blots of the MrLip1 expression in *M. restricta* KCTC 27527. In the original blots, we selected lane 1, 2, 6 and 7 to show ZPT effect on MrLip1 and cropped the blots.

Supplementary Figure S3. The scanned full-length blots of the MrLip5 expression in *M. restricta* KCTC 27527. In the original blots, we selected lane 1, 7, 11 and 12 to show ZPT effect on MrLip5 and cropped the blots.

Lane 1: CBS 7877, -ZPT Lane 2: CBS 7877, +ZPT Lane 3: KCTC 27522, -ZPT Lane 4: KCTC 27522, +ZPT Lane 5: KCTC 27524, -ZPT Lane 6: KCTC 27524, +ZPT Lane 7: KCTC 27539, -ZPT Lane 8: KCTC 27539, +ZPT Lane 9: KCTC 27542, -ZPT Lane 10: KCTC 27542, +ZPT

Supplementary Figure S4. The scanned full-length blots of the MrLip5 expression in various clinical isolates of *M. restricta*. We cropped and assembled the blots.