Science Advances

advances.sciencemag.org/cgi/content/full/4/8/eaat2853/DC1

Supplementary Materials for

Impacts of forests on children's diet in rural areas across 27 developing countries

Ranaivo A. Rasolofoson*, Merlin M. Hanauer, Ari Pappinen, Brendan Fisher, Taylor H. Ricketts

*Corresponding author. Email: rrasolof@gmail.com

Published 15 August 2018, *Sci. Adv.* **4**, eaat2853 (2018) DOI: 10.1126/sciadv.aat2853

This PDF file includes:

Section S1. Why not controlling for the DHS wealth variable? Table S1. Description and sources of the confounding variables. Table S2. Covariate balance between forest and nonforest households in 14 sub-Saharan countries. Reference (57)

Supplementary Materials

Section S1. Why not controlling for the DHS wealth variable?

The DHS data have a household' s wealth variable constructed from a combination of household assets and housing characteristics. This variable would be a natural proxy for income as a confounder. However, the wealth data were collected in the same years as the forest cover and the diet data. Therefore, forests could affect the wealth variable, which in its turn could affect diet. In other words, the wealth indicated by the variable could be a mechanism through which forests affect diet. Controlling for this variable could block the effects of forests on diet that occur through this mechanism and thus bias the estimator.

To test whether the wealth indicated by the wealth variable is a potential mechanism, we first examine the impact of forests on wealth. If forests have no impact on the wealth variable, we will have some assurance that the wealth variable is not a mechanism and we should use it as a proxy for income among the confounders. We use the same matching design as we use in the investigation of the impact of forests on diet in the main text. The result suggests that households with high exposure to forests have wealth score 0.24 point (95% confidence interval = [0.21, 0.26]) greater than those that lack exposure. Therefore, the wealth variable could be a mechanism. Assuming that greater wealth yields greater diet diversity, controlling for the wealth variable would block the positive impact of forests on diet diversity going through the positive impact of forests on diet that the estimate of impacts of forests on dietary diversity would be likely to be underestimated if we controlled for the wealth variable.

To test this prediction, we estimate the impact of forests on dietary diversity controlling for the DHS wealth variable. The impact estimate is 0.22 (95% confidence interval = [0.11, 0.33]), which is likely to be underestimated as predicted because it lays below the lower bound of the range of estimates defined in the partial identification approach (Figure. 3 in the main text). Therefore, the DHS wealth variable is likely to be a mechanism and we thus do not control for it. Instead, we used a combination of variables that are among those widely used to proxy household income for targeting social programs, but could not be affected by forest cover at the time of the survey. These variables include education and age of heads of households, household size, and number of children under 5 in a household (49).

Confounding	Description	Source			
variable					
Suitability for	Suitability of areas for agriculture at	Global Agro-Ecological Zones – 2000 –			
agriculture	community 10 km grid based on	Plate 28 (Food and Agriculture			
	climate, soil, and slope constraints.	Organization of the United Nations,			
	Lands suitable for agriculture	Rome, Italy, International Institute for			
	comprise those with no, very few,	Applied Systems Analysis, Laxenburg,			
	few, and partial constraints. Areas	Austria, 2002;			
	unsuitable for agriculture comprise	https://webarchive.iiasa.ac.at/Research/L			
	lands with frequent and very	UC/GAEZ/index.htm).			
	frequent severe constraints, areas				
	with severe climate constraints,				
	lands unsuitable for agriculture,				
	undefined areas (sea), and water.				
Slope	Average slope in degrees within 5	SRTM 90m Digital Elevation Database			
	km buffer around community point	v4.1 (Consortium for Spatial Information			
		of the Consultative Group for			
		International Agricultural Research,			
		Washington, DC, 2008;			
		http://www.cgiar-csi.org/data/srtm-90m-			
		digital-elevation-database-v4-1).			
Elevation	Average elevation in meters within	SRTM 90m Digital Elevation Database			

Table S1. Description and sources of the confounding variables.

	5 km buffer around community	v4.1 (Consortium for Spatial Information
	point	of the Consultative Group for
		International Agricultural Research,
		Washington, DC, 2008;
		http://www.cgiar-csi.org/data/srtm-90m-
		digital-elevation-database-v4-1).
Distance to a	Distance between the community	Global Roads Open Access Data Set,
road	point and the nearest road in meters.	Version 1 (gROADSv1) (Center for
	The date of the roads in the data	International Earth Science Information
	ranges from the 1980s to 2010	Network, Columbia University, New
	depending on the country.	York, Information Technology Outreach
		Services, University of Georgia, Athens,
		Georgia, 2013;
		http://dx.doi.org/10.7927/H4VD6WCT).
Distance to a	Distance between the community	Millennium Ecosystem Assessment: MA
city	point and the nearest town with at	Population (Millennium Ecosystem
	least 5,000 inhabitants in meters,	Assessment, NASA Socioeconomic Data
	circa 2000	and Applications Center, Palisades, New
		York, 2005;
		http://dx.doi.org/10.7927/H4CF9N1K).
Ruminant	Ruminant livestock density at	Global Agro-ecological Zones (GAEZ
livestock	community 10 km grid in Tropical	v3.0) (Food and Agriculture Organization
density	Livestock Unit (TLU) per km ² ,	of the United Nations, Rome, Italy,

	circa 2000. Based on the	International Institute for Applied
	information on the carrying	Systems Analysis, Laxenburg, Austria,
	capacities of different agro-	2010; http://gaez.fao.org/Main.html#).
	ecological zones in the study of	
	Pica-Ciamarra, Otte and Chilonda	
	(57), we grouped the densities in	
	three categories; Low: 0 to 10	
	TLU/km ² (density below any	
	carrying capacity), Medium: 10 to	
	50 TLU/km ² (carrying capacities of	
	different agro-ecological zones),	
	High: more than 50 TLU/km ²	
	(density above any carrying	
	capacity)	
GDP	GDP at community 100 km grid in	W. D. Nordhaus, X. Chen, Global
	1995 USD purchasing power parity:	Gridded Geographically Based Economic
	GDP in 2000 for 2000 – 2004	Data (G-Econ), Version 4 (NASA
	surveys and GDP in 2005 for 2005	Socioeconomic Data and Applications
	– 2013 surveys	Center, Palisades, New York, 2016;
		http://doi.org/10.7927/H42V2D1C).
Population	Population count within 5 km	Gridded Population of the World,
size	buffer around community point:	Version 4 (GPWv4): Population count
	population in 2000 for 2000 – 2004	adjusted to match 2015 revision of UN

	surveys, population in 2005 for	WPP country totals (Center for		
	2005 – 2009 surveys, and	Intenational Earth Science Information		
	population in 2010 for 2010 – 2013	Network, Columbia University, New		
	surveys	York, 2016;		
		http://dx.doi.org/10.7927/H4SF2T42).		
Education of	Number of years of education of	Demographic and Health Surveys		
head of	head of household			
household				
Age of head	Age of head of household	Demographic and Health Surveys		
of household				
Household	Number of members of household	Demographic and Health Surveys		
size	that usually live in the household			
Number of	Number of children resident in the	Demographic and Health Surveys		
children under	household and aged five or under			
5 in				
household				

Table S2. Covariate balance between forest and nonforest households in 14 sub-Saharan countries.

Variable	Mean	Mean	Difference	Mean raw
	forest	non-forest	of means	eQQ
	household	household		difference*
Suitability for agriculture (%)				
- Unmatched	38.63	46.84	-8.21	8.21
- Matched	38.63	37.44	1.19	1.18
Slope (degree)				
- Unmatched	2.28	1.09	1.19	1.19
- Matched	2.28	1.54	0.74	0.74
Elevation (m)				
- Unmatched	756.24	701.27	54.97	68.32
- Matched	756.24	672.87	83.37	84.37
Distance to a road (km)				
- Unmatched	3.89	2.96	0.93	0.93
- Matched	3.89	2.99	0.90	0.91
Distance to a city (km)				
- Unmatched	30.61	35.10	-4.49	5.66
- Matched	30.61	30.08	0.53	1.80
Medium livestock density (%)				
- Unmatched	20.94	56.79	-35.85	35.85
- Matched	20.94	30.38	-9.44	9.48

High livestock density (%)				
- Unmatched	3.97	23.22	-19.25	19.25
- Matched	3.97	3.33	0.64	0.64
GDP (billion US\$ PPP)				
- Unmatched	1.15	1.28	-0.13	0.31
- Matched	1.15	0.91	0.24	0.25
Population size (individuals)				
- Unmatched	8516.90	13471.00	-4954.10	5214.80
- Matched	8516.90	8195.50	321.40	848.11
Education of head of household (years)				
- Unmatched	5.16	3.82	1.34	1.40
- Matched	5.16	4.46	0.70	0.70
Age of head of household (years)				
- Unmatched	39.18	38.39	0.79	1.06
- Matched	39.18	37.93	1.25	1.60
Household size (individuals)				
- Unmatched	6.50	6.61	-0.11	0.15
- Matched	6.50	6.34	0.16	0.20
Children under 5 (individuals)				
- Unmatched	2.07	2.16	-0.09	0.10
- Matched	2.07	2.05	0.02	0.09

^{*}The mean difference in raw eQQ is a descriptive statistic based on the empirical Quantile-Quantile (eQQ) plot (*52*). It measures the mean distance observed in the eQQ plot when the distribution of a variable is plotted for two different samples, such as forest and non-forest households.