Supporting Information for

Evolution of New Delhi metallo-β-Lactamase (NDM) in the clinic: Effects of NDM

mutations on stability, zinc affinity, mono-zinc activity

Zishuo Cheng^{1†}, Pei W. Thomas^{2†}, Lincheng Ju³, Alexander Bergstrom¹, Kelly Mason¹, Delaney Clayton¹, Callie Miller¹, Christopher R. Bethel⁴, Jamie VanPelt¹, David L. Tierney^{1*}, Richard Page^{1*}, Robert A. Bonomo^{4,5*}, Walter Fast^{2*}, and Michael W. Crowder^{1*}

NDM variants	Amino acid substitutions	Reference	UniProt ID	
NDM-2	P28A	(1)	F2YZ26	_
NDM-3	D95N	(2)	I3VKD5	
NDM-4	M154L	(3)	H6WZS9	
NDM-5	V88L, M154L	(4)	G3K399	
NDM-6	A233V	(5)	G9JVE6	
NDM-7	D130N, M154L	(6)	J7I0S9	
NDM-8	D130G, M154L	(7)	M1VE66	
NDM-9	E152K	(8)	T2A6Y2	
NDM-10	R32S, G36D, G69S, A74T, G200R	(9)	S5ZIP8	
NDM-11	M154V	From UniProt	A0A0B5ECY2	
NDM-12	M154L, G222D	(10)	A0A024FRL9	
NDM-13	D95N, M154L	(11)	A0A0A8J940	
NDM-14	D130G	(12)	A0A0C5H135	
NDM-15	M154L, A233V	From UniProt	A0A0F6ZNP0	
NDM-16	V88L, M154L, A233V	From UniProt	A0A140IHH4	
NDM-17	V88L, M154L, E170K	(13)	A0A1P8C735	

Table S1. Clinically Isolated Variants of NDM.

Position	Primers for MIC experiment	Primers for protein over-expression	
P28A_F	CGGGTGCATGgccGGTGAAATCC	not required	
P28A_R	CTCAGCATCAATGCAGCGGC		
D95N_F	CGCCTGGACCaacGACCAGACCG	CGCCTGGACCaatGACCAGACCG	
D95N_R	GTATCGACCACCAGCACG	GTATCGACCACCAGCACGC	
M154L_F	GCAAGAGGGGctgGTTGCGGCGC	GCAAGAGGGGctgGTTGCGGCGC	
M154L_R	GGGGCAAGCTGGTTCGACAAC	GGGGCAAGCTGGTTCGACAAC	
M154V_F	GCAAGAGGGGgtgGTTGCGGCGC	GCAAGAGGGGgtcGTTGCGGCGC	
M154V_R	GGGGCAAGCTGGTTCGACAACG	GGGGCAAGCTGGTTCGAC	
V88L_F	CCGCGTGCTGctgGTCGATACCG	CCGCGTGCTGctgGTCGATACCG	
V88L_R	CCGCCATCCCTGACGATC	CCGCCATCCCTGACGATC	
A233V_F	CGCCGCGTCAgttCGCGCGTTTG	CGCCGCGTCAgttCGCGCGTTTG	
A233V_R	TAGTGCTCAGTGTCGGCATC	TAGTGCTCAGTGTCGGCATC	
D130N_F	GGGCGGTATGaatGCGCTGCATG	GGGCGGTATGaacGCGCTGCATG	
D130N_R	ATCTTGTCCTGATGCGCGTG	ATCTTGTCCTGATGCGCGTGAGTC	
D130G_F	GGGCGGTATGggtGCGCTGCATG	GGGCGGTATGggcGCGCTGCATG	
D130G_R	ATCTTGTCCTGATGCGCG	ATCTTGTCCTGATGCGCGTGAGTCACC	
E152K_F	TGCCCCGCAAaagGGGATGGTTG	TGCCCCGCAAaagGGGATGGTTG	
K152K_R	AGCTGGTTCGACAACGCATTGGC	AGCTGGTTCGACAACGCATTGGC	
E170K_F	TGGCTGGGTCaagCCAGCAACCG	TGGCTGGGTCaagCCAGCAACCG	
E170K_R	TTGGCGGCGAAAGTCAGG	TTGGCGGCGAAAGTCAGG	
G222D_F	CGGCAATCTCgacGATGCCGACAC	CGGCAATCTCgatGATGCCGACA	
G222D_R	AGCGACTTGGCCTTGCTG	AGCGACTTGGCCTTGCTG	
R328 G36D_F	gattgacCAGCAAATGGAAACTGGC	CTCCGGCTCCgatCAGCAAATGG(for G36D only)	
R328 G36D_R	gtcgggctGATTTCACCGGGCATGCA	GCGCCGCCCTGAAAATAC(for G36D only)	
G69S A74T_F	gcagtcacgTCCAACGGTTTGATCGTC	gcagtcaccTCCAACGGTTTGATCGTC	
G69S A74T_R	cccgaagctCGGCATGTCGAGATAGGA	cccgaagetCGGCATGTCGAGATAGGA	
G200R_F	TGGGATCGACcgcACCGACATCG	TGGGATCGACcgcACCGACATCG	
G200R_R	ACGGTGATATTGTCACTGGTG	ACGGTGATATTGTCACTGGTG	

Table S2. Primer Sequences Used for Site-Directed Mutagenesis to Generate NDM Variants

Purified	Zinc Content
NDM Variant	(Equiv)
NDM-1	1.8 ± 0.1
NDM-3	1.9 ± 0.1
NDM-4	1.6 ± 0.1
NDM-5	1.6 ± 0.1
NDM-6	1.8 ± 0.1
NDM-7	1.6 ± 0.1
NDM-8	1.7 ± 0.1
NDM-9	1.6 ± 0.1
NDM-11	1.9 ± 0.1
NDM-12	1.5 ± 0.1
NDM-13	1.4 ± 0.1
NDM-14	2.0 ± 0.1
NDM-15	1.8 ± 0.1
NDM-16	1.9 ± 0.1
NDM-17	1.9 ± 0.1

 Table S3.
 Zinc Content in NDM Variants, As-Purified, Determined by ICP-OES.

NDM	$k_{\rm cat}$	K_{M}	$k_{\rm cat}/K_{\rm M}$
Variant	(s^{-1})	(µM)	$(M^{-1}s^{-1})$
NDM-1	14.0 ± 0.4	0.55 ± 0.07	2.5×10^{7}
NDM-3	11.6 ± 0.3	1.7 ± 0.1	6.8×10^{6}
NDM-4	5.4 ± 0.1	0.50 ± 0.04	1.1×10^{7}
NDM-5	15.6 ± 0.8	2.7 ± 0.3	$5.8 imes 10^{6}$
NDM-6	11.3 ± 0.2	1.4 ± 0.1	8.1×10^{6}
NDM-7	8.1 ± 0.4	2.0 ± 0.3	4.1×10^{6}
NDM-8	5.3 ± 0.1	1.3 ± 0.1	4.1×10^{6}
NDM-9	12.5 ± 0.4	1.2 ± 0.1	1.0×10^{7}
NDM-11	6.2 ± 0.1	0.70 ± 0.05	8.9×10^{6}
NDM-12	5.7 ± 0.1	0.73 ± 0.07	$7.8 imes 10^6$
NDM-13	6.1 ± 0.2	1.5 ± 0.1	4.1×10^{6}
NDM-14	7.5 ± 0.2	0.69 ± 0.06	1.1×10^{7}
NDM-15	11.0 ± 0.4	1.4 ± 0.1	$7.9 imes 10^{6}$
NDM-16	10.0 ± 0.2	0.77 ± 0.06	1.3×10^{7}
NDM-17	9.5 ± 0.2	0.69 ± 0.06	1.4×10^{7}

Table S4 (a). Steady-State Kinetic Parameters of NDM Variants for Chromacef Hydrolysis in the Presence of Excess Zinc (10 μ M)

Table S4(b). Steady-State Kinetic Parameters of NDM Variants for Meropenem Hydrolysis in the Presence of Excess Zinc (10 μ M)

NDM	$k_{\rm cat}$	$K_{ m M}$	$k_{ m cat}/K_{ m M}$
Variant	(s^{-1})	(µM)	$(M^{-1}s^{-1})$
NDM-1	176 ± 7	58 ± 7	3.0×10^{6}
NDM-3	87 ± 3	63 ± 5	$1.4 imes 10^6$
NDM-4	141 ± 3	75 ± 4	$1.9 imes 10^{6}$
NDM-5	250 ± 10	130 ± 10	$1.9 imes 10^6$
NDM-6	69 ± 3	71 ± 7	9.7×10^{5}
NDM-7	141 ± 3	90 ± 5	$1.6 imes 10^{6}$
NDM-8	96 ± 2	84 ± 5	$1.1 imes 10^6$
NDM-9	90 ± 3	40 ± 4	$2.3 imes10^6$
NDM-11	71 ± 3	75 ± 8	9.5×10^{5}
NDM-12	104 ± 3	78 ± 6	$1.3 imes 10^6$
NDM-13	133 ± 5	110 ± 10	$1.2 imes10^6$
NDM-14	75 ± 3	72 ± 7	$1.0 imes10^6$
NDM-15	305 ± 8	113 ± 7	$2.7 imes10^6$
NDM-16	240 ± 20	220 ± 30	$1.1 imes 10^6$
NDM-17	123 ± 4	121 ± 8	$1.0 imes 10^6$

NDM	K _d	n
Variants	(µM)	
NDM-1	4 ±1	1.0 ± 0.1
NDM-3	5 ±2	1.1 ± 0.6
NDM-4	1.9 ± 0.7	1.0 ± 0.1
NDM-5	$2.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	1.0 ± 0.7
NDM-6	3.5 ± 0.7	1.00 ± 0.05
NDM-7	1.6 ± 0.5	1.00 ± 0.05
NDM-8	1.4 ± 0.9	1.02 ± 0.07
NDM-9	1.3 ± 0.9	1.0 ± 0.8
NDM-11	3 ±2	1.0 ± 0.1
NDM-12	3 ±2	1.0 ± 0.4
NDM-13	3 ± 0.8	1.0 ± 0.1
NDM-14	2 ± 0.7	1.0 ± 0.1
NDM-15	5 ±2	1.0 ± 0.2
NDM-16	2 ± 0.6	1.07 ± 0.06
NDM-17	3 ± 1	1.1 ± 0.1

Table S5. Dissociation Constants for L-Captopril and Dizinc (II) NDM Variants as Determined by ITC.

Figure S1. Immunoblotting of NDM Variants To Gauge Protein Levels. Immunoblotting was used to evaluate the expression levels of each NDM (1-17) variant. Five-milliliter cultures of *E. coli* DH10B cells containing pHSG-298 phagemids harboring the various bla_{NDM} variants in Mueller-Hinton (MH) broth containing 50 µg/mL kanamycin were grown at 37 °C to an optical density at 600 nm (OD₆₀₀) of 0.8. Fifty-microliter aliquots of whole cells from these cultures were pelleted and frozen overnight. Pellets were resuspended in 20 µL loading dye, separated by SDS-PAGE, and transferred to a polyvinylidene difluoride membrane (Novex, Life Technologies, Carlsbad, CA) by electroblotting. After blocking for 1 h with 5 % nonfat dry milk, bla_{NDM} presence on the blot was detected by incubation in 5 % nonfat dry milk with anti-NDM-1 polyclonal antibody mouse serum (1/200 dilution) and 1/10,000 dilution of mouse anti-DnaK monoclonal Ab (Enzo Life Sciences) overnight at 4°C. The membrane was washed four times, 15 min each, in Tris-buffered saline (pH 7.4) containing 0.1% Tween-20 and subsequently incubated in 5 % nonfat dry milk with 1/10,000 dilution of HRP-goat anti-mouse Ab conjugate (Santa Cruz Biotechnology). After four additional washes, the membrane was processed for exposure using the ECL kit (GE Healthcare) and FOTO/AnalystVR FX (Fotodyne).

Figure S2. SDS-PAGE analysis (12.5%) of purified NDM variants after removal of His-tags. Each variant is labeled by column. The molecular weight markers (M, mass indicated on left in KDa) are EZ-Run Protein Ladder (Fisher).

Figure S3. Stopped-Flow Kinetics of Chromacef Turnover by Dizinc (II) NDM Variants. Formation of an anionic reaction intermediate at (575 nm) is followed for each NDM-variant and grouped qualitatively by A) variants that show fast formation of the intermediate followed by a slow decay, B) variants that show fast formation of the intermediate that is maintained for a period before decay, and C) variants that show an initial lag period before formation and subsequent decay of the intermediate. Variants containing the M154L mutation are indicated with an asterisk.

Figure S4 Starts below (a multipage figure)

Figure S4. Thermograms and Dissociation Constant Fits for L-Captopril and NDM Variants. Upper panes of each are titration thermograms and lower are the data integration with fitted curves.

Figure S5. Far-UV CD spectra of purified NDM Variants. Data were obtained for each variant (4 μ M) at room temperature (ca. 25 °C) in phosphate buffer (20 mM), at pH 7.

Figure S6. Relative Intrinsic Trp Fluorescence of NDM Variants. Each protein sample (2 μ M) was measured in HEPES buffer (50 mM) at pH 7.5, with data representing the mean of triplicate experiments and error bars depicting standard deviation.

Figure S7. Comparison of 300 MHz ¹HNMR of CoCo-NDM-4 in 100 % D_2O (top) and in 90/10 H₂O/ D_2O . Exchangeable resonances are marked with a red asterisk.

B:

Figure S8. EPR Spectra of dicobalt (II) metalloforms of NDM Variants. A) Perpendicular and B) parallel (spectra smoothed using Kaleidegraph) CW-EPR spectra of the metalloforms (0.5 mM), as labeled. Sharp spikes at 1600 G are due to minor contamination by iron.

Figure S9 Starts below (a multipage figure)

NDM-11:

NDM-12:

NDM-13:

NDM-14:

NDM-16:

Figure S9: Zinc(II) dependence of NDM variants for hydrolysis of Ampicillin. Fits are as described for Figure 10 and Table 4. Each variant used is labeled in the separate plots above.

Figure S10. Determination of Kinetic Parameters for Monzinc NDM-15. These experiments were completed using 0.1 nM added $ZnCl_2$ and are near the limit of detection for this assay in our hands. Values for k_{cat} and K_M are given in Table 5.

Supporting Information References

- 1. Kaase, M., Nordmann, P., Wichelhaus, T. A., Gatermann, S. G., Bonnin, R. A., and Poirel, L. (2011) NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. *J Antimicrob Chemother* **66**, 1260-1262
- Poirel, L., Bonnin, R. A., Boulanger, A., Schrenzel, J., Kaase, M., and Nordmann, P. (2012) Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. *Antimicrob Agents Chemother* 56, 1087-1089
- 3. Nordmann, P., Boulanger, A. E., and Poirel, L. (2012) NDM-4 metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli. *Antimicrob Agents Chemother* **56**, 2184-2186
- 4. Hornsey, M., Phee, L., and Wareham, D. W. (2011) A novel variant, NDM-5, of the New Delhi metallo-beta-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. *Antimicrob Agents Chemother* **55**, 5952-5954
- Williamson, D. A., Sidjabat, H. E., Freeman, J. T., Roberts, S. A., Silvey, A., Woodhouse, R., Mowat, E., Dyet, K., Paterson, D. L., Blackmore, T., Burns, A., and Heffernan, H. (2012) Identification and molecular characterisation of New Delhi metallobeta-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. *Int J Antimicrob Agents* **39**, 529-533
- 6. Gottig, S., Hamprecht, A. G., Christ, S., Kempf, V. A., and Wichelhaus, T. A. (2013) Detection of NDM-7 in Germany, a new variant of the New Delhi metallo-beta-lactamase with increased carbapenemase activity. *J Antimicrob Chemother* **68**, 1737-1740
- 7. Tada, T., Miyoshi-Akiyama, T., Dahal, R. K., Sah, M. K., Ohara, H., Kirikae, T., and Pokhrel, B. M. (2013) NDM-8 metallo-beta-lactamase in a multidrug-resistant Escherichia coli strain isolated in Nepal. *Antimicrob Agents Chemother* **57**, 2394-2396
- 8. Wang, X., Li, H., Zhao, C., Chen, H., Liu, J., Wang, Z., Wang, Q., Zhang, Y., He, W., Zhang, F., and Wang, H. (2014) Novel NDM-9 metallo-beta-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. *Int J Antimicrob Agents* **44**, 90-91
- 9. Khajuria, A., Praharaj, A. K., Kumar, M., and Grover, N. (2016) Presence of a novel variant NDM-10, of the New Delhi metallo-beta-lactamase in a Klebsiella pneumoniae isolate. *Indian J Med Microbiol* **34**, 121-123
- Tada, T., Shrestha, B., Miyoshi-Akiyama, T., Shimada, K., Ohara, H., Kirikae, T., and Pokhrel, B. M. (2014) NDM-12, a novel New Delhi metallo-beta-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. *Antimicrob Agents Chemother* 58, 6302-6305
- Shrestha, B., Tada, T., Miyoshi-Akiyama, T., Shimada, K., Ohara, H., Kirikae, T., and Pokhrel, B. M. (2015) Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. *Antimicrob Agents Chemother* 59, 5847-5850
- 12. Zou, D., Huang, Y., Zhao, X., Liu, W., Dong, D., Li, H., Wang, X., Huang, S., Wei, X., Yan, X., Yang, Z., Tong, Y., Huang, L., and Yuan, J. (2015) A novel New Delhi metallobeta-lactamase variant, NDM-14, isolated in a Chinese Hospital possesses increased enzymatic activity against carbapenems. *Antimicrob Agents Chemother* **59**, 2450-2453
- 13. Liu, Z., Wang, Y., Walsh, T. R., Liu, D., Shen, Z., Zhang, R., Yin, W., Yao, H., Li, J., and Shen, J. (2017) Plasmid-Mediated Novel blaNDM-17 Gene Encoding a

Carbapenemase with Enhanced Activity in a Sequence Type 48 Escherichia coli Strain. *Antimicrob Agents Chemother* **61**