Additional file 1: Scheme S1, Table S1–S9, and Figures S1–S8

Integrative metagenomic and biochemical studies on rifamycin ADP-ribosyltransferases discovered in the sediment microbiome

Jae Hong Shin^{1,†}, Hyunuk Eom^{2,†}, Woon Ju Song^{2,*}, Mina Rho^{1,3,*}

¹Department of Computer Science and Engineering, Hanyang University, Seoul, Korea ²Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea ³Department of Biomedical Informatics, Hanyang University, Seoul, Korea [†]These authors contributed equally to this work.

*Corresponding authors: woonjusong@snu.ac.kr, minarho@hanyang.ac.kr

Scheme S1. Reaction of mono-ADP-ribosyltransferase (a) ADP-ribosylation of rifampin. (b) Uncoupled reaction of NAD⁺ consumption.

(a)

(b)

adenosine 5'-diphosphoribose

Table S1. A total of 45 rifamycin ADP-ribosyl transferase (arr) homologous genes obtained from the sediment microbiome

Table S2. Protein sequence similarity between 45 newly identified *arr* genes and the genes in the complete genomes

Table S3. The list of nucleotide and amino acid sequences of four representative Arr-wd proteins involved in rifamycin-resistance

Table S4. Primer sequences used for the current work.

Table S5. ADP-ribosylated product analysis by ESI-MS.

Table S6. Steady-state kinetic parameters of Arr-wd proteins in ADP-ribosylation of rifampin and its analogues.

Table S7. Substrate dissociation constants (K_D) measured from the intrinsic fluorescence quenching.

Table S8. Steady-state kinetic parameters of Arr-wd3 variants in ADP-ribosylation of rifampin analogues.

Table S9. Determination of minimum inhibitory concentration (MIC) of rifampin and its analogues.

Table S1. A total of 45 rifamycin ADP-ribosyl transferase (arr) homologous genes obtained from the sediment microbiome.

>W2_1488688

DGIVGPFFHGTHADLSPGDLIAPGYPSHYGARKLASWVYMTRIVAGAVLAAEIAAGEGRARVYLVEPTGPFEDDPNVTDKKFP GNPTQSYRTKDPLRVLEEVLDWAPTPAERLAQLRDFVERTRREGIEAID

>W2_1852679

EFSPNNFVVKLCIQGMALEDEGKPEEADKIFLQAWDEAANDFEKFTAAYYVARHQNNSADKLKWLETVLEFGLKINDDTVKSA FPALYFNIAECYEDLGDAENAKKNYELADSFKHKPSDKGPFYHGTRADLQVGDLLTAGGKSNYKAELTMNHIYFTALVNGAGLA AALVGGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRSEAPLEIVGEVTDWVKITPEELQKWREKLANNKGEIIN >W2 2666971

EFSPNNNVVKLCIQGMALEDEGNPEEASKLFLQAWNEAANDFEKFTAGYYVARHQNNIADKLKWLETVLEFGLKINDDTVKSA FPGLYLNIAECYEDLGDVENAKKNYELADSFKHKPSDKGPFYHGTRADLQVGDLLTAGGKSNYKAELTMNHIYFTALINGAGLA AALASGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRSQAPLKIVGEATDWARITPEELQKWRKKLANSKGEIIN >W2 399810

DENKEKNNLNRQGATPFAQTYFHGTKANLKIGDLIEAGFNSNYGVRKNAKYIFLSATLDAAIWGAELAFGEGRERIYLVEPTGQI EDDPDLTDKKFPGNPSKSYRSTEPFRVVGEVGSWQRHPAEQVNTMKAHLEKLKAQGINSLNDE >W2 931432

EFNPNNNIVKLCLHGMSLEDGGKPEEASEIFLQAWNEAENDFEKYLAAYYAARHQKNAADKLQWLETALEFASKVNTDSAKS AFPSLYANIAKCYEDLGDSENAKKHNDLADSFKNEPSDKGPFYHGTRADLQVGDMLTAGGKSNYKAELVMNHIYFTAIANGA GLAAALANGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRSQSPLKIVGELTDWARITPEQLREWREKLANSKGEIIN >W2_1076727

EPEKSVPTSIQSPFAQTYFHGTKADLKIGDYIEAGYHSNYGQRKNARYIFLTATLDAAIWGAELAFGEGRERIYLVEPTGPIEDDP DLTDKKLPGNPTKSYRSTHPFKVVGEVTLWQGHPVAQVKAMKEGLAKLKEQGINSLNDE

>W2_1252150

EENNTTTQTMQRIFVQTYFHGTKADLKMGDIIETGITSNYGQRSNAKYIYLTATIDAAIWGAELAFGDGRERIYLVEPTGPIEDD PNLTDKKFPGNPTKSYRSKHSFKVVGEVTVWQRHSAEQVKAMKDHLQKLKDEGIEAIED

>W2_493312

TDRQSPCEGVTYYHGTRADLKPGELLRPGYGSNYTERASPWVYFSATLEAATWGAELARGDGPGRIYVVEPTGAFVDDPNLTD KRFPGNPTKSYRSQEPLRVVAEHVGWQGHTPEAVAAMKAAISGLEPIDD

>W2_1280285_wd4

EFSPNNNVVKLCLQGMELEEKGKPEEASEIFLQAWNEAADDFEKFTAGYYVARHQNDTADKLKWLETVLEFGLKINDDTVKSA FPALYQNLAKCFEDLGDARNAKKNYELANSFKKKPSDKGPFYHGTRADLQIGDLLTAGGKSNYKAELVMNHIYFTALVNGAGL AAALANGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRSQAPLKIVGEVTDWVRITPEELQKWREKLANSKGEIIN >W2_1524164

TDQHPNFIQSYFHGTKSNLSVGDLIVPGKDANYGERKAKFVYASSNLNVAIWGAELAVGDGPGRIYVVEPMGTVENDPNLTD KKFPGNPTNSYRAQNGFKVVAEVKDWQGHPPDEIKAAREKVDLDLKNGAPIIED

>W2_2157429

NDKKDVLDNGPFFHGTKAELKIGDLLEPQHLSNYQNKKSNYIYFTATLNAAKWGAELATSKSKERIYIVEPLGEFENDPNLTDKR FPGNPTRSYRSKSPLKIIAELGSWERHSDEEINHMISSLKKLSDEGKNVIYD

>W2_1786964

VLVYLQHYFTPLQKKGFCEYIKLPTIKMEQYYHGTKAQLNIGELIEPGFRSNYGIRKKANFVYLTATLEAATWGAELASGDGPGRI YIVEPTGSIEDDPNLTDKKFPGNPTKSFRSRHALKIVGEVEQWEGHTNEQLDNMRAHLERLKASGIEAIEE >W2 1931402

NSDESRATPFAQTYFHGTRADLRVGERIEVGFASNFGQRTNARYIFLTATLDAAIWGAELALGDGRERIYLVEATGPVEDDPDLT DRKFPGNPTMSYRSTHPFRVVGEVGGWQGHPSEQVGAMREALDKLNEQGVTSLNDQA

>W2_611506

PDRHPNFIQSYFHGTKANLRIGDLIVPGNSANYGERMAKYVYASSNLNVAIWASELAVGDGPGRIYVVEPIGAIENDPNLTDKK YPGNPTNSFRAREGFKVVAEVKEWLGHSPEEIKAAREKVDLALKNGAPIIED

>W2_2027090

ENTTIDLSQIFYHGTKAELKTGDFIEPGYNSNYGKKKKAKYIYLTATLDAAIWGAELAAGEGRQRIYIVEPTGTIEDDPNLTDKKFP GNPTKSYRSMHPLKVIGEVSEWTGHSPEQLKAMKDHLAELERMGIEAIED

>W2_1316525

SSDQPRATPFAQTFFHGTKADLGLGDLIEVGFASNFGRRTNAKYIFLTSTLDAAIWGAELALGDGRERIYLVEATGPVEDDPDLT DRKFPGNPTMSYRSTHPFRVVGEVRVWQGHPPEQVSAMRDGLAKLKEQGVRSLNE

>W2_1614168

EFDPNNNVVKLCIQGMALEEKDKPEEAGKLFLQAWNEAGDDFEKFLAAHFVARHQKNVPDKLKWLETALQFALKINNDSVKS AFPSLYSNIARCYEEMGDAANAKKNYESAVSFKDNPSDKGPFYHGTRADLQIGELLTAGGRSNYKPELTMNHIYFTALVNGAGL AAALAKGDGRERVYIVEPTGSFENDPNVSDKKFPGNPTRSYRSQSPLKIVGEVTDWVRQTPGQIQKWREKLADNKGKIIN >W2_705194

NQPTESDHHQGATPFVQTYFHGTKAALKIGALIEPGYHSNYGQHKTATYIFLTATLDAAVWGAELSLGEGPERIYLVEPTGPIED DPDLTDKKFSGNPTKSYRSLYPFRVVGEVASWQGHPETQVNMMKDHLAKLKEKGINSLND

>W2_691914

PDVPAASVAGGTRDAGRRHGPGASLNRTNVASDVRRRAVRTHLLERDMDGDGSDPGPFFHGTKADLQVGDLLTAGFRSNYR PDVLMNHVYFTALVGTAALAAALAAGDGRERVYVVAPTGPFENDPNVTDKKFPGNPTRSYRSQSPLTVVGEVADWVRLTPEE RAAWHERLAAITGEIIN

>W2_1580944

EFNPNNNIVKLCLQGLDLEEKGKLKEASGIFLRAWNEAADDFEKFIAAHYVTRYQKDVSDKLKWIETSLRLALEMDSDYAKGVLS SLYLKKARCFEESGDAGNAKKNYELAESFKHKLSDNGPFYHGTRADLQVGDLLTAGFRSNYHSEVVMNHIYFTAIVNGAELAAE LAKGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRTREPLKIVGEVTDWVRLTSEQLQTWREKLANIEKAEIIN >W2 456471

TELDSGPFYHGTKADLQVGDMLTAGFQSNYDDRVVMNHIYFTALPKGAGLAAEMAKGDGKPRVYVVEPTGEFENDPNVTDK KFPGNPTRSYRSKHPLRIIGSLDSWEPFDPEFVQNLRSRVKAGLGEIIN

>W2_1294492

EFTPTNPIIRRCLQGMALEAAGKPEEAGQLFLQAWNEATHDLEKFLAAYYVARHQKNDSDRLHWLETALACALKTNTESVKSA YSMLYLNIAKCHEALGNSDEAKKNYALAASFQGTPADQGPFYHGTKADLEVGDVLTAGGTSNYQPDLKMNHIYFTALAHGAG LAASLAKGEGRERVYIVEPTGDFENDPNVTDKKFPGNLTRSYRSRVPLKIVGELTEWARQTPEELQKFREKLATNQGGIIN >W2 2321962

NPNTTEKNNPGATPFAQTYFHGTKADLKLGDLVEPGFNSNYGEQKNAKYIFLTATLDAATWGAELAFGEGRERIYLVEPTGPIE DDPDLTDKKFRGNPTKSYRSRHPFKVVGEVTVWQGHPAQQVQLMKDHLQQLHQQGIRSLNDE >W2 1976254

DQTPITNNASATPFAQTFFHGTKAALNIGDLLQVGFNSNYAQYGQLNHLYMTATLDAAIWGAELASGEGKERIYLVEPTGSIED DPNLTNKKFPGNPTMAYRTRQPLKVVGEVATWQGHTKEQVKAMKDGLLKLREEGLDGIEN >W2 2509215

QNPNKNLMQGNKNNQQLDNAGPTPFFQTFFHGTRADVKIGGEISVGYYSNYGDRKNANYVFLTATLDAAIWGAELAVGNA GERIYLVEPTGLIEDDPDLTDKKFPGNPTKSYRSKHPLKVVGEVATWQSHPPEQIEAMKEGLERLKAKGVTSLNE >W2 436021

TYAKDATPPFYHGTRADLHVGDLLAPGFASNYQEQKLSWIYFSGTLDAAIWGCELAKGDGPERIYVVEPTGAFEDDPNLTDKRF PGNPTRSYRSRAPLRIVGEVTEWEPHPPERLEEMKDALARMEAEGDMKIIDWTTVDEGALNKCADDEWLYIEAWDES >W2 982741

EQNQSNTNACPKPFAQTYFHGTKAALEIGDLLQVGFNSNYKESDHLNHVYMTATLDAAIWGAELASGDGRERIYLVEPTGTIE DDPNLTNKKFPGNPTMAYRSQHPLRVVGEVTLWQGHAPEQIKAMKDGLAKLREQGLDTIEN >W2 2284918

SSDRGTNYYMTFSTNNHIVKLCLQGMALEENGKPGEASRLFLQAWNEATNDHEKFFAAYYLAQRQSNVADKLKWLETALQF ALHINDDSVKSAFHSLYSNIAKCYEELGDVDNAKKNHDKASSFKDNPSDKGPFYHGTKVDLQVGDLLTAGFGSNYQSDLVMNH IYFTALVDGAGLAAALAKGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRTQSPLKIIGEVPDWIRTPTEEVRKWREKLAN NKGEIVN

>W2_928841

EFDPNNNVVKLCIQGMNMEEKDRPEEASGLFLEAWNEAGSDFEKYLAAYYVARHQDDVHDRLKWLETSLKFALKINDVTVKS AFPSLYSKIADCCEDLNDSDNAKKNRELANSFTENLPDSGPFYHGTRADLKVGDLLTAGFGSNYKSDLTMNHIYFTALVNGAGL AAALAKGDGPERVYIVEPTGRFENDPNVTDKKFPGNPTRSYRSQSPLKIVGEVTNWARLTPEQLQQWREKLANTKGEIIN >W2 1056966

ASSDDPTPTIYYHGTKADLAPGDQIAPGNRSNYGARKPATFVYLTATLDAATWGAELAVGDGRGRIYTVEPTGPIEDDPNLTDK KYPGNLTRSYRTRDPLRVTGEVADWQGHPPEALQAMRDHLEHLRALGVEAIED

>W2_759404

NPTSPSPFSQTFFHGTKADLKMGDLIQPGYQSNYTAHEQLNHVYFTATLDAAIWGAELANGEGRQRIYLVEPTGEMEDDPNV TNKRFPGNPTRSYRSIQPVRVVGEVAVWQGHPPEQVNGMKEALAKLREEGRDTIEN

>W2_505284

IEPGFSSNYGARKKAVWVYLTATLDAATWGAELALGEGRGRIYTVEPTGPIEDDPNLTDKKFPGNPTRSYRSRHPLRVTGEITD WEGHPPEAIAGMKAHLERLKELGIEAIED

>W2_2302663

KRYPGNPTKSYRTRHPLRVTGEVTDWQGHPPEQLEAMRAHLEQLERLGIEAIED
>W2 1051501

TATNDSNSETFYHGTRADLKPGDLIEPGYSSNYGARKKAAFVYLTATLDAATWGAELAVGEGRGRIYIVEPTGPIEDDPNLTDKK FPGNPTKSYRTRDPLRVTGEVLDWTGHSPEQLQTMKDHLERLKEMGIEAIED

>W2 1844246

ETNRNENQSQARASDLSREIFYHGTKADLKPGDLIEPGFYSNYGKRKKANYVYLTATLDAAVWGAELALGEGPGRIYIVEPTGP MEDDPNLTDKKYPGNPTKSYRSQSPLRITGEITDWQGHTPEQLNTMKEHLERLKQLGIEAIED

>W2_1355083

ETNKSEDKSIESAYDLSSQAFYHGTKANLKQGDLIEPGFNSNYGQRKKAKYIYLTATLDAAIWGAELAVGEGDGRIYIIEPTGPFE DDPNLTDKKFPGNPTKSYRSLHPLHVIGEVTDWQGHSPEQLNAMKEHLERLKQLGIEAIEE

>W2_1008891

SDKPMAAIDDLSSQRFYHGTKADLKPGDLIGPGYNSNYGKRKKAAYVYLTATLDAAAWGAELAVGEGRGRIYIVEPTGPIEDDP NLTDKKYPGNPTKSYRSRDPLRVTGEVTDWQGHSPEQLRAMKDHLDHLRQLGVEAIED

>W2_1930875_wd3

DKTADDARTAQPFYHGTKADLKPGDLIAPGYASNYGARKKAAFVYLTATLDAATWGAELAAGEGRGRIYLVEPTGPIEDDPNLT DKRFPGNPTKSYRSRDPLRVTGEVTDWQGHPHEQLQAMREHLERLRAQGIEAIED

>W2_498816

THDDLTSQQFYHGTKADLKPGDLIEPGYNSNYGKRKKASYVYLTATLDAATWGAELAFGEGPGRIYTVEPTGPIEDDPNLTDKK YPGNPTKSYRTRSPLRVTGEIVDWQGHPPEQLKAMKDHLAQLERLGIEAIED

>W2_1851401

TTDDLSPPRYYHGTKADLRPGDLIAAGYRSNYGERRKAAYVYLTATLDAATWGAELALGEGPGRIYVVEPTGEIEDDPNLTDKKY PGNPTKSYRTRDPLRVTGEVADWPGHPPEQLQAMRDHLDRLRESGIEAIED

>W2_1182683

RSEPMGAIDDLDSQRFYHGTKADLKPGEMIGPGYNSNYGKRKKAAYVYLTATLDAAVWGAELAVGEGPGRIYTVEPTGPIEDD PNLTDKKYPGNPTKSYRTRDPLRVTGEITDWQGHSPEQLKAMKDHLEQLRRLGIEAIED

>W2_317439_wd1

SDTMPPEGAPRLPPFYHGTKADLKPGDLIAPGFRSNFGSGRAAAYVYLTATLDAAVWGAELALGDGRERIYVVEPTGPIEDDPN LTNAKYPGNPTQSYRTRDPLRVSGEVTSWQGHTPEQLREMREMVARMRRRGIEAIED

>W2_770591

MTSENARSERFYHGTKADLKPGDLIAPGYTSNFGKRKKAAYVYLTATLDAATWGAELALGEGAGRIYIVEPTGPIEDDPNLTDKK YPGNPTKSYRSRAPLRVTGEITDWQGHSPEALKAMKDHLAQLRRLGIEAIED

>W2_1428970_wd2

QTNKTENKSNEPSQSPFVQTFFHGTKADLKIGDFIEVGLNSNYGQRKNAKYIYLTATLDAAIWGAELALGEGRERIYLVEPTGPIE DDPNLTDKKFPGNPTKSYRSKHPFKVVGEITIWQGHSPEQVKAMNEGLAKLKEQGIEAIED >W2 921462

TDGPKPFEVHESGALLHGTKADLAIGDMLVPGYLANYGEERRANHVYVTETLDAAAWAAELAVGPGRGRIYFVEPTGPLEDDP NLTDKKFPGNPTRSYRTRAPVKVVGELVDWVGHSEEQQQAMRDGLADLERRGLAIVEDD

Arr gene name	Accession number	Species name	Sequence similarity (%)
W2_1488688	WP_069949724.1	Arthrobacter sp. U41	57.81
W2_1852679	WP_084490216.1	Niabella ginsenosidivorans	74.39
W2_2666971	WP_084490216.1	Niabella ginsenosidivorans	76.83
W2_399810	WP_077133846.1	Spirosoma montaniterrae	80.14
W2_931432	WP_084490216.1	Niabella ginsenosidivorans	75.20
W2_1076727	WP_053195305.1	Herbaspirillum hiltneri	82.35
W2_1252150	WP_096357565.1	Mucilaginibacter gotjawali	76.22
W2_493312	WP_015132086.1	Calothrix sp. PCC 7507	66.93
wd4	WP_084490216.1	Niabella ginsenosidivorans	75.61
W2_1524164	WP_061991201.1	Flammeovirgaceae bacterium 311	56.59
W2_2157429	WP_013239403.1	Clostridium ljungdahlii	98.54
W2_1786964	WP_048919688.1	Rufibacter sp. DG31D	71.97
W2_1931402	WP_077133846.1	Spirosoma montaniterrae	73.79
W2_611506	WP_061991201.1	Flammeovirgaceae bacterium 311	57.36
W2_2027090	WP_011585690.1	Cytophaga hutchinsonii	77.78
W2_1316525	WP_077202317.1	Vibrio	78.83
W2_1614168	WP_084490216.1	Niabella ginsenosidivorans	78.46
W2_705194	WP_077133846.1	Spirosoma montaniterrae	74.45
W2_691914	WP_066405829.1	Flavisolibacter tropicus	81.89
W2_1580944	WP_084490216.1	Niabella ginsenosidivorans	71.66
W2_456471	WP_069243308.1	Burkholderia latens	81.25
W2_1294492	WP_084490216.1	Niabella ginsenosidivorans	67.07
W2_2321962	WP_077133846.1	Spirosoma montaniterrae	77.24
W2_1976254	WP_080238844.1	Spirosoma rigui	78.03
W2_2509215	WP_013930076.1	Runella slithyformis	66.89
W2_436021	WP_075153047.1	Sphingomonas koreensis	70.77
W2_982741	WP_080238844.1	Spirosoma rigui	79.70
W2_2284918	WP_084490216.1	Niabella ginsenosidivorans	72.06
W2_928841	WP_084490216.1	Niabella ginsenosidivorans	74.80
W2_1056966	WP_015132086.1	Calothrix sp. PCC 7507	73.72
W2_759404	WP_080238844.1	Spirosoma rigui	71.94
W2_505284	WP_015175623.1	Oscillatoria nigro-viridis	81.42
W2_2302663	WP_015171984.1	Geitlerinema sp. PCC 7407	80.88
W2_1051501	WP_015171984.1	Geitlerinema sp. PCC 7407	81.62
W2_1844246	WP_015175623.1	Oscillatoria nigro-viridis	82.27
W2_1355083	WP_015175623.1	Oscillatoria nigro-viridis	85.62
W2_1008891	WP_015132086.1	Calothrix sp. PCC 7507	84.29
Wd3	WP_015171984.1	Geitlerinema sp. PCC 7407	80.88
W2_498816	WP_015171984.1	Geitlerinema sp. PCC 7407	85.07
W2_1851401	WP_015171984.1	Geitlerinema sp. PCC 7407	82.84
W2_1182683	WP_015171984.1	Geitlerinema sp. PCC 7407	84.78
Wd1	WP_015175623.1	Oscillatoria nigro-viridis	74.80
W2_770591	WP_015132086.1	Calothrix sp. PCC 7507	84.56
Wd2	WP_096357565.1	Mucilaginibacter gotjawali	78.72
W2_921462	WP_025433386.1	Rhodococcus	81.02

Table S2. Protein sequence similarity between 45 newly identified *arr* genes and the genes in the complete genomes

Table S3. The list of nucleotide and amino acid sequences of four representative Arr-wd proteins involved in rifamycin-resistance

	nucleotide and amino acid sequence
arr-wd1	AGCGAIACGAIGCCGCCCGAGGGCGCCCCGCGCIIGCCGCCGIICIACCACGGCACAAAGGCCGACCIG
	AAGCCGGGAGACCTCATCGCGCCCGGCTTCCGCTCCAACTTCGGCAGCGGACGCGCGGCCGCCTACGTC
	TACCTGACCGCTACGCTCGACGCGGCCGTCTGGGGGCGCCGAACTAGCCCTGGGGGGACGGCCGCGAGCG
	CATCTACGTCGTGGAGCCGACCGGGCCTATCGAGGACGACCCTAACCTGACCAACGCCAAGTATCCCGGC
	AACCCGACGCAGTCGTACCGCACGCGCGACCCGCTCCGGGTCTCCGGCGAGGTGACTTCGTGGCAGGG
	GCACACGCCCGAGCAGCTTCGGGAGATGCGGGGAGATGGTCGCGCGGATGCGGCGCGCGC
	GCCATCGAGGAC
Arr-wd1	SDTMPPEGAPRLPPFYHGTKADLKPGDLIAPGFRSNFGSGRAAAYVYLTATLDAAVWGAELALGDGRERIYV
	VEPTGPIEDDPNLTNAKYPGNPTQSYRTRDPLRVSGEVTSWQGHTPEQLREMREMVARMRRRGIEAIEDLE
	HHHHHH (149 aa, 16.6 kDa, ϵ_{280} = 19940 cm ⁻¹ M ⁻¹)
arr-wd2	CAAACTAACAAAACTGAGAACAAATCAAATGAACCAAGTCAAAGCCCTTTTGTTCAGACTTTCTTCCACG
	GCACAAAGGCTGATCTAAAGATTGGAGACTTTATTGAAGTTGGTCTTAACTCAAACTACGGTCAAAGAAA
	AAATGCGAAATATATCTACCTGACAGCAACTTTGGATGCAGCTATTTGGGGCGCTGAGCTTGCTCTGGGG
	GAAGGACGCGAAAGAATCTATTTAGTAGAACCGACAGGGCCAATTGAAGACGACCCCAATTTAACTGATA
	AAAAATTCCCGGGTAATCCAACAAAATCTTATCGTTCAAAACATCCGTTTAAGGTTGTCGGCGAGATTACT
	ATTTGGCAAGGACACTCACCCGAACAAGTCAAAGCAATGAATG
	GGTATTGAGGCAATAGAGGAT
Arr-wd2	QTNKTENKSNEPSQSPFVQTFFHGTKADLKIGDFIEVGLNSNYGQRKNAKYIYLTATLDAAIWGAELALGEGR
	ERIYLVEPTGPIEDDPNLTDKKFPGNPTKSYRSKHPFKVVGEITIWQGHSPEQVKAMNEGLAKLKEQGIEAIED
	LEHHHHHH (155 aa, 17.5 <i>k</i> Da, 18450 cm ⁻¹ M ⁻¹)
arr-wd3	GACAAGACCGCCGATGATGCCCGAACCGCGCAGCCGTTCTACCACGGCACGAAGGCGGACCTGAAGCC
	GGGCGACCTCATCGCGCCGGGCTACGCCTCCAACTACGGCGCGCGGAAGAAAGCAGCCTTCGTCTACCT
	CACGGCCACGCTCGACGCCGCCACCTGGGGCGCCGAGCTGGCCGCCGGCGAGGGCCGGGCCGGATC
	TACTTGGTGGAGCCGACGGGCCCCATCGAGGACGACCCCAACCTCACGGACAAGCGGTTCCCGGGCAA
	CCCCACGAAGTCGTATCGCTCGCGGGACCCGCTGCGGGTCACGGGCGAGGTCACGGACTGGCAGGGGC
	ACCCGCACGAGCAGTTGCAGGCCATGCGGGAGCACCTGGAGCGCCTCCGCGCGCAGGGCATCGAGGC
	GATCGAGGAC
Arr-wd3	DKTADDARTAQPFYHGTKADLKPGDLIAPGYASNYGARKKAAFVYLTATLDAATWGAELAAGEGRGRIYLVE
	PTGPIEDDPNLTDKRFPGNPTKSYRSRDPLRVTGEVTDWQGHPHEQLQAMREHLERLRAQGIEAIEDLEHH
	HHHH (147 aa, 16.4 <i>k</i> Da, 19940 cm ⁻¹ M ⁻¹)
arr-wd4	GAATTTAGCCCGAACAATAATGTTGTCAAACTCTGTCTTCAAGGTATGGAGTTGGAAGAGAAAGGAAA
	GCCTGAAGAAGCGAGCGAAATATTTCTTCAAGCGTGGAACGAAGCGGCTGACGATTTTGAAAAATTTA
	CTGCCGGTTATTATGTGGCGCGTCATCAAAACGATACTGCCGACAAATTAAAATGGCTGGAAACGGTTT
	TGGAGTTCGGATTAAAGATCAATGACGACACGGTTAAGTCGGCTTTTCCCGCTTTGTATCAAAACCTTG
	CCAAATGCTTTGAGGATTTAGGCGATGCCCGCAACGCGAAAAAGAATTATGAATTAGCAAATTCATTC
	AGAAAAAACCGTCCGACAAAGGTCCTTTTTATCACGGAACGCGAGCGGATTTGCAAATCGGCGATTTG
	CTGACCGCCGGAGGCAAGTCTAATTACAAAGCCGAACTCGTAATGAATCACATTTACTTTACGGCATTG
	GTGAACGGCGCGGGACTTGCCGCGGCTTTGGCTAACGGCGACGGACG
	AACCGACGGGGGAGTTTTGAAAATGATCCGAATGTGACGGACAAAAAATTTCCGGGCAATCCGACACGC
	TCATATCGCAGTCAAGCACCTTTGAAAATCGTCGGCGAAGTAACAGATTGGGTGAGAATAACGCCTGA
	GGAACTCCAAAAATGGCGGGAAAAGTTGGCGAACAGCAAAGGAGAAATTATTAAT
Arr-wd4	EFSPNNNVVKLCLQGMELEEKGKPEEASEIFLQAWNEAADDFEKFTAGYYVARHQNDTADKLKWLETVLEF
	GLKINDDTVKSAFPALYQNLAKCFEDLGDARNAKKNYELANSFKKKPSDKGPFYHGTRADLQIGDLLTAGGKS
	NYKAELVMNHIYFTALVNGAGLAAALANGDGRERVYIVEPTGSFENDPNVTDKKFPGNPTRSYRSQAPLKIV
	GEVTDWVRITPEELQKWREKLANSKGEIINLEHHHHHH (254 aa, 28.6 kDa, 35410 cm ⁻¹ M ⁻¹)

template protein	mutations	sequences
Arr-wd3	N34H	5'-G GGC TAT GCA AGC <u>CAT</u> TAT GGT GCA CG-3'
	(Arr-wd3+N34H)	5'-C GTG CAC CATA <u>ATG</u> GCT TGC ATA GCC C-3'
Arr-wd3	H125M	5'-GCA ATG CGC GAA <u>ATG</u> CTG GAA CGC CTG-3'
	(Arr-wd3+H125M)	5'-CAG GCG TTC CAG <u>CAT</u> TTC GCG CAT TGC-3'
Arr-wd3	H125G	5'-CAA TGC GCG AA <u>GGC</u> CTG GAA CGC CTG-3'
	(Arr-wd3+H125G)	5'-CA GGC GTT CCA <u>GGC</u> CTT CGC GCA TTG-3'
Arr-wd3	H125K	5'-GCA ATG CGC GAA <u>AAA</u> CTG GAA CGC CTG-3'
	(Arr-wd3+H125K)	5'-CAG GCG TTC CAG <u>TTT</u> TTC GCG CAT TGC-3'
Arr-wd3	H142 to stop codon	5'-GAA GCA ATT GAA GAT <u>TAA</u> GAG CAC CAC CAC-3'
	(Arr-wd3+∆6His)	5'-GTG GTG GTG CTC <u>TTA</u> ATC TTC AAT TGC TTC-3'

 Table S4. Primer sequences used for the current work

substrate	Product*	calculated m/z	detected m/z
rifampin	ADP-ribosylrifampin	[M+H ⁺] ⁻ = 1362.5	1362.8
		[M+Na ⁺] ⁻ =1384.5	1385.0
rifapentine	ADP-ribosylrifapentine	[M+H ⁺] ⁻ = 1416.5	1416.8
rifaximin	ADP-ribosylrifaximin	[M+H ⁺] ⁻ = 1325.4	1325.8
rifabutin	ADP-ribosylrifabutin	[M+H ⁺] ⁻ = 1386.5	1386.8
		[M+Na ⁺] ⁻ = 1408.5	1408.9

 Table S5. ADP-ribosylated product analysis by ESI-MS in negative mode

*The ADP-ribosylated product includes a phosphate group, which makes the molecule to exhibit -2 charge by itself.

Table S6. Steady-state kinetic parameters of Arr-wd proteins in ADP-ribosylation of rifampin and its analogues

(a) NAD⁺

	Arr-wd1	Arr-wd2	Arr-wd3	Arr-wd4
<i>k</i> _{cat} (s ⁻¹)	0.023(3)	0.14(2)	0.027(2)	0.108(9)
<i>К</i> м (mM)	0.4(2)	2.3(6)	0.11(4)	0.8 (2)
<i>k</i> _{cat} / <i>K</i> м (s ⁻¹ М ⁻¹)	65(9)	61(11)	246(19)	139(12)

(b) rifampin

	Arr-wd1	Arr-wd2	Arr-wd3	Arr-wd4
<i>k</i> _{cat} (s ⁻¹)	0.010(2)	0.056(3)	0.0206(2)	0.060(3)
<i>К</i> м (mM)	0.23(19)	0.48(7)	0.18(6)	0.17(8)
k_{cat}/K_{M} (s ⁻¹ M ⁻¹)	45(8)	118(6)	113(8)	357(37)

(c) rifapentine

	Arr-wd1	Arr-wd2	Arr-wd3	Arr-wd4
<i>k</i> _{cat} (s ⁻¹)	0.014(1)	0.031(1)	0.010(1)	0.045(3)
<i>K</i> м (mM)	0.11(5)	0.13(3)	0.07(5)	0.11(4)
k_{cat}/K_{M} (s ⁻¹ M ⁻¹)	128(12)	245(10)	147(17)	419(30)

(d) rifaximin

	Arr-wd1	Arr-wd2	Arr-wd3	Arr-wd4
<i>k</i> _{cat} (s ⁻¹)	0.0047(4)	0.0165(2)	0.0028(4)	0.086(7)
<i>К</i> м (mM)	0.11(6)	0.03(0)	0.13(10)	0.28(8)
k_{cat}/K_{M} (s ⁻¹ M ⁻¹)	41(4)	533(8)	22(3)	304(23)

(e) rifabutin

	Arr-wd1	Arr-wd2	Arr-wd3	Arr-wd4
<i>k</i> _{cat} (s ⁻¹)	0.010(1)	0.033(1)	0.013(2)	0.063(6)
<i>К</i> м (mM)	0.17(10)	0.24(3)	0.22(10)	0.27(9)
<i>k</i> _{cat} / <i>K</i> м (s ⁻¹ М ⁻¹)	60(8)	142(6)	58(7)	230(21)

Table S7. Substrate dissociation constants (K_D) measured from the intrinsic fluorescence quenching

(a) NAD⁺ and NADP⁺

<i>K</i> _D (mM)	NAD ⁺	NADP ⁺
Arr-wd1	1.23(4)	2.3(1)
Arr-wd2	2.14(5)	2.33(7)
Arr-wd3	1.67(6)	1.89(8)
Arr-wd4	1.75(7)	1.90(6)
Arr-wd3+∆6His	1.53(4)	2.03(8)
Arr-wd3+N34H	2.08(3)	2.07(5)
Arr-wd3+H125M	1.39(1)	2.5(1)
Arr-wd3+H125G	1.48(5)	2.1 (1)
Arr-wd3+H125K	1.23(4)	2.54(1)

(b) rifampin analogues

<i>K</i> _D (μM)	rifampin	rifapentine	rifaximin	rifabutin
Arr-wd1	12.8(4)	22.5(8)	8.6(2)	7.8(1)
Arr-wd2	3.5(1)	5.4(2)	5.1(2)	5.1(2)
Arr-wd3	25.4(4)	30.6(4)	36.2(9)	34.0(14)
Arr-wd4	1.2(1)	1.7(1)	1.4(1)	1.9(1)
Arr-wd3+∆6His	12.7(1)	19.4(4)	20.5(6)	20.1(4)
Arr-wd3+N34H	7.1(1)	10.1(1)	5.1(1)	7.2(1)
Arr-wd3+H125M	8.9(3)	13.1(1)	7.0(2)	6.9(2)
Arr-wd3+H125G	5.9(2)	9.5(1)	6.3(2)	8.0(2)
Arr-wd3+H125K	12.8(5)	20.6(6)	11.1(1)	18.1(5)

 Table S8.
 Steady-state kinetic parameters of Arr-wd3 variants in ADP-ribosylation of rifampin analogues

(a) NAD⁺

variants	<i>k</i> _{cat} (s ⁻¹)	<i>К</i> м (mM)	k_{cat}/K_{M} (s ⁻¹ M ⁻¹)
Arr-wd3	0.027(2)	0.11(4)	246(19)
+ N34H	0.012(1)	0.3(1)	39(4)
+ H125M	0.016(2)	0.20(12)	81(12)
+ H125G	0.018(3)	0.84(30)	21(3)
+ H125K	0.024(2)	0.41(10)	57(5)

(b) rifampin

variants	<i>k</i> _{cat} (s ⁻¹)	<i>К</i> м (mM)	k_{cat}/K_{M} (s ⁻¹ M ⁻¹)
Arr-wd3	0.0206(2)	0.18(6)	113(8)
+ N34H	0.0077(2)	0.011(5)	702(15)
+ H125M	0.026(1)	0.06(2)	417(21)
+ H125G	0.018(1)	0.09(4)	207(16)
+ H125K	0.0143(5)	0.06(1)	227(7)

(c) rifapentine

variants	<i>k</i> _{cat} (s ⁻¹)	<i>К</i> м (mM)	k_{cat}/K_{M} (s ⁻¹ M ⁻¹)
Arr-wd3	0.010(1)	0.07(5)	147(17)
+ H125M	0.0214(10)	0.05(2)	409(19)
+ H125G	0.018(1)	0.08(3)	229(14)
+ H125K	0.0180(6)	0.06(1)	305(9)

(d) rifaximin

variants	k _{cat} (s ⁻¹)	<i>К</i> м (mM)	k_{cat}/K_{M} (s ⁻¹ M ⁻¹)
Arr-wd3	0.0028(4)	0.13(10)	22(3)
+ H125M	0.0238(9)	0.09(2)	277(11)
+ H125G	0.0240(9)	0.07(2)	354(13)
+ H125K	0.0205(6)	0.10(1)	204(6)

(e) rifabutin

variants	<i>k</i> _{cat} (s ⁻¹)	<i>К</i> м (mM)	k_{cat}/K_{M} (s ⁻¹ M ⁻¹)
Arr-wd3	0.013(2)	0.22(10)	58(7)
+ H125M	0.0138(6)	0.05(2)	288(13)
+ H125G	0.0226(7)	0.09(2)	249(8)
+ H125K	0.0154(2)	0.06(1)	241(3)

Table S9. Determination of minimum inhibitory concentration (MIC) of rifampin and its analogues(a) MIC values from the literatures (1).

plasmids	IPTG	rifampin	rifaximin	rifabutin	
pET28a(+)	-	4	8	8	
	+	8	16	8	
pET28a(+)-arr-2	-	512	>512	>512	
	+	>512	>512	>512	
	-	8	16	16	
perzzb(+)	+	8	16	16	
	-	128	>512	64	
perzzp(+)-arr-ms	+	>512	>512	>512	
pET15b(+)	-	8	16	16	
	+	8	16	16	
pET15b(+)-arr-sc	-	128	>512	64	
	+	512	512	512	

(b) Measured MIC values in this study

plasmids	IPTG	rifampin	rifapentine	rifaximin	rifabutin
- - - - - - - - - - -	-	4	4	4	4
pE122D(+)	+	2	4	4	4
	-	4	4	4	4
pE122b(+)-arr-wd1	+	32	64	512	64
pET22b(+)-arr-wd2	-	32	64	256	32
	+	512	>512	>512	256
	-	8	8	16	16
pE1220(+)-arr-wu3	+	64	128	512	128
p(T22h(1)) arr und 4	-	8	16	32	8
pE1220(+)-arr-w04	+	128	256	>512	256
p[T22b(1) prr ud21N421	-	8	8	16	8
perzzb(+)-arr-wu3+h43H	+	32	64	>512	128
pET22b(+)-arr-wd3+H125M	-	8	8	16	8
	+	32	64	512	128
pET22b(+)-arr-wd3+H125G	-	16	8	64	16
	+	64	128	>512	128
	-	8	16	16	8
perzzu(+)-arr-wu3+H125K	+	16	32	512	64

Figure S1. Structural analysis of Arr-*ms* protein complexed with rifampin (2HW2.pdb). (a) Annotated secondary structure information and rifampin binding loop (b) 2D diagram of rifampin-Arr-*ms* interaction (color scheme: pink and purple: hydrophobic interaction, green: van der Waals contact, lightblue: hydrogen bond, orange: cation-pi interaction) (c) Water mediated hydrogen bonds between rifampin and Arr-*ms*

Figure S2. Autodock simulation of NAD⁺-binding site in Arr-ms

Figure S3. Protein purification and characterization of Arr-wd proteins. (a) A representative FPLC trace of Arr-wd1 protein (b) 15% SDS-PAGE of Arr-wd proteins and the single variants (c) A representative MADLI-TOF spectra of Arr-wd1 protein

Figure S4. A representative HPLC analysis of steady-state activity assay by the (a) previously reported HPLC method and by the (b) modified quenching method (c) The standard curve of nicotinamide (d-e) Michaelis-Menten kinetic analysis under various concentrations of (d) NAD⁺ or (e) rifampin

Figure S5. Intrinsic fluorescence changes upon the addition of either NAD⁺ or rifampin. (a) Relative location of the tryptophan residues in Arr-ms (PDB 2HW2) (b) UV-Vis spectra of rifampin and NAD⁺. Rifampin exhibits strong absorption at 295 and 325 nm. (c) Representative intrinsic fluorescence quenching upon the addition of rifampin. The fluorescence intensity was corrected for the secondary filter effect with rifampin as shown in (b). (d) Plots of F_o/F vs the concentration of rifampin. (e) Dissociation constant (K_D) determined by the fluorescence changes **Figure S6.** Rifampin analogues used for the current study

Figure S7. Representative HPLC traces of the reactions with rifampin analogues. (a) rifapentine (b) rifaximin (c) rifabutin

Figure S8. MIC values of Arr-wd proteins. (a) Arr-wd 1-4 proteins (b) Arr-wd3 variants

Figure S1. Structural analysis of Arr-ms protein complexed with rifampin (2HW2.pdb). (a) Annotated secondary structure information and rifampin binding loop (b) 2D diagram of rifampin-Arr-*ms* interaction (color scheme: pink and purple: hydrophobic interaction, green: van der Waals contact, lightblue: hydrogen bond, orange: cation-pi interaction) (c) Water mediated hydrogen bonds between rifampin and Arr-*ms*.

(a)

Figure S2. Autodock simulation of NAD⁺-binding site in Arr-*ms*. The black arrows indicate the scissile C-N bond in NAD⁺ that generates an oxocarbenium ion in accordance with the release of nicotinamide.

Figure S3. Protein purification and characterization of Arr-wd proteins. (a) A representative FPLC trace of Arr-wd1 protein (b) 15% SDS-PAGE of Arr-wd proteins and the single variants (c) A representative MADLI-TOF spectra of Arr-wd1 protein.

(c)

Figure S4. A representative HPLC analysis of steady-state activity assay. (a) Previously reported HPLC method (b) Modified quenching method by increasing the volume of methanol from 100 μ L to 400 μ L. (c) The standard curve of nicotinamide by the modified HPLC method (d-e) Michaelis-Menten kinetic analysis under various concentrations of (d) NAD⁺ or (e) rifampin.

Figure S5. Intrinsic fluorescence changes upon the addition of either NAD⁺ or rifampin. (a) Relative location of the tryptophan residues in Arr-ms (PDB 2HW2) (b) UV-Vis spectra of rifampin and NAD⁺. Rifampin exhibits strong absorption at 295 and 325 nm. (c) Representative intrinsic fluorescence quenching upon the addition of rifampin. The fluorescence intensity was corrected for the secondary filter effect with rifampin as shown in (b). (d) Plots of F_o/F vs the concentration of rifampin. (e) Dissociation constant (K_D) determined by the fluorescence changes (a) (b)

Figure S6. Rifampin analogues used for the current study. Altered substructures of the rifampin derivatives are colored in red, and the hydroxyl group that reacts with an oxocarbenium ion is colored in blue.

Figure S7. Representative HPLC traces of the reactions with rifampin analogues. (a) rifapentine (b)rifaximin (c) rifabutin.

Figure S8. MIC values of Arr-wd proteins. (a) Arr-wd 1-4 proteins (b) Arr-wd3 variants.

References

 Baysarowich, J., Koteva, K., Hughes, D.W., Ejim, L., Griffiths, E., Zhang, K., Junop, M. and Wright, G.D. (2008) Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. *Proc. Natl. Acad. Sci. U.S.A.*, **105**, 4886-4891.