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Supplementary Methods 

 

Description of the St. Jude Lifetime Cohort study   

The eligibility criteria for inclusion in the St. Jude Lifetime (“SJLIFE”) Cohort Study included 

being treated at St. Jude Children’s Research Hospital (“SJCRH”) for a malignancy, survival 

greater than or equal to 10 years from diagnosis (recently expanded to five years), and 

recruitment age greater than or equal to ≥ 18 years of age (recently this age criterion was 

removed)(31). SJCRH survivors are followed by the SJCRH Cancer Registry and invited to 

participate in SJLIFE after leaving the After Completion of Therapy (“ACT”) Clinic, but 

attendance of survivors in the ACT Clinic is not a requirement for recruitment into SJLIFE. 

SJCRH has made long-term commitments to the SJLIFE study and the pool of potential recruits 

for the study will increase over time as more survivors become eligible for the study. Over time 

the characteristics of the cohort, including demographics, diagnoses, and treatment, will change 

reflecting changes in treatment protocols and childhood cancer patients treated at St. Jude(31). 

The age of the SJLIFE participants in the analysis ranges from 19 to 60 years with a median of 

32 years. 

The major difference in study design of SJLIFE in comparison to Childhood Cancer 

Survivor Study (“CCSS”) is its clinical assessment of late effects outcomes, compared the self-

report ascertainment of CCSS. SJLIFE is a single institution study, while CCSS is a consortium 

of 31 institutions. CCSS contains a subset of SJLIFE participants: they were excluded from the 

replication analysis.  
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Genotyping quality control 

Quality control of SJLIFE genotype data was performed using PLINK version 1.90 and excluded 

SNPs with minor allele frequency (“MAF”) <0.01 in the study population, >5% genotype 

missingness, and SNPs not in Hardy-Weinberg Equilibrium (p-value<10-6 in individuals with 

European ancestry)(14), see Supplementary Figure Genotyping quality control diagram. 

Exclusion criteria of individuals were: >5% genotype missingness (N=0); cryptic relatedness 

(N=0); excess per-sample heterozygosity (+/–3 standard deviations from the mean)(N=0); sex 

discordance between genetically predicted and clinical record (N=11), and ancestry groups with 

less than five individuals (N=4). 

 

Conditional analysis 

We performed a conditional analysis using the 13 SNPs to determine if there were multiple 

signals in the group of 13 SNPs on Chromosome 4q32.1. Using the clinical model from the 

genome wide association study, we iteratively chose and added the SNP with the lowest p-value 

to the clinical model to evaluate the additive impact of SNPs on the clinical model until there 

were no significant SNPs remaining (cutoff of p-value 0.05). Two SNPs were identified with 

nominal significance. 

 

Participant ancestry and outliers 

To investigate the impact of ancestry and outliers, we repeated the analysis limiting to survivors 

who are regarded to have European ancestry defined by a cutoff of the STRUCTURE estimated 

ancestry value 0.5 adjusting for the same treatment covariates as in the main analysis. The 

European-only analysis showed consistent results as the combined analysis with high-risk 
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haplotype in ovarian radiation exposed survivors having an odds ratio of 17.33 (95% CI 3.76–

99.68, p-value < 0.001). A second analysis in Europeans was performed with a more 

conservative cutoff of > 0.8 and the high-risk haplotype in ovarian radiation exposed survivors 

had results similar to the European-only analysis using the 0.5 cutoff (OR 13.97, 95% CI 2.94–

81.46, p-value=0.002) adjusting for the same treatment covariates as in the main analysis. To 

visualize and confirm the ancestry of survivors in our study population against the 1000 Genome 

populations, we plotted the first two principle components, stratified by cases and controls, 

superimposed on top of the ancestry groups from the 1000 Genome project for the entire study 

population, survivors with European ancestry defined by an estimated ancestry value > 0.5, and 

survivors with European ancestry defined more conservatively with an estimated ancestry value 

> 0.8, see Supplementary Figure 4, 5, and 6, respectively. 

 

Analysis of imputed genotypes 

We imputed genotypes from the Affymetrix 6.0 array up to the 1000 Genomes Phase 3 Version 5 

mixed reference panel using the University of Michigan Imputation Server(15). Common 

autosomal SNPs (MAF ≥ 0.01 in study sample) were imputed and included in the imputed 

analysis if they had an imputation quality score (“INFO”) greater or equal to 0.4. There were 

11,343,365 imputed SNPs with 10,993,255 having an imputed quality score greater than or equal 

to 0.4 used in the imputed analysis. We then performed a genome-wide association study of 

imputed genotypes (dosage scores) adjusting for the same non-genetic co-variates in the clinical 

model as we did for the analysis of directly genotyped SNPs, see Methods section Study Design 

and Participants. Of the imputed autosomal SNPs analyzed, none reached genome wide 

significance (p-value < 5.0x10-8) or refined the observed signal motivating our focus on 
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genotyped data and specifically the region with the largest cluster of genotyped SNPs with p-

values < 10-5. 

 

Haplotype analysis 

Current standard methodologies for SNP data involve measuring genotypes of SNPs without 

distinguishing between the maternal or paternal chromosomal origin of alleles. The standard 

analysis evaluates each single SNP one at a time for its genotype’s association with the 

phenotype, without considering other SNPs. When considering more than one SNP in proximity, 

we need to account for the chromosome on which a set of bases (SNP alleles) reside because 

transcription reads from a (either maternal or paternal) chromosome. A haplotype is a DNA 

sequence (not necessarily adjacent to each other) on the same chromosome. It is, therefore, 

meaningful to examine a haplotype when investigating multiple SNPs that tend to be inherited 

together. When we create a haplotype from multiple SNPs we need to obtain phased data which, 

by statistical estimation, separates proximal SNP alleles into two chromosomes. This allows 

investigation of the association between the haplotype and a phenotype of interest.  

To determine whether the observed genetic signal could be better captured using multiple 

SNPs to form a haplotype, we calculated the log likelihood for all single SNPs, all two SNP 

haplotypes, all three SNP haplotypes, and all four SNP haplotypes using phased data obtained 

with PHASE(16). The log likelihood decreases with the addition of each additional SNP with the 

four SNP haplotype having the best performing model, which we used to define our risk 

haplotype.  

• 1 SNP (rs4323056:A): -64.0 

• 2 SNP (rs7669884:C AND rs9999820:G): -61.7 
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• 3 SNP (rs7669884:C AND rs4323056:A AND rs9999820:G): -61.1 

• 4 SNP (rs4323056:A AND rs13114936:G AND rs4402990:C AND rs9999820:G): -60.8 

 

Treatment associations 

Previously reported treatment variables that significantly increased the risk of premature 

menopause (“PM”) in survivors, including ovarian-radiotherapy (“RT”) exposure (RT >10 Gray 

versus no RT, OR 109.59, 95% CI 28.15–426.70) and alkylating agents (upper tertile alkylating 

agent score versus no exposure, OR 5.78 (95% CI 2.90–11.55)(6), were included in our clinical 

base model. In our analysis, the clinical base model without the homozygous risk haplotype 

found that the radiation exposure indicator variable (yes/no) had an odds ratio of 11.28 (95% CI 

3.84–34.66, p-value 1.2x10-5) and radiation exposure dosimetry (one Gray increase) having an 

OR of 1.07 (95% CI 1.00–1.15, p-value 0.04) for the prevalence of PM. The association of 

cyclophosphamide equivalent dose indicator variable (CED > 8g/m2, yes/no) with the PM 

prevalence became weaker with an odds ratio of 2.66 (95% CI 1.08–6.90, p-value 0.04). In the 

model with an indicator variable for the homozygous high-risk haplotype, radiation exposure 

remains significantly associated with PM prevalence with the radiation exposure indicator 

variable (yes/no) having an OR of 8.79 (95% CI 1.87–47.89, p-value 0.007) and radiation 

exposure dosimetry (one Gray increase) having an OR of 1.09 (95% CI 1.01–1.18, p-value 0.03). 

The association of cyclophosphamide equivalent dose indicator variable (CED > 8g/m2, yes/no) 

with PM prevalence became weaker with an OR of 2.87 (95% CI 0.92–9.90, p-value 0.08).  
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Bioinformatics analysis 

Data tracks for the predicted chromatin state (ChromHMM) and histone modification mark peaks 

from ENCODE ChIP-seq experiments (chromatin immunoprecipitation combined with massive 

parallel sequencing) associated with enhancer (H3K4me1), promoter (H3K4me3), and 

Polycomb-repressed (H3K27me3; H3K9me3) states were considered for relevant tissue types. 

Epigenetic data across multiple bioinformatics resources were compiled to characterize the SNPs 

in the expanded genetic signal (“expanded GS”). Significant associations between SNPs in the 

expanded GS and cis-gene expressions from the Genotype-Tissue Expression Project (“GTEx”) 

were assessed(26). HaploReg was used to identify SNPs that overlapped with: (a) enhancer-

related ChIP-seq histone modification mark peaks (H3K4me1, H3K27ac); (b) DNase I 

hypersensitivity site peaks; and (c) transcription factor (“TF”) binding sites motifs with 

significant alterations between SNP alleles. ANNOVAR was employed to identify SNPs with 

evidence of bound transcription factors (ENCODE ChIP-seq data for 161 TFs) and conservation 

across 46 vertebrate species (ENCODE 46-way PhastCons data)(32). 

 

Temporal trends associated with premature menopause in St. Jude Lifetime Cohort study  

We performed two supplementary analyses, adjusting for the same ancestry and treatment 

exposures as in the main analysis.  

Using the Cox proportional hazards model for survivors with ovarian radiation exposure, 

the homozygous high-risk haplotype was associated with premature menopause with an adjusted 

hazard ratio of 9.10 (95% CI 3.58–23.12, p-value=3.5x10-6) with the time at risk of study 

participants starting at eligibility for inclusion in SJLIFE (verified the proportional hazards 

assumption with scaled Shoenfeld residuals graphically and testing).  
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In a matched case-control analysis where cases were matched based on age at clinical assessment 

(+/- two years) and ancestry, the conditional logistic regression model showed that, in survivors 

with ovarian radiation exposure, females with the homozygous high-risk haplotype had an 

increased odds of premature menopause prevalence (OR 14.78, 95% CI 4.25–51.34, p-value 

2.3x10-5).  

 

Note that since the clinical assessment cannot identify the exact age/time at premature 

menopause, our primary analysis assessed, not the incidence of premature menopause, but the 

prevalence of having had premature menopause by the age at clinical assessment. 

 

Replication dataset AUC, sensitivity, and specificity 

In the replication dataset, adding the homozygous high-risk haplotype to the non-genetic model 

of premature menopause increased the AUC from 0.66 to 0.71 in survivors with ovarian 

radiation exposure, with a sensitivity of 0.29 (95% CI 0.15–0.46) and a specificity of 0.89 (95% 

CI 0.84–0.92).   
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Consort diagram for St. Jude Lifetime (“SJLIFE”) Cohort 
Study. 
 
 
 
 
  



	 14	

 
 

 
 
Supplementary Figure 2. Genetic quality control exclusion diagram. 
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	Supplementary Figure 3. GTEx Project normalized gene expression plot showing 
median and 25th/75th percentile of log10 Reads Per Kilobase of transcript per 
Million mapped reads for NPY2R among tissues with N ≥ 70 samples indicating 
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the greatest expression in the hypothalamus (top: 27 types, bottom: 26 tissue 
types)(26). 
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Supplementary Figure 4. Plot of the first two principle components from principle 
component analysis for cases and controls in SJLIFE superimposed on the 1000 
Genomes EUR/AFR/EAS reference populations. 
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Supplementary Figure 5. Plot of the first two principle components from principle 
component analysis for cases and controls of European descent (using 
STRUCTURE CEU variable > 0.5) in SJLIFE superimposed on the 1000 Genomes 
EUR/AFR/EAS reference populations. 
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Supplementary Figure 6. Plot of the first two principle components from principle 
component analysis for cases and controls of European descent (using 
STRUCTURE CEU variable > 0.8) in SJLIFE superimposed on the 1000 Genomes 
EUR/AFR/EAS reference populations. 
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Supplementary Table 1. Conditional analysis top SNPs iteratively adding 
genotyped SNPs to the clinical model until no additional significant SNPs remain 
with a p-value cutoff of 0.05 

One SNP Two SNPs Three SNPs 
SNP P-value* SNP P-value* SNP P-value* 

rs9999820  3.25x10-7 rs9999820 +  rs9999820 +  
rs4323056  3.49x10-7 rs13114936  0.04 rs13114936 +  
rs6810505 9.46x10-7 rs6810505 0.07 rs4323056  0.53 

rs12643129  9.84x10-7 rs2880418  0.07 rs4402990  0.53 
rs2880418  1.45x10-6 rs4323056  0.08 rs4456917  0.53 

rs13114936  2.03x10-6 rs13121931  0.08 rs11099988  0.53 
rs7669884  4.01x10-6 rs12643129  0.09 rs4428241  0.53 

rs13121931  5.08x10-6 rs7669884  0.09 rs6810505 0.59 
rs11735253  5.68x10-6 rs4402990  0.14 rs12643129  0.64 

rs4402990  8.24x10-6 rs4456917  0.14 rs7669884  0.70 
rs4456917  8.31x10-6 rs11099988  0.14 rs13121931  0.78 

rs11099988  8.32x10-6 rs4428241  0.14 rs11735253  0.88 
rs4428241  8.34x10-6 rs11735253  0.43 rs2880418  0.95 

  
*Two-sided likelihood ratio test. 
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Supplementary Table 2. The Edinburg Criteria for prioritizing fertility saving 
procedures (35 years of age with >50% risk of premature menopause) was applied 
using the clinical model with and without the high-risk haplotype to predict 
prevalence of premature menopause in the SJLIFE study population 
 Premature menopause predicted risk 
Clinical model Risk ³50% (Number of observed PM 

cases in SJLIFE thus far) 
Risk <50% (Number of observed PM 
cases in SJLIFE thus far) 

With high-risk 
haplotype 15 (9) 784 (21) 

Without high-risk 
haplotype 1 (1) 798 (29) 

 


