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Supplementary Note 1. Crystal structure of trigonal layered PtBi2.  

 
Supplementary Figure 1  Crystal structure of trigonal layered PtBi2. (a) The crystal structure of layered PtBi2 without lattice 

distortion (space group    ). (b) The crystal structure of layered PtBi2 with lattice distortion (space group P31m). (c) X-ray diffraction 

pattern of a single crystal on the (00L) plane. 

 

Supplementary Figure 1(a) shows the crystal structure of layered PtBi2 without lattice distortion (space group 

    ). The Pt layers are separated by two neighboring Bi layers, where both are sandwiched between Pt atoms. All 

these layers are situated in the (a,b) plane and van der Waals stacked along the crystallographic c-axis of the 

trigonal unit cell, forming a layered crystal structure. Supplementary Figure 1(b) shows the crystal structure of 

layered PtBi2 with lattice distortion(space group P31m). Both top and bottom Bi layers shown in the figure are 

distorted. 

Supplementary Figure 1(c) shows the x-ray diffraction (XRD) spectra of a typical single crystal. Sharp (00L) 

reflections indicate high crystallinity of these crystals, which also suggests that the exposed surface of PtBi2 crystal 

belongs to (a,b) plane. Note that the distortion of Bi layer is quite small. The XRD cannot identify such tiny 

distortion.  

We have performed the ab initio calculations with the Crystal Structure Analysis by Particle Swarm 

Optimization (CALYPSO) algorithm to test the various low-energy structures of PtBi2 compounds. The first ten 

low-energy structures are listed in Table I, from which we can find that the structure with space group P31m (157) 
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is the lowest-energy state. The calculation result is consistent with the experimental reports in Ref.[1]. 

 

Supplementary Table 1. The first ten low-energy structures obtained from ab initio calculations with Crystal 

Structure Analysis by Particle Swarm Optimization (CALYPSO) algorithm  

No. Enthalpy Space group 

1 -4.82813 P31m(157) 

2 -4.81830 R-3m(166) 

3 -4.81688 P-1(2) 

4 -4.80955 P-1(2) 

5 -4.80829 P-1(2) 

6 -4.80762 P-3m1(164) 

7 -4.80255 C2/m(12) 

8 -4.80001 Cm(8) 

9 -4.79798 P3_221(154) 

10 -4.77954 P-1(2) 

 

 

Supplementary Note 2.Anisotropic magnetoresistance (AMR) in layered PtBi2. 
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Supplementary Figure 2  Anisotropic magnetoresistance (AMR) in layered PtBi2. (a) Resistivity of PtBi2 as a function of  

under different magnetic fields. (b) The polar diagram of AMR under different magnetic fields. 
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Supplementary Figure 2(a) shows the angle-dependent resistivity of sample S1 measured at 2 K with different 

magnetic fields tilted within (a,c) plane. Figure S2(b) shows the polar plot of anisotropic magnetoresistance (AMR). 

It is clearly that the MR reaches the maximum with =30, 150, 210 and 330. When the magnetic field is below ~ 

1 T, the AMR curve performs a two-fold symmetry. With increasing magnetic field strength to above 2 T, the curve 

begins to split into more peaks, and exhibits a “butterfly” shape with texturing of complicated symmetries. In recent 

studies on Dirac semimetal LaBi [2] and nodal-line semimetal ZrSiS [3] and ZrSiSe [4], four-leaf-like MR behavior 

has been observed, but the butterfly pattern with much higher order texturing has never been observed before in 

other topological semimetals and might be associated with the complicated multiple band structures in layered 

PtBi2.  

 

Supplementary Note 3. Phase factors of  and  bands. 

To detect the band topology, actually, we can also verify the phase factor through the direct fit of the oscillation 

pattern to the Lifshitz-Kosevich (LK) formula. 
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Here,      
   

   
  

 

    

 is the extremal curvature factor, which determines the strength of the angular-dependent MR 

about the direction of magnetic field.    is the momentum along the magnetic field direction.     is the 

Boltzmann constant,   is the Planck’s constant,    is the effective cyclotron mass at the Fermi energy and TD is 

the Dingle temperature, γ is the Onsager phase factor that is related to the Berry phase,   is the phase shift 

determined by the dimensionality of the Fermi surface with a value equal to 0 in 2D system and ±1/8 in the 3D case. 

The fitting was performed using the multiband LK formula for which the multiple frequency oscillations are treated 

as linear superposition of several single-frequency oscillations. With the effective masses, frequencies, Dingle 

temperature and the phase factor (intercepts         and        ) as the fixed parameters, we expect to 

duplicate the oscillation patterns through adjusting the proportionality coefficient of two frequencies, as shown in 

Supplementary Fig. 3, the multiband LK model reproduces the oscillation patterns very well. 
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Supplementary Figure 3  The multiband Lifshitz-Kosevich (LK) fit (red line) of the SdH oscillation pattern (black points) 

when the field is applied along  = 30 at T=2K.  

 

Supplementary Note 4. Physical parameters for the six principle pockets extracted from the 

SdH and dHvA oscillations. 

The FFT spectra of sample S2 (Fig.3(c) in the main text) were obtained from the magnetic field range of 10 ~ 

40 T, then we extracted the FFT amplitude of different temperatures and fitted the data using the thermal damping 

term in the LK formula, i.e., 
            

                   
 with 1/B being the average inverse field. The determined effective 

masses of the five bands are   
              ,     

              ,   
              ,   

  

            ,   
               (m0 is the free electron mass), respectively. We note that here the magnetic 

field range 10 ~ 40 T is larger than that of sample S1 (8-16T). The higher field range of S2 might leads to an 

underestimation of the effective mass for different bands. 
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Supplementary Figure 4  Effective masses of different pockets extracted from the data of sample S2 in magnetic 

fields up to 40 T. The solid red curves are the fits to the LK formula. 

Supplementary Table 2. Physical parameters for the six Fermi pockets. 

 

Pockets 

=0(dHvA) 

 (S3) 

  =30±5(SdH)     

 (S1) (S1) (S2) (S2) (S2) (S2)  (S2) 

F(T) 3.8 

(10) 

40 

(45) 

350 

(375) 

40 350 1240 

(1215) 

3030 

(2960) 

5110 

(5060) 

SF(Å -2
) 0.0003(6) 0.003(8) 0.033(1) 0.003(8) 0.033(1) 0.117(7) 0.287(8) 0.485(4) 

kF(Å -1
) 0.010(7) 0.034(7) 0.102(7) 0.034(7) 0.102(7) 0.193(6) 0.302(3) 0.393(1) 

m*(m0) 0.21(4) 0.44(1) 0.31(1) 0.30(1) 0.34(1) 0.82(2) 0.96(1) 0.99(3) 

vF(10
5
m/s) 0.59(4) 0.913(5) 3.836(5) 1.33(5) 3.499(2) 2.727(5) 3.646(7) 4.584(4) 

EF(meV) 4.16(4) 20.85(6) 259.40(2) 30.40(4) 236.73(8) 347.74(2) 726.74(0) 1186.77(9) 

Supplementary Table 2 shows the physical parameters of the six pockets through fitting the SdH and dHvA 

oscillations of three samples（S1,S2 and S3）. Here the dHvA oscillations of sample S3 were obtained with the field 

applied along c-axis, while the SdH oscillations of sample S1 and S2 were obtained with a field applied around  

=30. The second row of F(T) is the calculated result for each band. 
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Supplementary Note 5. Angle-dependent MR of sample S1 with magnetic field up to 32T 

We performed the transport measurement on sample S1 in a dc-resistive magnet with   magnetic fields up to 

32T. As shown in Supplementary Fig. 5(a), the MR shows the sample angle dependence, which is similar with 

those obtained from PPMS. For example, the MR presents the largest unsaturated MR (1.3 10
5
% at 32T and 2K) 

at =30. The amplitude of the SdH oscillations is also the largest around =30. The FFT spectra with =30 was 

shown in Supplementary Fig. 5(b). Compared with the result measured with PPMS, an additional frequency Fγ = 

1210 T is found. 
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Supplementary Figure 5  MR versus B of sample S1 in the field range of 32 T. (a) MR with different magnetic field 

orientations at T=2 K. (b) The corresponding FFT spectra of the SdH oscillation at =30. 

 

 

Supplementary Note 6. Topology of Fermi surfaces in PtBi2. 

After subtracting three-order polynomial background of the MR curves in Supplementary Fig.5(a)，the 

oscillatory component as a function of 1/B were shown in Supplementary Figure 6 (a). Besides the   ,   and    

pockets identified with PPMS measurement on S1, a new pocket with the frequency near   pocket, labeled λ’, can 

be recognized, as shown in Supplementary Fig. 6(b). Additionally, it can be noted that the angular dependence of 

the oscillation frequency for γ pocket has two branches. Such a frequency splitting should be related to the 

“dumbbell” shape of this pocket, as shown in Supplementary Fig. 6 (c). All the angular dependence of frequencies 

were summarized in the Fig.4(c) in the main text and were consistent with theoretical calculated results. 
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Supplementary Figure 6  Fermi surface topology of PtBi2 probed by angle-dependent MR measurements. (a) The SdH 

oscillations as a function of 1/B at different angles from 0 to 90. (b) The FFT spectra obtained from the SdH oscillations at different 

angles. (c) The Fermi surface of band γ. Top and bottom patterns represent top and side view, respectively.    

 

Supplementary Note 7. The Hall resistivity     of PtBi2 
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Supplementary Figure 7 The Hall resistivity ρxy obtained at several temperatures for sample S1. (a) Hall resistivity 

above 80 K. (b) Hall resistivity in the temperature range of 2-60K. 

 

Supplementary Figure 7 presents the field dependence of Hall resistivity     at several temperatures for 

sample S1. At high temperatures,     exhibits linear field dependence with positive slope, suggesting the hole 

carriers are dominant. As temperature decreases below 80 K,     keeps positive slope at low fields but changes to 

negative at higher fields, implying the coexistence of two types of carriers. At low temperatures below 20 K, the 
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Hall data suggests that more than two bands contribute to the transport properties. These results further confirm that 

PtBi2 is a complicated multiband system, which is consistent with the theoretical calculations of layered PtBi2.  

 

Supplementary Note 8. The dHvA oscillations at different temperatures  

 

Supplementary Figure S8 Magnetization oscillations in magnetic field up to 7T. (a) Magnetization curves measured at 

different temperatures on sample S3 with magnetic field applied along c-axis. (b) The dHvA oscillations versus 1/B at different 

temperatures after subtracting the background. Inset: The temperature dependence of the FFT amplitude. The solid curve is the fit to 

the LK formula. (c) The Landau level indices n of -band extracted from the dHvA oscillations are plotted as a function of 1/B. 

 

Supplementary Figure 8(a) shows dHvA oscillations at different temperatures with magnetic field applied 

parallel to the c-axis ( =0). After subtracting a three-order polynomial background, the relative oscillatory 

component M versus 1/B was displayed in Supplementary Fig. 8(b). The effective mass of  δ-band was 

extracted to be 0.21 m0, as shown in the inset of Supplementary Fig. 8(b). Following the customary practice of 

defining the LL index, a minimum in conductivity Δσxx ~ 1/Δρxx is associated with the integer LL indices n. 

According to the theoretical relation, the oscillatory magnetic susceptibility d(ΔM) /dB ~Δσxx, and the minima of 
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ΔM are shifted by π/2 in comparison to the minima of magnetic susceptibility and conductivity, thus the minima of 

ΔM should be assigned to n-1/4 [5]. As illustrated in Supplementary Fig. 8(c), the index number n versus 1/B curve 

shows a linear dependence and gives an intercept n =-0.48±0.05, which is close to -1/2.   

 

Supplementary Note 9. The angular dependence of the dHvA oscillations measured at 2K. 

 

Supplementary Figure 9 The dHvA oscillations at various angles plotted as a function of 1/B.  

Supplementary Figure 9 shows the angular dependence of the dHvA effect when field oriented from c-axis to 

ab-plane. The corresponding oscillations of low frequency   band were observed throughout the angle region, 

which help us to establish a 3D Fermi surface of   pocket.  

 

Supplementary Note 10. Band structure of   band. 

The   pocket can be visualized by plotting the bands along some non-high-symmetry lines. The band along the 

(H-) - (A-) direction with kz=0.2 |HK| is shown in Supplementary Figs. 10 (a) and (b) without and with spin-orbital 

coupling. The three bands can also be characterized with       and       without spin-orbit coupling at H- point. 

Upon the spin-orbital coupling, the three bands split into six bands as shown in Supplementary Fig. 10 (b). In 

comparison with Supplementary Fig. 10 (a), we can find that the arrangement orders of bands according to energy 

switch from    ,     to      ,      ,       and       . It means the band inversion occurring at H- point. 

Furthermore, apart from H- point and along the (H-) - (A-) line, the split     band crosses with one split band from 

    to open a band gap. That is the standard process of topological phase transition. We can announce that the 

small gap near H-point is topological nontrivial. However, the situation is very subtle. From the calculation, the 
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Fermi level is very close to the gap edge but does not cross the nontrivial band gap. Therefore, the   pocket is 

topologically trivial from these ideal calculated results. Actually, several perturbations can dramatically change the 

topological features of the pocket. For example, the unavoidable impurities can slightly move the Fermi level up or 

down to give the trivial or nontrivial case.  
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Supplementary Figure S10 The band structures along the (H-) - (A-) direction with kz=0.2|HK| without spin-orbital coupling 

in (a) and with spin-orbital coupling in (b).  

 

 

Supplementary Note 11. Understanding the angular dependent SdH oscillations from the 

anisotropy of Fermi surface.   

To understand the pronounced SdH quantum oscillations around=30 shown in Fig. 2 (b) in the main text, we 

start with the LK formula in equation (1). It is noted that the curvature factor       
   

   
  

 

    

 has close relation 

with the angular-dependent MR oscillation when the direction of magnetic field rotates. The angular-dependent 

relation of MR oscillations is dominated by the curvature factor   . Furthermore, the pronounced SdH quantum 

oscillation is mainly from a superposition of the oscillations of   and   pockets, as shown in Fig. 2 (d) and 

Supplementary Fig. 6 (a). Therefore, we focus on these two pockets. In Supplementary Figs. 11 (b) and (c), we 

plot the cross section    vs   . To calculate   , we use the quadratic polynomial to fit the       . Such 

selection is due to the fact that the general energy dispersion has the quadratic about    i.e.,       
     

  . 

The cross section           
        

  . Thus, the    is a constant under such approximation. The 

calculated results are shown in Supplementary Fig. 11 (d), and several features can be found. First, the curvature 

factors at titled angle 30 are larger than these at titled angle 0  for both pockets. Second, the curvature factor for 

  pocket is larger than that for   pocket at the same titled angle. As a consequence, the oscillations from   pocket 

is primary while the oscillation from   pocket is secondary. The overall SdH oscillation pattern has same 
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angular-dependent relation as that of   pocket. All in all, the pronounced SdH quantum oscillation at some special 

angle can be understood with aforementioned approximation and calculation.       

 

Supplementary Figure. 11 Fermi surface topology of   and   bands and curvature factor. (a) The closed Fermi 

surface for   and   pockets. (b) and (c) are the cross sections of   and   pockets vs the momentum    along the direction of 

magnetic field. Here, the titled angle is 0  in (b) and 30   in (c). The dotted and solid lines represent the calculated and fitting 

results, respectively. (d) The curvature factor    for   and   pockets with titled angles 0  and 30.  

 

Supplementary Note 12. The electronic structures of the non-distortion PtBi2 

As a reference structure of layered trigonal PtBi2, the non-distortion PtBi2 provides useful information to 

further testify the validity of such distortion from the electronic structures in comparison with the experimental 

observation. The crystalline and electronic structures of non-distortion PtBi2 are shown in Supplementary Fig. 12. 

From Supplementary Figs. 12 (e)-(j), one can find that there exist six Fermi pockets. However, the pockets in 

Supplementary Figs. 12 (e) and (f) are degenerate, and the pockets in Supplementary Fig. 12 (i) and (j) are also 

degenerate. The pockets in Supplementary Figs. 12 (i) and (j)  is connected by mirror transformation mz. Thus, 

the transport experiment cannot distinguish the pockets in Supplementary Figs. 12 (g) and (h).. In this case, there 

should be three but not six pockets identified by the transport experiment if the sample has the non-distortion 

structure. 
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Supplementary Figure 12  Crystal structure and calculated electron structures of non-distortion PtBi2. (a) The 

crystalline structure of non-distortion PtBi2. (b) The top view of (a). (c) the side view of (a). (d) Brillouin zone of 

non-distortion PtBi2. (e)-(j) the six Fermi pockets. (k) and (l) the band structures of non-distortion PtBi2 without and with 

spin orbit coupling, respectively. 
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