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General Considerations. All manipulations, unless otherwise stated, were performed open to air on the
benchtop. Zinc triflate, zinc perchlorate hexahydrate, zinc nitrate hexahydrate, hydrogen peroxide (30%),
diisopropylethylamine, trimethylamine, sodium azide, tetrabutylammonium chloride, ceric ammonium
nitrate, and reagent grade solvents were purchased from commercial vendors and used as received. L® (R
= OMe, H, CFs3, OPh),! tris(2-pyridylmethyl)amine,> and tris(6-bromo-2-pyridylmethyl)amine®> were
synthesized according to literature procedures. Caution! Azides and perchlorates present explosion risks
and should only be handled on small scales.

NMR spectra were recorded on Varian Vnmrs 700 or Varian MR400 spectrometers. *H and 3C chemical
shifts are reported in parts per million (ppm) relative to tetramethylsilane and referenced internally to
the residual solvent peak. 1°F spectra were referenced on a unified scale, where the single primary
reference is the frequency of the residual solvent peak of the *H NMR spectrum. Multiplicities are reported
as follows: singlet (s), doublet (d), triplet (t), quartet (q). Infrared spectra were recorded using a Nicolet
iS10 FT-IR spectrometer either as neat solids or in DCM solution. Combustion analysis was performed by
Atlantic Microlab, Inc., Norcross, Georgia.

Single crystals of 1°Me, 13 2" and (L")zn(OH)(OTf) suitable for X-ray diffraction were coated with
poly(isobutylene) oil and mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer
equipped with a low temperature device and Micromax-007HF Cu-target microfocus rotating anode (A =
1.54187 A). The data were collected using CrystalClear 2.011 and processed using CrysAlis PRO
1.171.38.41. Empirical absorption correction was applied using spherical harmonics, as implemented in
the SCALE3 ABSPACK scaling algorithm. Single crystals of (TPA)Zn(Ns) suitable for X-ray diffraction were
coated with poly(isobutylene) oil and transferred to the goniometer head of a Bruker AXS D8 Quest
diffractometer with kappa geometry, an |-u-S microsource X-ray tube, laterally graded multilayer (Goebel)
mirror for monochromatization, a Photon2 CMOS area detector and an Oxford Cryosystems low
temperature device. Examination and data collection were performed with Cu Ka radiation (A = 1.54184
R). Single crystals of 1", 1NMe2 20Me NMe2 5CF3 [ (| H)7nC|][OTf], and [(TPA)Zn(Ns)][CIO4] suitable for X-ray
diffraction, were coated with poly(isobutylene) oil and transferred to the goniometer head of a Bruker
AXS D8 Quest diffractometer with a fixed chi angle, a sealed tube fine focus X-ray tube, single crystal
curved graphite incident beam monochromator and a Photon100 CMOS area detector. Examination and
data collection were performed with Mo Ka radiation (A = 0.71073 A). For both Quest instruments, data
were collected, reflections were indexed and processed, and the files scaled and corrected for absorption
using APEX3.* For all samples, the space groups were assigned and the structures were solved by direct
methods using XPREP within the SHELXTL suite of programs® and refined by full matrix least squares
against F2 with all reflections using ShelxI2018° using the graphical interface Shelxle.” If not specified
otherwise, H atoms attached to carbon atoms were positioned geometrically and constrained to ride
on their parent atoms, with carbon hydrogen bond distances of 0.95 A for and aromatic C-H, 1.00, 0.99
and 0.98 A for aliphatic C-H, CH,, and CHs moieties, respectively. Methyl H atoms were allowed to rotate
but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C)
with 1.5 for CHs, and 1.2 for CH,;, C-H and N-H units, respectively. Additional data collection and
refinement details, including description of disorder (where present) can be found with the individual
structure descriptions, below.
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Synthesis of tris(6-(4-dimethylaminophenyl)amino-2-pyridylmethyl)amine (LNM€2). In the air, a 20 mL
glass scintillation vial was charged with Brstpa (0.200 g, 0.3795 mmol), Pd(OAc), (0.0077 g, 0.0342 mmol),
BINAP (0.0319 g, 0.0512 mmol), Cs,C0O3 (0.7421 g, 2.277 mmol), N,N-dimethyl-p-phenyldiamine (0.4651
g, 3.4155 mmol), and a Teflon stirbar. 20 mL of N,-sparged toluene was added and the vial was quickly
sealed with a Teflon-lined cap. The solution was heated at 100 °C with vigorous stirring (1300 rpm) for 18
hours. Following heating, the reaction was cooled to room temperature and 20 mL of CH,Cl; was added
and stirred for an additional 5 min. The slurry was filtered over Celite and rinsed with CH,Cl; (2 x 10 mL).
The filtrate was then dry loaded onto silica gel via rotary evaporation. The dry loaded product was purified
by flash chromatography on a Biotage Isolera One using a 25 g self-packed silica gel column. Method: 3
column volumes (CV) of 70% hexane: 30% ethyl acetate, then a gradient of 15 CV to 100% ethyl acetate,
then 10 CV of 100% ethyl acetate. Product elutes between 20-26 column volumes. Fractions containing
product were evaporated to dryness via rotary evaporation. The brown solid was further purified by
recrystallization from 4 mL hot toluene. The light brown powder precipitates at room temperature and
was isolated and dried overnight in vacuo to obtain pure LNM¢2 (0.127 g, 0.183 mmol, 48%). *H NMR (700
MHz, CD,Cl;) 6 = 7.41 (dd, J = 7.3, 8.2, 3H, pyridine-CH), 7.20 (d, J = 8.5, 6H, phenyl-CH), 7.02 (d, J = 7.3,
3H, pyridine-CH), 6.73 (d, J = 8.5, 6H, phenyl-CH), 6.49 (d, J = 8.2, 3H, pyridine-CH), 6.30 (s, 3H, NH), 3.72
(s, 6H, N(CH,)3), 2.91 (s, 18H, N(CHs)2). 3C NMR (176 MHz, CD,Cl,) & = 159.2 (pyridine-C), 157.5 (pyridine-
C), 148.2 (phenyl-C), 138.2 (pyridine-CH), 130.6 (phenyl-C), 124.2 (phenyl-CH), 113.8 (phenyl-CH), 113.0
(pyridine-CH), 105.2 (pyridine-CH), 60.6 (N(CH,)3), 41.2 (N(CHs),). HRMS (ESI-TOF) m/z: [LNMe2+H]* Calc. for
C42H49N1o§ 693.4142; Found: 693.4185.

Synthesis of [(L"),Zn,0,][OTf], from H,0,. Open to air, a 20 mL scintillation vial was charged with zinc
triflate (0.086 g, 0.237 mmol), L" (0.134 g, 0.238 mmol), and 4 mL MeCN and stirred for 5 min. To this vial,
hydrogen peroxide (30% in H,O; 54 uL, 0.476 mmol) and diisopropylethylamine (42 uL, 0.241 mmol) was
added to the vial in succession and stirred for 5 min. Diethyl ether (15 mL) was added to induce
precipitation of an off-white solid. The solution was decanted and the resulting powder washed with
diethyl ether (3 x 10 mL) and dried to afford white powder assigned as [(L"),Zn,0,][OTf], (0.110 g, 0.069
mmol, 58%). The bulk sample was analyzed via elemental analysis: Calc. for C74HgsN1408FsS2Zn;,: C, 55.96,
H, 4.19, N, 12.35; Found: C, 52.97, H, 4.24, N, 11.63. Single, X-ray quality crystals were obtained by slow
diffusion of diethyl ether into an acetonitrile solution at room temperature. *H NMR (400 MHz, MeCN, 25
°C) 6 =3.96(d, J=15.6, 6H, N(CH,)3), 4.11 (d, /= 15.6, 6H, N(CH,)3), 6.03 (d, J = 8.6, 6H, pyridine-CH), 6.67
(d, J = 7.3, 12H, phenyl-CH), 6.77 (m, 24H), 7.22 (dd, J = 7.2, 8.6, 6H, pyridine-CH), 10.21 (s, 6H, NH). 13C
NMR (125.76 MHz, CDsCN, 25 °C) & = 56.02 (N(CH-)3), 110.60 (pyridine-CH), 114.76 (pyridine-CH), 124.19
(phenyl-CH), 126.00 (phenyl-C), 129.96 (phenyl-CH), 139.02 (pyridine-CH), 142.10 (phenyl-C), 152.51
(pyridine-C), 158.88 (pyridine-C). °>F NMR (376.84 MHz, CDsCN, 25 °C)  =-79.38.

Synthesis of [(L"),Zn,0,][OTf], from O,. In a glovebox, a 20 mL scintillation vial was charged with zinc
triflate (0.0068 g, 0.0187 mmol), L" (0.0105 g, 0.0186 mmol), 4 mL MeCN and a stir bar and stirred for 20
min. The vial was sealed with a 14/20 rubber septum. A separate vial was charged with cobaltocene
(0.0035 g, 0.0185 mmol), 2 mL MeCN, and a stir bar and stirred for 20 min and sealed with a 14/20 rubber
septum. Both vials were removed from the glovebox. The zinc containing vial was sparged with dry
dioxygen for 5 min. The MeCN solution of cobaltocene was withdrawn with a syringe and added rapidly
to the zinc containing vial resulting in an immediate color change to yellow (slower addition resulted in
greatly diminished conversion to [(L"),Zn,0,][0Tf],). The solution was stirred for 15 min then exposed to
air. 'H NMR analysis (CHsCN) revealed 89% conversion to [(L"),Zn,0,][OTf], by integrating versus a
phenyltrimethylsilane standard. The only other species present is (L")Zn(OH)(OTf) (independent synthesis
described below).
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Independent synthesis of (L")Zn(OH)(OTf). A 20 mL scintillation vial was charged with zinc triflate (0.018
g, 0.050 mmol), L" (0.029 g, 0.051 mmol), and 6 mL MeCN and stirred for 10 min. To the solution, KOH
(0.004 g, 0.071 mmol) was added and stirred an additional 10 min. Volatiles were removed in vacuo. The
residue was extracted into 6 mL DCM, filtered, dried, and washed with 2 x 10 mL diethyl ether to afford
an off-white powder (0.024 g, 0.030 mmol, 59%) assigned as (L")Zn(OH)(OTf). 'H NMR (500 MHz, MeCN,
25°C) & =4.09 (s, 6H, N(CH,)3), 6.70 (d, J = 6.0, 3H, pyridine-CH), 6.93 (d, J = 6.0, 3H, pyridine-CH), 7.05
(m, 6H, phenyl-CH), 7.08 (t, J = 7.0, 3H, pyridine-CH), 7.26 (t, J = 7.5, 6H, phenyl-CH), 7.59 (t, / = 8.5, 3H,
phenyl-CH), 11.30 (s, 3H, NH). 23C NMR (125.76 MHz, CDsCN, 25 °C) & = 59.38 (N(CH.)s), 109.30 (pyridine-
CH), 113.78 (pyridine-CH), 122.78 (phenyl-CH), 125.23 (phenyl-C), 130.50 (phenyl-CH), 140.44 (pyridine-
CH), 142.16 (phenyl-C), 153.50 (pyridine-C), 158.39 (pyridine-C). °F NMR (376.84 MHz, CDsCN, 25 °C) § =
-79.20.

Synthesis of [(L°M¢),Zn,0,][OTf],. Open to air, a 20 mL scintillation vial was charged with zinc triflate
(0.0334 g, 0.0919 mmol), L°™¢ (0.0619 g, 0.0946 mmol), and 2 mL MeCN and stirred for 5 min. To this vial,
hydrogen peroxide (30% in H,0; 19.3 uL, 0.1892 mmol) and diisopropylethylamine (16.5 uL, 0.0946 mmol)
was added to the vial in succession and stirred for 10 min. Diethyl ether (2 mL) was added to facilitate
precipitation. The white precipitate was collected, washed with diethyl ether (2 x 2 mL) and dried to afford
a white powder assigned as [(L°™®),Zn,0,][OTf], (0.0700 g, 0.0396 mmol, 86%). The bulk sample was
analyzed via elemental analysis: Calc. for CgoH7sN14014F6S2Zn;: C, 54.33, H, 4.45, N, 11.09; Found: C, 52.25,
H, 4.39, N, 10.60. Single, X-ray quality crystals were obtained by slow diffusion of diethyl ether into an
acetonitrile solution at room temperature. *H NMR (400 MHz, MeCN, 25 °C) § =3.51 (s, 18H, OCHs), 3.92
(d, J=15.6, 6H, N(CH-)3), 4.06 (d, J = 15.6, 6H, N(CH.)3), 6.00 (d, J = 8.6, 6H, pyridine-CH), 6.31 (d, J = 8.9,
12H, phenyl-CH), 6.62 (d, J = 7.1, 6H, pyridine-CH), 6.73 (d, J = 8.9, 12H, phenyl-CH), 7.23 (dd, /= 7.1, 8.6,
6H, pyridine-CH), 10.14 (s, 6H, NH). 3C NMR (125.76 MHz, CDsCN, 25 °C) § = 55.75 (OCHs), 55.98 (N(CH,)s),
110.10 (pyridine-CH), 113.95 (pyridine-CH), 115.09 (phenyl-CH), 125.89 (phenyl-CH), 131.54 (phenyl-C),
141.52 (pyridine-CH), 152.53 (phenyl-C), 157.83 (pyridine-C), 159.20 (pyridine-C). *°F NMR (376.84 MHz,
CDsCN, 25 °C) 6 =-79.37.

Synthesis of [(LNVM2),Zn,0,][OTf],. Open to air, a 20 mL scintillation vial was charged with zinc triflate
(0.0280 g, 0.0770 mmol), L"Me2 (0.0534 g, 0.0771 mmol), and 2 mL MeCN and stirred for 5 min. To this vial,
hydrogen peroxide (30% in H,0; 15.7 uL, 0.1542 mmol) and diisopropylethylamine (13.4 pL, 0.0771 mmol)
was added in succession and stirred for 10 min. Diethyl ether (5 mL) was added to facilitate precipitation.
The off-white precipitate was collected, washed with diethyl ether (3 x 10 mL) and dried to afford an off-
white powder assigned as [(L"M®?),Zn,0,][0Tf], (0.0527 g, 0.0285 mmol, 74%). The bulk sample was
analyzed via elemental analysis: Calc. for CgsHosN20OsFsS2Zn5: C, 55.93, H, 5.24, N, 15.17; Found: C, 56.06,
H, 5.43, N, 14.99. Single, X-ray quality crystals were obtained by slow diffusion of n-pentane into 1,2-
dichloroethane solution at room temperature. *H NMR (400 MHz, MeCN, 25 °C) & = 2.66 (s, 36H, N(CHs)>),
3.86 (d, J = 15.5, 6H, N(CH,)s), 4.00 (d, J = 15.5, 6H, N(CH.)3), 6.00 (d, J = 8.6, 6H, pyridine-CH), 6.11 (d, J =
9.0, 12H, phenyl-CH), 6.52 (d, J = 7.1, 6H, pyridine-CH), 6.66 (d, J = 9.0 Hz, 12H, phenyl-CH), 7.13 (t,J= 7.5,
6H, pyridine-CH) 10.14 (s, 6H, NH). 3C NMR (125.76 MHz, CDsCN, 25 °C) & = 40.64 (N(CHs),), 56.04
(N(CH.)3), 109.89 (pyridine-CH), 113.19 (pyridine-CH), 113.44 (phenyl-CH), 125.52 (phenyl-CH), 127.71
(phenyl-C), 141.26 (pyridine-CH), 149.24, 152.28, 159.33 (pyridine-C). 2°F NMR (376.84 MHz, CDsCN, 25
°C) 6 =-79.10.
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Synthesis of [(L3),Zn,0,][0Tf],. Open to air, a 20 mL scintillation vial was charged with zinc triflate
(0.0347 g, 0.0955 mmol), L3 (0.0722 g, 0.0940 mmol), and 2 mL MeCN and stirred for 5 min. To this vial,
hydrogen peroxide (30% in H,0; 19.2 uL, 0.1882 mmol) and diisopropylethylamine (16.4 pL, 0.0941 mmol)
was added in succession and stirred for 10 min. Volatiles were removed in vacuo. The resulting solid was
redissolved in 1 mL MeCN followed by 4 mL diethyl ether to facilitate precipitation. The white precipitate
was collected, washed with diethyl ether (2 x 2 mL) and dried to afford a white powder assigned as
[(L%%),ZNn,0,][OTf], (0.0546 g, 0.0274 mmol, 58%). The bulk sample was analyzed via elemental analysis:
Calc. for CgoHeoN140sF24S,Zn5: C, 48.13, H, 3.03, N, 9.82; Found: C, 46.36, H, 3.34, N, 9.09. Single, X-ray
quality crystals were obtained by slow diffusion of diethyl ether into an acetonitrile solution at room
temperature. *H NMR (400 MHz, MeCN, 25 °C) § =4.08 (d, J = 15.9, 6H, N(CH,)3), 4.22 (d, J = 15.9, 6H,
N(CH-)s), 6.12 (d, J = 8.5, 6H, pyridine-CH), 6.86 (d, J = 7.2, 6H, pyridine-CH), 6.89 (d, J = 8.4, 12H, phenyl-
CH), 7.07 (d, J = 8.4, 12H, phenyl-CH), 7.34 (dd, J = 7.2, 8.5, 6H, pyridine-CH), 10.18 (s, 6H, NH). 3C NMR
(125.76 MHz, CDsCN, 25 °C) & = 56.03 (N(CH2)s), 111.07 (pyridine-CH), 116.36 (pyridine-CH), 123.98 (o-
phenyl-CH), 124.96 (q, J = 271.0, CFs3), 126.81 (q, J = 32.4, p-phenyl-C), 126.56 (q, J = 3.7, m-phenyl-CH),
142.54, 143.09, 153.27 (pyridine-C), 158.19 (pyridine-C). °F NMR (376.84 MHz, CDsCN, 25 °C) & = -62.97
(phenyl-CFs), -79.37 (OTf).

Synthesis of (L")Zn(Ns),. A 20 mL scintillation vial was charged with zinc perchlorate hexahydrate (0.012
g, 0.032 mmol). A separate vial containing L" (0.019 g, 0.033 mmol) in 4 mL acetone was added to the zinc
containing vial and stirred. After 30 min, sodium azide (0.014 g, 0.215 mmol) was added. After 2 hr,
volatiles were removed in vacuo. The resulting solid was extracted into 6 mL CH,Cl,, filtered, dried, and
washed with 15 mL diethyl ether to afford an off-white powder assigned as (L")Zn(Ns), (0.011 g, 0.015
mmol, 48%). H NMR (500 MHz, CD,Cl, 25 °C) & = 4.11 (s, 6H, N(CH,)3), 6.48 (d, J = 7.0, 3H, pyridine-CH),
6.78 (d, J = 8.0, 3H, pyridine-CH), 6.96 (d, J = 7.5, 6H, phenyl-CH), 7.04 (t, J = 7.5, 3H, phenyl-CH), 7.20 (t, J
=7.5, 6H, phenyl-CH), 7.35 (t, J = 8.0, 3H, pyridine-CH), 9.31 (s, 3H, NH). 3C NMR (125.76 MHz, CD,Cl,, 25
°C) & = 61.42 (N(CH,)s), 108.01 (pyridine-CH), 113.16 (pyridine-CH), 122.34 (phenyl-CH), 124.55 (phenyl-
CH), 129.80 (phenyl-CH), 139.46 (pyridine-CH), 140.05 (phenyl-C), 152.55 (pyridine-C), 157.12 (pyridine-
Q).

Synthesis of (L°™¢)Zn(Ns).. A 20 mL scintillation vial was charged with zinc perchlorate hexahydrate (0.010
g, 0.027 mmol). A separate vial containing L°™¢ (0.018 g, 0.028 mmol) in 4 mL acetone was added to the
zinc containing vial and stirred. After 30 min, sodium azide (0.011 g, 0.169 mmol) was added. After 3 hr,
volatiles were removed in vacuo. The resulting solid was extracted into 6 mL CH,Cl,, filtered, dried, and
washed with 10 mL diethyl ether to afford an off-white powder assigned as (L°™¢)Zn(Ns), (0.021 g, 0.026
mmol, 98%). Single, X-ray quality crystals were obtained by slow diffusion of diethyl ether into an
acetonitrile solution at room temperature. *H NMR (500 MHz, CD,Cl,, 25 °C) & = 3.78 (s, 9H, OCHs), 4.09
(s, 6H, N(CH,)s), 6.50 (d, J = 7.2, 3H, pyridine-CH), 6.57 (d, J = 8.8, 3H, pyridine-CH), 6.81 (d, J = 8.8, 6H,
phenyl-CH), 6.96 (d, J = 8.8, 6H, phenyl-CH), 7.36 (t, J = 8.0, 3H, pyridine-CH), 8.99 (s, 3H, NH). 3C NMR
(125.76 MHz, CD,Cl,, 25 °C) & = 55.87 (OCH3), 60.30 (N(CH>)s), 107.96 (pyridine-CH), 112.71 (pyridine-CH),
115.15 (phenyl-CH), 125.87 (phenyl-CH), 131.68 (pyridine-CH), 140.49 (phenyl-C), 152.22 (pyridine-C),
157.82 (phenyl-C), 158.58 (pyridine-C).
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Synthesis of (LNMe2)Zn(Ns),. A 20 mL scintillation vial was charged with zinc perchlorate hexahydrate
(0.011 g, 0.030 mmol). The contents of a separate vial containing LNM¢2 (0.021 g, 0.030 mmol) in 4 mL
acetone were added to the zinc containing vial and stirred. After 30 min, sodium azide (0.012 g, 0.185
mmol) was added. After 3 hr, volatiles were removed in vacuo. The resulting solid was extracted into 10
mL CH,Cl,, filtered, dried, and washed with diethyl ether (10 mL), benzene (10 mL), and finally n-pentane
(10 mL) to afford a yellow powder assigned as (L"M*2)Zn(Ns), (0.018 g, 0.021 mmol, 72%). Single, X-ray
quality crystals were obtained by slow diffusion of diethyl ether into an acetonitrile solution at room
temperature. *H NMR (500 MHz, CD,Cl,, 25 °C) & = 2.93 (s, 18H, N(CHs),), 4.05 (s, 6H, N(CH,)3), 6.50 (d, J =
6.8, 3H, pyridine-CH), 6.57 (d, /= 8.4, 3H, pyridine-CH), 6.66 (d, /= 8.8, 6H, phenyl-CH), 6.98 (d, J = 8.8, 6H,
phenyl-CH), 7.37 (t, J = 8.0, 3H, pyridine-CH), 8.90 (s, 3H, NH). 2*C NMR (125.76 MHz, CD.Cl,, 25 °C) & =
40.90 (N(CHs)2), 53.43 (N(CHa)3), 108.25 (pyridine-CH), 112.25 (pyridine-CH), 113.58 (phenyl-CH), 126.45
(phenyl-CH), 127.51 (pyridine-CH), 140.48 (phenyl-C), 149.47 (phenyl-C), 152.00 (pyridine-C), 159.56
(pyridine-C).

Synthesis of (L3)Zn(Ns),. A 20 mL scintillation vial was charged with zinc perchlorate hexahydrate (0.013
g, 0.035 mmol). The contents of a separate vial containing L" (0.027 g, 0.035 mmol) in 4 mL acetone were
added to the zinc containing vial and stirred. After 30 min, sodium azide (0.014 g, 0.215 mmol) was added.
After 3 hr, volatiles were removed in vacuo. The resulting solid was extracted into 6 mL CH,Cl,, filtered,
dried, and washed with 10 mL diethyl ether to afford an off-white powder assigned as (L“)Zn(Ns), (0.029
g, 0.032 mmol, 91%). *H NMR (500 MHz, CD,Cl,, 25 °C) § = 4.16 (s, 6H, N(CH,)3), 6.63 (d, J = 6.8, 3H,
pyridine-CH), 6.87 (d, J= 8.4, 3H, pyridine-CH), 6.92 (d, J = 8.0, 6H, phenyl-CH), 7.35 (d, J = 8.4, 6H, phenyl-
CH), 7.45 (t, J = 7.6, 3H, pyridine-CH), 9.36 (s, 3H, NH). 3C NMR (125.76 MHz, CD,Cl,, 25 °C) § = 61.31
(N(CH3)3), 109.32 (pyridine-CH), 115.03 (pyridine-CH), 119.70 (phenyl-CH), 124.48 (q, J = 271, CF3), 125.29
(q, J = 32.5, phenyl-C), 127.00 (q, J = 2.5, phenyl-CH), 140.86 (phenyl-C), 142.87 (pyridine-CH), 152.94
(pyridine-C), 155.44 (pyridine-C). °F NMR (375.91 MHz, CD,Cl,, 25 °C) & = -62.56.

Synthesis of [(TPA)Zn(N3)][ClO4]. A 20 mL scintillation vial was charged with zinc perchlorate hexahydrate
(0.013 g, 0.035 mmol). The contents of a separate vial containing tris(2-pyridylmethyl)amine (0.010 g,
0.034 mmol) in 6 mL acetone were added to the zinc containing vial and stirred. After 30 min, sodium
azide (0.014 g, 0.215 mmol) was added. After 3 hr, volatiles were removed in vacuo. The resulting solid
was extracted into 6 mL CHCl,, filtered, dried, and washed with 6 mL THF to afford a white powder
assigned as [(TPA)Zn(N3)][ClO4] (0.008 g, 0.016 mmol, 46%). Single, X-ray quality crystals were obtained
by slow diffusion of diethyl ether into a methanol solution at room temperature. 'H NMR (500 MHz,
CD,Cl;, 25 °C) 6 = 4.31 (s, 6H, N(CH.)3), 7.60-7.65 (m, 6H, pyridine-CH), 8.05 (t, J = 7.5, 3H, pyridine-CH),
8.89 (d,J=5.0, 3H, pyridine-CH). 3 C NMR (125.76 MHz, CD,Cl, 25 °C) 5 =57.14 (N(CH)3), 125.42 (pyridine-
CH), 125.91 (pyridine-CH), 142.06 (pyridine-CH), 149.46 (pyridine-CH), 155.11 (pyridine-C).

Synthesis of (TPA)Zn(Ns).. A 20 mL scintillation vial was charged with zinc nitrate hexahydrate (0.059 g,
0.198 mmol), tris(2-pyridylmethyl)amine (0.058 g, 0.200 mmol), and 6 mL methanol and stirred for 15
min. Sodium azide (0.027 g, 0.415 mmol) was added, stirred for 3 hr, and volatiles were removed in vacuo.
The resulting solid was extracted into 12 mL CH,CI,, filtered, dried, and washed with 2 x 10 mL diethyl
ether to afford a white powder assigned as (TPA)Zn(N3). (0.078 g, 0.178 mmol, 89%). Single, X-ray quality
crystals were obtained by layering a MeOH/EtOAc (4:1) solution with diethyl ether at room temperature.
14 NMR (500 MHz, CD,Cl,, 25 °C) & = 4.32 (s, 6H, N(CH-)3), 7.36 (d, J = 8.0, 3H, pyridine-CH), 7.40 (t, J = 6.5,
3H, pyridine-CH), 7.81 (t, J = 7.5, 3H, pyridine-CH), 8.81 (d, J = 5.0, 3H, pyridine-CH). 3C NMR (125.76 MHz,
CD,Cl,, 25 °C) 6 =59.98 (N(CH,)3), 124.35 (pyridine-CH), 124.86 (pyridine-CH), 140.16 (pyridine-CH), 148.83
(pyridine-CH), 154.60 (pyridine-C).
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Synthesis of [L"ZnCI][X] from [L",Zn,0,][X]. and PhICI, (X = OTf, ClO4). Inside a glovebox, a 50 mL round
bottom flask was charged with iodobenzene dichloride (0.018 g, 0.065 mmol). In a separate vial,
[LM,Zn,0,][OTf], (0.103 g, 0.065 mmol) was dissolved in 3 mL DCM and added in one portion to the round
bottom flask. An aliquot of the solution was analyzed to ensure conversion. The solution was then diluted
with an additional 3 mL DCM, filtered into a 20 mL scintillation vial, and layered with 15 mL Et,0, resulting
in precipitation of off-white solid overnight (0.080 g, 0.098 mmol, 76%) assigned as [L"ZnCI][OTf].
Characterization for X = OTf: *H NMR (400 MHz, CH,Cl,, 25 °C) § = 4.11 (s, 6H, N(CHa)3), 6.79 (d, J = 7.6,
3H, pyridine-CH), 6.99 (d, J = 8.8, 3H, pyridine-CH), 7.20 (t, /= 7.2, 3H, aryl-CH), 7.23 (d, /] = 7.6, 6H, phenyl-
CH), 7.38 (t, J = 7.6, 6H, phenyl-CH), 7.60 (t, J = 7.6, 3H, aryl-CH), 9.62 (s, 3H, NH). 'H NMR (400 MHz,
CDsCN, 25 °C) 8 = 4.10 (s, 6H, N(CHa)3), 6.72 (d, J = 7.2, 3H, pyridine-CH), 6.96 (d, J = 8.4, 3H, pyridine-CH),
7.09-7.15 (m, 9H, o-phenyl-CH and aryl-CH), 7.31 (t, J = 8.0, 6H, m-phenyl-CH), 7.61 (t, J = 7.6, 3H, aryl-
CH), 9.25 (s, 3H, NH). 3C NMR (125.76 MHz, CDsCN, 25 °C) & = 58.62 (N(CH,)s3), 110.05 (pyridine-CH),
114.94 (pyridine-CH), 122.95 (phenyl-CH), 125.80 (phenyl-CH), 130.67 (phenyl-CH), 139.59 (pyridine-CH),
142.31 (phenyl-C), 153.18 (pyridine-C), 158.57 (pyridine-C). The same procedure was employed to
synthesize the analogous perchlorate species of which single, X-ray quality crystals were obtained by slow
diffusing n-pentane into a dichloroethane solution at room temperature. Characterization for X = ClO4: *H
NMR (400 MHz, CD,Cly, 25 °C) & = 4.15 (s, 6H, N(CHa)3), 6.84 (d, J = 7.6, 3H, pyridine-CH), 7.01 (d, J = 8.8,
3H, pyridine-CH), 7.21 (t, J = 7.2, 3H, aryl-CH), 7.25 (d, / = 7.6, 6H, phenyl-CH), 7.39 (t, J = 7.6, 6H, phenyl-
CH), 7.63 (t,J = 7.6, 3H, aryl-CH), 9.63 (s, 3H, NH).*H NMR (400 MHz, CDsCN, 25 °C) § = 4.10 (s, 6H, N(CHa)3),
6.72 (d, J=7.2, 3H, pyridine-CH), 6.96 (d, J = 8.4, 3H, pyridine-CH), 7.09-7.15 (m, 9H, o-phenyl-CH and aryl-
CH), 7.31 (t, J = 8.0, 6H, m-phenyl-CH), 7.61 (t, J = 7.6, 3H, aryl-CH), 9.25 (s, 3H, NH).

Synthesis of [L"ZnCI][OTf] from [L";Zn,0,][OTf], and [NH4]2[Ce(NOs)s]. A 20 mL scintillation vial was
charged with [L",Zn,0,][OTf], (0.044 g, 0.028 mmol) and 4 mL MeCN. While stirring [BusN][CI] was added
(0.150 mL, aqueous 0.7409 M stock solution, 0.111 mmol) followed by ceric ammonium nitrate (0.080 mL,
aqueous 0.7004 M stock solution, 0.055 mmol) resulting in a rapid color change from colorless to brown.
The solution was diluted with 6 mL DCM and 10 mL H,0. The H,0 layer was discarded, and an additional
5 mL H,0 added. The organic phase was extracted with DCM (5 x 2 mL). The combined organics were
dried, redissolved in minimal DCM and filtered. To the filtrate 15 mL diethyl ether was added resulting in
precipitation of a tan solid. The solid was collected and dried to afford [L"ZnCI][OTf] (0.018 g, 0.022 mmol,
40%).

Attempted synthesis of a dizinc peroxide with TPA®"" ligand. A 20 mL scintillation vial was charged with
Zn(OTf); (0.0025 g, 0.007 mmol), TPA®P" (0.0040 g, 0.007 mmol), and 1 mL of MeCN. Metalation was
confirmed by NMR spectroscopy, then, while stirring, hydrogen peroxide (30% in H,O; 1.44 uL, 0.014
mmol) and triethylamine (1.08 uL, 0.008 mmol) were added. An NMR of the crude mixture was
immediately obtained, revealing demetalation.

Attempted synthesis of a dizinc peroxide with TPA ligand. Note: this reaction was performed on the
benchtop with no attempts to exclude air or moisture. A 20 mL scintillation vial was charged with tris(2-
methylpyridyl)amine (0.034 g, 0.117 mmol), Zn(OTf), (0.043 g, 0.118 mmol), and 2 mL MeCN and stirred
until fully dissolved. Hydrogen peroxide (30% in H,O; 26 pL, 0.237 mmol) and diisopropylethylamine (41
pL, 0.235 mmol) were added sequentially and stirred for 4 min. To the solution was added 15 mL diethyl
ether. Centrifugation afforded colorless viscous oil which was triturated with pentane to afford a colorless
semi-solid. Infrared and NMR spectroscopies are consistent with formation of [(TPA)sZns(COs)][OTf]4.8
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Figure S6 Top: crude *H NMR spectrum of [L",Zn,0,][OTf], derived from dioxygen and cobaltocene. The
asterisk denotes [Cp.Co][OTf]. Middle: Purified sample of [L",Zn,0,][OTf].. Bottom: authentic sample of
L"Zn(OH)(OTf). All spectra were recorded in MeCN at ambient temperature.

70000 -
60000 —
50000 —
40000 -
30000 —

20000

Molar Absorptivity, M'cm™

10000

T T T T T T T T T T T T T i
240 260 280 300 320 340 360
Wavelength, nm

Figure S7 Electronic absorption spectrum of [L",Zn,0,][OTf], recorded in acetonitrile at ambient
temperature.

S13



1) O
2) 1/2 Cp,Co

Zn(OTf), + LM >
A —l 2+ CH3CN *
| N
??/iln"""‘ /\
PhTy /‘N'_; """""" \
: -N
R
ph PN T/ SHy-Ph -
LTI o) % 'N

I PN T

120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 3.
ppm

T T T T T T T T

Figure S8 Crude 'H NMR spectrum (CH3CN, ambient temperature) of substoichiometric (0.5 equivalents)
cobaltocene addition to a O, saturated MeCN solution of Zn(OTf), and L". The asterisk denotes
[Cp2Co][OTf]. The blue ovals denote [L",Zn,0,][OTf],. The remaining resonances are attributed to an
adduct between Zn(OTf), and L". The experimental set up was analogous to that described above for the
stoichiometric cobaltocene reaction.

1) H20;
I\ " —l 2+ Zn(OTf)z + LH 2) N'PrzEt
NS
N CH,;CN
N’(\lnu—-—Nl — 3
W
LR - H-Ng
/N K Oa'. —
Ph\PhH..?:{"'O/ '.'-..HN'ph "= .
g \ H\L ph
= N_,,-Zn"\‘""th/
I
N A
J:/ " 0
O

. | L

11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.
ppm

T T T T T T T T T T T T T

Figure S9 Crude H NMR spectrum (CDsCN, ambient temperature) of attempted formation of a zinc
hydroperoxo species. The blue ovals denote [L",Zn,0,][OTf],. The remaining resonances are attributed to
an adduct between Zn(OTf); and L".

S14



KO, / DMF

Zn(OTH), + LH
CH;CN

Blue: Authentic L"Zn(OH)(OTf)

Green: Authentic [L",Zn,0,][OTf],

J Lk i)
Red: Crude reaction depicted above MNAL
_JL A -

11.5 11.0 105 100 95 90 85 80 75 70 65 60 55 50 45 40
ppm
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" and KO, (DMF solution). The reaction produces predominantly (L")Zn(OH)(OTf) with trace
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Figure $11 *H NMR spectrum (CDsCN, ambient temperature) of [L°M¢,Zn,0,][OTf],.
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Figure $12 3C NMR spectrum (CDsCN, ambient temperature) of [L°M¢,Zn,0,][OTf]..
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Figure $13 'H NMR spectrum (CDsCN, ambient temperature) of [L,Zn,0,][OTf],.
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Figure 514 3C NMR spectrum (CDsCN, ambient temperature) of [L°3,Zn,0,][OTf]..
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Figure 515 *H NMR spectrum (CDsCN, ambient temperature) of [LNM¢2,Zn,0,][OTf]..
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Figure 516 3C NMR spectrum (CDsCN, ambient temperature) of [LNM¢2,Zn,0,][OTf]..
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Figure S17 Overlay of 'H NMR spectra (CD3CN, ambient temperature) for [L,Zn,0,]* complexes.
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Figure $19 Overlay of infrared spectra (neat, ATR, ambient temperature) for [L,Zn,0,]** complexes.
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Figure S20 Overlay of infrared spectra (neat, ATR, ambient temperature) highlighting the fingerprint
region for [L,Zn;0,]** complexes.
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Figure $21 Overlay of Raman spectra for [L",Zn,0,][OTf], (black) and [L",Zn,*®0,][OTf], (red) complexes.
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Figure S22 Overlay of Raman spectra for [L?,Zn,0,][OTf], complexes.
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Figure 523 'H NMR spectrum (CD,Cl,, ambient temperature) of [(L")ZnCI][CIO,].
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Figure 524 'H NMR spectrum (CDsCN, ambient temperature) of [(L")ZnCI][CIO4].
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Figure $S26 *C NMR spectrum (CDsCN, ambient temperature) of [(L")ZnCI][ClO4].
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Figure S27 Infrared spectrum (neat, ATR, ambient temperature) of [(L")ZnCI][ClO4].
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Figure $28 H NMR spectrum (ambient temperature, CH,Cl,) of the crude mixture from reacting
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Figure S29 'H NMR spectra (ambient temperature, CD3CN, mesitylene internal standard) prior to (bottom)
and after addition of 1000 equivalents of H,0 to [L",Zn,0,][OTf],.
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Figure S30 'H NMR spectra (ambient temperature, CD3CN) prior to (bottom) and after addition of 1000
equivalents of CD30D to [L",Zn,0,][0Tf],.
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Figure S31 'H NMR spectra (ambient temperature, CDsCN) illustrating decomposition of 1" under a
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Figure $32 Cyclic voltammogram (Pt electrode, 100 mV/s scan rate, vs. internal Fc/Fc*) of [L",Zn,0,][OTf],
(2.6 mmol) recorded in CH3CN with 0.1 [BusN][CIO4].
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Oxidation of [L",Zn,0,][OTf],: Detection and Quantification of Dioxygen

Dissolved O, was quantified using a Unisense Microsensor Monometer with an Ox-500 oxygen probe
adapted from previous reports.>0

Experiment #1: Addition of [L",Zn,0,][OTf], to aqueous solution of [BusN][CI] and [NH4]2[Ce(NOs)e]

A 3-neck round bottom flask was filled with tetrabutylammonium chloride (0.034 mL, aqueous 0.7409 M
stock solution, 0.025 mmol), cericammonium nitrate (0.018 mL, aqueous 0.7004 M stock solution, 0.0125
mmol), 0.500 mL MeCN and water to a total volume of 40.48 mL. The other two necks of the flasks were
sealed with rubber septa (to allow sparging) such that no headspace existed in the flask. The Ox-500
probe was calibrated with a three-point calibration in the Ox-500 probe was calibrated with a three-point
calibration in Nx-sparged (0% O,, [02] = 0 mM), air-saturated (20.8% O,, O, = 0.27 mM), and O,-saturated
(100% 0,, 1.3 mM) solutions. The dissolved [0;] concentration was estimated based on the Henry’s law
constant for O, in water, ky = 1.3 mol L' bar®. Note that the [0;] concentrations are approximate and do
not take into account the effects of the dissolved salts or ~1 % v/v MeCN in solution. These data illustrate
that O, evolution only occurs when the two requisite components, [L",Zn,0,][OTf], and ceric ammonium
nitrate, are present.

The flask was reset analogous to description above, except the 0.500 mL MeCN was omitted. The solution
was allowed to equilibrate. Upon equilibration, [L",Zn,0,][OTf], (0.010 g, 0.00629 mmol) was dissolved in
0.500 mL MeCN and injected into the flask resulting in a rapid increase of dioxygen. The dioxygen
production was monitored until a plateau was observed. Subject to these experimental conditions,
approximately 2.96 umol of dioxygen were produced (corresponding to 47% of theoretical value of 6.29
pmol).
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Figure S33 Left: Oxygen production as a result of oxidation of [L",Zn,0,][OTf], with ceric ammonium
nitrate. Right: Calibration curve.
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Experiment #2: Addition of [NH4]2[Ce(NOs)s] to aqueous solution of [BusN][CI] and [L",Zn,0,][OTf],

A 3-neck round bottom flask was filled with tetrabutylammonium chloride (0.034 mL, aqueous 0.7409 M
stock solution, 0.025 mmol), [L",Zn,0,][OTf], (0.010 g, 0.00629 mmol; dissolved in 0.500 mL MeCN), and
water to a total volume of 40.98 mL. The other two necks of the flasks were sealed with rubber septa (to
allow sparging) such that no headspace existed in the flask. The Ox-500 probe was calibrated with a three-
point calibration in the Ox-500 probe was calibrated with a three-point calibration in N»-sparged (0% O,
[02] =0 mM), air-saturated (20.8% O,, O, =0.27 mM), and O,-saturated (100% O, 1.3 mM) solutions. The
dissolved [O2] concentration was estimated based on the Henry’s law constant for O, in water, ky = 1.3
mol L't bar?. Note that the [O;] concentrations are approximate and do not take into account the effects
of the dissolved salts or ~1 % v/v MeCN in solution. These data illustrate that O, evolution only occurs
when the two requisite components, [L",Zn,0,][OTf], and ceric ammonium nitrate, are present.

The flask was reset analogous to description above. The solution was allowed to equilibrate. Upon
equilibration, [NH4]2[Ce(NOs)s] (0.018 mL, aqueous 0.7004 M stock solution, 0.0125 mmol) was injected
into the flask resulting in a rapid increase of dioxygen. The dioxygen production was monitored until a
plateau was observed. Subject to these experimental conditions, approximately 2.76 umol of dioxygen
were produced (corresponding to 45% of theoretical value of 6.29 umol).
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Figure S34 Left: Oxygen production as a result of oxidation of [L",Zn,0,][OTf], with ceric ammonium
nitrate. Right: Calibration curve.
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Figure S35 'H NMR spectra (ambient temperature, CHsCN): A) after mixing TPA°™" and Zn(OTf),, B) after
addition of H,0; (30% aqueous) and 'Pr,NEt, and C) authentic sample of TPA°™" for comparison.
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Figure $S36 'H NMR spectra (ambient temperature, CHsCN) of attempted formation of a dizinc peroxide
complex with the TPA®™" ligand. Bottom (red): free ligand prior to Zn(OTf), addition. Middle (green):
combination of Zn(OTf), and TPA®"". Top (blue): crude spectrum after O, and cobaltocene addition. The
experimental setup was analogous to that described for the synthesis of 1".
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Figure $37 'H NMR spectrum (ambient temperature, CDsNO;) of attempted peroxide formation with TPA
ligand.
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Figure S38 Infrared spectrum (ambient temperature, neat, ATR) of attempted peroxide formation with
TPA ligand.
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Figure $39 'H NMR spectrum (CD,Cl,, ambient temperature) of (L")Zn(N3),.
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Figure $40 3C NMR spectrum (CD,Cl,, ambient temperature) of (L")Zn(Ns),.
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Figure S41 Variable temperature *H NMR spectra (CD,Cl,) of (L")Zn(N3),.
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Figure $42 'H NMR spectrum (CD,Cl,, ambient temperature) of (TPA)Zn(N3).
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Figure S43 3C NMR spectrum (CD,Cl,, ambient temperature) of (TPA)Zn(Ns)..
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Figure $44 'H NMR spectrum (CD,Cl,, ambient temperature) of [(TPA)Zn(Ns)][ClO4].
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Figure S45 3C NMR spectrum (CDCl,, ambient temperature) of [(TPA)Zn(Ns)][CIO4].
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Figure S46 'H NMR spectrum (CD,Cl,, ambient temperature) of (L°™¢)Zn(Ns)..
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Figure S47 3C NMR spectrum (CD,Cl,, ambient temperature) of (L°¢)Zn(Ns),.
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Figure S48 'H NMR spectrum (CDCl,, ambient temperature) of (L°*)Zn(N3),.
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Figure $49 3C NMR spectrum (CD,Cl,, ambient temperature) of (L*)Zn(Ns),.
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Figure S51 'H NMR spectrum (CD,Cl,, ambient temperature) of (LNM¢2)Zn(Ns),.
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Figure $52 3C NMR spectrum (CD,Cl,, ambient temperature) of (LNM¢2)Zn(Ns),.

(LP)nNg), e , I\

(L")Zn(N;), . N : |
i), o ‘ A_L
(LHE)Z0(NS)s : ™ A L j
(TPA)Zn(N;), X . ‘ J

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0
ppm

Figure S53 Overlay of *H NMR spectra (CD,Cl,, ambient temperature) for Zn(Ns), complexes.
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Figure $54 Overlay of infrared spectra (neat, ATR, ambient temperature) for L’Zn(Ns), complexes.
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Figure S55 Overlay of infrared spectra (neat, ATR, ambient temperature) emphasizing the azide region for
LRZn(Ns), complexes.
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Figure S56 Overlay of infrared spectra (CHCl, solution, ambient temperature) for L*Zn(Ns), complexes.
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Figure S57 Overlay of infrared spectra (CH2Cl; solution, ambient temperature) emphasizing the azide
region for L*Zn(Ns), complexes.
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Table S1 Infrared spectral data for vs) (cm™) of L’Zn(Ns), compounds and (TPA)Zn(Ns);

Solution (CH,Cly) Neat (ATR)
Compound Axial N3 Ligand | Equatorial N3 Ligand | Axial N3 Ligand | Equatorial N3 Ligand
L"Me2Zn(N3), 2079.0 2049.6 2069.2 2037.9
L°MeZn(Ns); 2079.1 2051.7 2073.4 2046.6
L"Zn(Ns), 2079.7 2056.8 2074.5 2051.1
LPZn(N3), 2079.9 2059.3 2075.7 2056.6
(TPA)Zn(Ns), | 2069.2 2043.7 2057.7 2032.8
Neat, ATR Solution, CH,Cl,
2080 - 20804 . =
2075_- 1 R?*=0.772
2070 ] _/‘{(’-8:5 _ i =  Axial H-Bonded N,
-:’g 2065 ] . Axia-l H-Bonded N, "g 20704 e Equitorial N,
% J e Equitorial N, R=CF. =
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2040
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Hammett Parameter Hammett Parameter

Figure S58 Plots of the vs)of L"Zn(Ns), complexes versus Hammett parameters. Left: data obtained on
solid samples. Right: data obtained in CH,Cl; solution.
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Figure S59 Infrared spectrum (neat, ATR, ambient temperature) of (TPA)Zn(Ns),.
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Figure S60 Infrared spectrum (CH,Cl, solution, ambient temperature) of (TPA)Zn(Ns),. Inset emphasizes
the azide region.
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Figure S61 Infrared spectrum (neat, ATR, ambient temperature) of [(TPA)Zn(N3)][CIO4]. Inset emphasizes

the azide region.
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Figure S62 Infrared spectrum (CH,Cl, solution, ambient temperature) of [(TPA)Zn(Ns)][ClO4].
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Figure S63 'H NMR spectrum (CD3CN, 500 MHz, ambient temperature) of (L")Zn(OH)(OTf). Inset displays
the °F spectrum.
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Figure S64 *C NMR spectrum (CDsCN, ambient temperature) of (L")Zn(OH)(OTf).
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Figure S65 Infrared spectrum (neat, ATR, ambient temperature) of (L")Zn(OH)(OTf).
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Figure S66 'H NMR spectra detailing attempt to oxidize (L")Zn(OH)(OTf) with 1,4-benzoquinone to
generate the peroxide species, [L",Zn,0,][OTf],. Experimental setup: on a benchtop, open to air,
(L")Zn(OH)(OTf) and 1,4-benzoquinone (5 equivalents) were combined in CDsCN (dried over molecular
sieves), transferred to an NMR tube, and monitored at various temperatures.

S47



Compound: [L",Zn,0,][OTf],

Local Name: jk3118

Table S2. Crystallographic parameters for [L",Zn,0,][OTf],

Crystal data

Chemical formula

C72He6N1402Zn-2(CF3055)-2(C2H3N)

M; 1670.37
Crystal system, space group Triclinic, P1
Temperature (K) 150

a, b, c(A) 11.8574 (6), 12.6382 (6), 14.5526 (6)

a, B,v(°) 109.2223 (16), 102.1635 (17), 104.3283 (17)
v (A3 1890.67 (15)

V4 1

Radiation type Mo Ko,

i (mm) 0.77

Crystal size (mm)

0.52x0.51x0.42

Data collection

Diffractometer

Bruker AXS D8 Quest CMOS diffractometer

Absorption correction

Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. &
Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, 7—max

0.677,0.747

No. of measured, independent and
observed [/ > 2s(/)] reflections

139712, 14455, 12443

Rint 0.030
(sin ©/A)max (A1) 0.771
Refinement

RIF* > 206(F*)], wR(F?), S

0.032,0.081, 1.04

No. of reflections

14455

No. of parameters

516

H-atom treatment

H atoms treated by a mixture of independent and constrained refinement

Apmax; Apmin (e A-3)

0.54,-0.53

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick,

2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Figure S67 Molecular structure of the cationic portion of [L",Zn,0,][OTf], displayed with 50% probability
ellipsoids. Select hydrogen atoms are omitted and select phenyl substituents are displayed in wireframe
for clarity.
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Compound: [L°&,Zn,0,][O0Tf],
Local Name: ed430

Table S3. Crystallographic parameters for [L°M¢,Zn,0,][OTf],

Crystal data

Chemical formula C78H78N140sZn;-2(CF303S)-5(C2H3N)
M; 1973.69

Crystal system, space group Triclinic, P1

Temperature (K) 85

a, b, c(A) 11.7511 (3), 12.9459 (3), 15.0500 (4)
o B, (%) 90.065 (2), 96.490 (2), 97.362 (2)
v (A3 2255.83 (10)

V4 1

Radiation type Cu Ko

i (mm) 1.83

Crystal size (mm) 0.18 x0.18 x 0.12

Data collection

Diffractometer Dtrek-CrysAlis PRO-abstract goniometer imported rigaku-D*TREK
images
Absorption correction Multi-scan

CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical
absorption correction using spherical harmonics, implemented in
SCALE3 ABSPACK scaling algorithm.

Tmin, Tmax 0788, 1.000

No. of measured, independent and|33740,8178, 7771
observed [/ > 2s(/)] reflections

Rint 0.047

(5in 8/M)max (A1) 0.608

Refinement

R[F? > 26(F?)], wR(F?), S 0.050, 0.136, 1.06

No. of reflections 8178

No. of parameters 782

No. of restraints 442

H-atom treatment H atoms treated by a mixture of independent and constrained
refinement

DPmax, Aprin (€ A®) 0.69, -0.68

Computer programs: CrysAlis PRO 1.171.38.41 (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008),
SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Refinement details:

Two acetonitrile solvate molecules are each disordered over two positions. The U’ components of the
ADPs for each were restrained to be similar if closer than 2.0 A. Subject to these conditions, the occupancy
rates of the major and minor moieties for each acetonitrile refined to 0.906(3) and 0.094(3), and 0.521(3)
and 0.479(3).

The OTf anion was modeled as disordered over two positions and the geometries were restrained to be
similar (SAME). The U components of ADPs for all atoms were restrained to be similar if closer than 2.0
A. subject to these conditions the occupancy rates of the major and minor moieties refined to 0.917(2) to
0.083(3).

A -OMe moiety was modeled as equally disordered over two positions due to close contact with a half-
occupied acetonitrile and their geometries were restrained to be similar (SADI).
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Figure S68 Molecular structure of the cationic portion of [L°M¢,Zn,0,][0Tf], displayed with 50% probability
ellipsoids. Select hydrogen atoms are omitted and select phenyl substituents are displayed in wireframe
for clarity.
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Compound: [L%3,Zn,0,][OTf],
Local Name: ed429

Table S4. Crystallographic parameters for [L*3,Zn,0,][OTf],

Crystal data

Chemical formula C7sHeoF18N1402Zn,-2(CF303S)-0.648(C4H100)-0.704(2 x C;H3N)
M, 2073.21

Crystal system, space group Monoclinic, P21/n

Temperature (K) 85

a, b, c(A) 14.15647 (15), 14.20118 (16), 20.7331 (3)
B (%) 97.8476 (11)

v (A3) 4129.12 (9)

V4 2

Radiation type Cu Ko

i (mm) 2.29

Crystal size (mm) 0.14 x 0.06 x 0.03

Data collection

Diffractometer Dtrek-CrysAlis PRO-abstract goniometer imported rigaku-D*TREK
images
Absorption correction Multi-scan CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction, 2015)

Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm.

Tmin, 7-max 0738, 1.000

No. of measured, independent and|62095, 7631, 7437
observed [/ > 2s(/)] reflections

Rint 0.081

(5in 8/M)max (A1) 0.608

Refinement

RIF? > 26(F2)], wR(F?), S 0.046, 0.123, 1.03

No. of reflections 7631

No. of parameters 675

No. of restraints 92

H-atom treatment H atoms treated by a mixture of independent and constrained
refinement

DPmax, Aprin (€ A®) 0.58, -1.02

Computer programs: CrysAlis PRO 1.171.38.41 (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008),
SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Refinement details:

A solvent void displays partial occupancy by two half-diethyl ether molecules and two partial (not half)
acetonitriles which were modeled as disordered. The bond distances and angles of both solvates were
restrained to expected values. The U’ components of ADPs of both solvates were restrained to be similar
if closer than 2.0 A. Subject to these conditions the occupancy rates of the major and minor moieties
refined to 0.648(8) (ether) to 0.352(8) (2 x MeCN).

Figure S69 Molecular structure of the cationic portion of [L*™,Zn,0,][OTf], displayed with 50% probability
ellipsoids. Select hydrogen atoms are omitted and select phenyl substituents are displayed in wireframe
for clarity.
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Compound: [LNMe2,7n,0,][0Tf],

Local Name: jk4100

Table S5. Crystallographic parameters for [LNM¢2,Zn,0,][OTf],

Crystal data

Chemical formula

CsaHosN2002Zn-2(CF3055)-1.504(CsH15)-6.5(C2H4Cly)

M

2598.65

Crystal system, space group

Monoclinic, P2:/c

Temperature (K)

90

a, b, c(A) 17.2874 (15), 18.3243 (11), 19.0436 (17)
B (%) 100.0908 (19)

v (A3) 5939.3 (8)

V4 2

Radiation type Mo Ko,

i (mm) 0.80

Crystal size (mm)

0.43x0.21x0.10

Data collection

Diffractometer

Bruker AXS D8 Quest CMOS diffractometer

Absorption correction

Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. &
Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax

0.255, 0.337

No. of measured, independent and
observed [/ > 2s(/)] reflections

100870, 18151, 11332

Rint 0.062
(sin a/Nmax (A7) 0.715
Refinement

RIF? > 206(F?)], wR(F?), S

0.075, 0.248, 1.04

No. of reflections 18151
No. of parameters 1258
No. of restraints 2013

H-atom treatment

H atoms treated by a mixture of independent and constrained refinement

Apmax, Bpmin (€ A-3)

1.21,-0.71

Computer programs: Apex3 v2017.3-0 (Bruker, 2016), SAINT V8.38A (Bruker, 2016), SHELXS97
(Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev924 (Hiibschle et al., 2011).
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Refinement details:

Substantial radiation damage and loss of intensity was observed during data collection, despite a low data
collection temperature of 90 K. The data were corrected in Sadabs for radiation damage using a linear B-
factor fit, resulting in the following statistics:

Run B(start) B(mid) B(end) Rad.Damage factors

1 0.000 0.386 0.773 0.604 - 1.381
2 -0.811 -0.842 -0.874 0.432 - 1.414
3 -0.197 0.031 0.260 0.467 - 2.319

(please note that Run 1 was collected nine times faster but to a lower resolution than Runs 2 and 3 (0.795
for Run 1, 0.700 for Runs 2 and 3). Subsequent runs (4 and up) were affected to an increasing degree,
substantially affecting data quality even after correction for radiation damage, and were not used.

The bridging peroxide ligand in the binding pocket is disordered over two alternative orientations. Both
peroxide units are exactly inversion symmetric. The ADPs of the two oxygen atoms were constrained to
be identical.

Amine H atom positions were refined and N-H distances were restrained to 0.88(2) A, respectively.

Substantial disorder is observed for the solvate molecules and the triflate anions. The triflate anion was
refined as disordered over two major and one minor orientation. The three disordered moieties were
restrained to have similar geometries. U' components of ADPs for disordered atoms closer to each other
than 2.0 A were restrained to be similar. Subject to these conditions the occupancy rates refined to
0.501(2), 0.428(2) and 0.0711(18).

The triflate anions are surrounded by four sets of disordered solvate molecules. All solvate molecule
positions were refined as disordered between 1,2-dichloroethane and pentane and were fitted to the
experimental electron density using three or four differently oriented molecules of either 1,2-
dichloroethane or pentane. All 1,2-dichloroethane molecules were restrained to have similar geometries,
as were all pentane molecules. For the pivot pentane molecule (C52 to C56) C-C bond distances and angles
were restrained to target values (C-C to 1.54(2) A, 1,3 C...C distances to 2.50(2) A). Ui components of ADPs
for disordered atoms of each solvent cluster closer to each other than 2.0 A were restrained to be similar.
A weak anti-bumping restraint (BUMP) was applied to keep disordered moiety H atoms from approaching
other atoms too closely. Occupancies for individual moieties refined to values between 0.781(2) (for the
1,2-dichloroethane of Cl1 and CI2), and 0.104(3) for the pentane of C67 to C71. See the atom list for exact
values. Some apparent, but insufficiently resolved, additional disorder was omitted from the refinement
model.
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Figure S70 Molecular structure of the cationic portion of [LNM2,7n,0,][OTf], displayed with 50%
probability ellipsoids. Select hydrogen atoms are omitted and select phenyl substituents are displayed in
wireframe for clarity. Disordered solvates and the minor 0,2 moiety are also omitted for clarity.

S56



Bond Distances (A)

Major 0, moiety Minor O,> moiety
, , N6-01 = 2.619 N6-O1B’ = 3.057
01 = major 0, moiety N3-01’ = 2.945 N3-01B = 2.476
O1B = minor 0, moiety N9-01’ = 2.826 N9-O1B = 2.938
Zn-01 = 1.991(3) Zn-01B = 1.985(6)

01-01’ = 1.483(6) 01B-O1B’ = 1.491(12)

>
N3

S o

@
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Figure S71 Depiction of the asymmetric unit of [LNM¢2,Zn,0,][OTf], to emphasize differences in hydrogen
bonding between the major and minor 0,> moieties. Relevant bond distances for the disordered 0, unit

are listed.

Description of hydrogen bonding interactions for minor 0,> moiety

The 0,% is disordered over two positions (01 and O1B). There are six hydrogen bonding interactions to
the O1B-01B’ fragment (minor moiety). For each ‘(L?)Zn’ fragment, two —NHAr groups engage in hydrogen
bonding with the proximal oxygen (N3-O1B = 2.476; N9-01B = 2.938 A) while one —NHAr group engages
the distal oxygen (N6-0O1B’ = 3.057 A). The Zn-O distances and O-O distances are equivalent between the
two moieties.
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Compound: (L")Zn(Ns),
Local Name: ed451h

Table S6. Crystallographic parameters for (L")Zn(Ns),

Crystal data

Chemical formula C36H33N12.7200.42ZN
M, 715.93

Crystal system, space group Monoclinic, P21/n
Temperature (K) 85

a, b, c(A) 10.1301 (1), 23.9224 (2), 13.8970 (1)
B (%) 98.932 (1)

v (A3) 3326.91 (5)

V4 4

Radiation type Cu Ko

i (mm) 1.43

Crystal size (mm) 0.12 x0.12 x 0.08

Data collection

Diffractometer Dtrek-CrysAlis PRO-abstract goniometer imported rigaku-D*TREK
images
Absorption correction Multi-scan CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction,

2015) Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm.

Tmin, 7-max 0754, 1.000

No. of measured, independent and|50416,6175,6103
observed [/ > 2s(/)] reflections

Rint 0.060

(5in 8/M)max (A1) 0.607

Refinement

RIF? > 26(F2)], wR(F?), S 0.055, 0.135, 1.10

No. of reflections 6175

No. of parameters 499

No. of restraints 85

H-atom treatment H atoms treated by a mixture of independent and constrained
refinement

DPrmax, Dpmin (€ A®) 1.19,-0.90

Computer programs: CrysAlis PRO 1.171.38.41 (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008),
SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Refinement details:

One of the azide groups is disordered with small amounts of a nitrate ion. The N-O distances were
restrained to be similar and the NOs; moiety to be planar. U’ components of ADPs for disordered atoms
closer to each other than 2.0 A were restrained to be similar. Subject to these conditions the occupancy
ratio refined to 0.860(5) to 0.140(5). We have been unable to identify the source of the nitrate
contaminant that is observed in the molecular structure.

Alternate refinement of occupational disorder: The NOs™ ion can alternately be modeled as a HCOs'.
Subject to the modeling conditions described above, the occupancy ratio refined to 0.860(5) to 0.140(5)
in favor of N3™ (note the occupancy is the same as in the NOs case). The R1 of the model does not change
between the two scenarios (R1 =5.49 for NOs’; 5.48 for HCO3'). A bicarbonate impurity can be rationalized
by trace OH and atmospheric CO..

S
"
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3

Figure S72 Molecular structure of (L")Zn(Ns), displayed with 50% probability ellipsoids. Select hydrogen
atoms are omitted as well as partially occupied nitrate anion (see refinement details).
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Compound: (L°3)Zn(Ns),
Local Name: jk3171

Table S7. Crystallographic parameters for (L3)Zn(Ns),

Crystal data

Chemical formula 2(C39H30F9N12.8100.29Zn)-CoH3N
M, 1879.11

Crystal system, space group Monoclinic, C2/c
Temperature (K) 150

a, b, c(A) 25.6729 (16), 16.2244 (12), 19.9405 (18)
B (%) 98.007 (3)

v (A3) 8224.8 (11)

V4 4

Radiation type Mo Ko

i (mm) 0.69

Crystal size (mm) 0.16 x 0.14 x 0.04

Data collection

Diffractometer Bruker AXS D8 Quest CMOS diffractometer

Absorption correction Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax 0479, 0.746

No. of measured, independent and|49855,10109,5721
observed [/ > 2s(/)] reflections

Rint 0.129
(5in 8/M)max (A1) 0.670
Refinement
RIF? > 20(F?)], wR(F?), S 0.065, 0.191, 1.02
No. of reflections 10109
No. of parameters 732
No. of restraints 721
H-atom treatment H-atom parameters constrained
w = 1/[s3(F3) +  (0.0669P)2  +  13.1095P]

where P = (F,? + 2F2)/3

Apmax/ Apmin (e A—3) 070, -076
Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97

(Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).

S60



Refinement details:

One CF; group and one p-CFs phenyl group were refined as disordered. Their geometries were restrained
to those of the third not disordered equivalent substituent. One of the disordered phenyl rings was
constrained to resemble an ideal hexagon, with C-C distances of 1.39 A. U components of ADPs for
disordered atoms closer to each other than 2.0 A were restrained to be similar. Subject to these conditions
the occupancy ratio refined to 0.757(7) to 0.243(7) for the p-CF3 phenyl group, and to 0.633(7) to 0.367(7)
for the CF; group.

An acetonitrile molecule is 1:1 disordered around a two-fold axis. Its atoms were subjected to a rigid bond
restraint (RIGU).

One of the azide groups is disordered with small amounts of a nitrate ion. The N-O distances were
restrained to be similar and the NOs; moiety to be planar. U components of ADPs for disordered atoms
closer to each other than 2.0 A were restrained to be similar. Subject to these conditions the occupancy
ratio refined to 0.904(4) to 0.096(4). We have been unable to identify the source of the nitrate
contaminant that is observed in the molecular structure.

Alternate refinement of occupational disorder: The NOs™ ion can alternately be modeled as a HCOs.
Subject to the modeling conditions described above, the occupancy ratio refined to 0.905(4) to 0.095(4)
in favor of N3™ (note the occupancy is the same as in the NOs case). The R1 of the model does not change
between the two scenarios (R1 = 6.45 for NOs’; 6.46 for HCO3'). A bicarbonate impurity can be rationalized
by trace OH and atmospheric CO..

Figure S73 Molecular structure of (L°3)Zn(Ns), displayed with 50% probability ellipsoids. Select hydrogen
atoms are omitted as well as a partially occupied nitrate anion (see refinement details).
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Compound: L°¢Zn(N3),

Local Name: jk3119

Table S8. Crystallographic parameters for L°™Zn(Ns),

Crystal data

Chemical formula

C39H39N1303Zn-C;H3N

M

844.25

Crystal system, space group

Monoclinic, P21/n

Temperature (K)

150

a, b, c(A) 9.3139 (3), 16.7896 (6), 25.5526 (9)
B (%) 93.9525 (15)

v (A3) 3986.3 (2)

V4 4

Radiation type Mo Ko,

i (mm) 0.68

Crystal size (mm)

0.55x0.22x0.18

Data collection

Diffractometer

Bruker AXS D8 Quest CMOS diffractometer

Absorption correction

Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M.
& Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax

0.626, 0.747

No. of measured, independent
observed [/ > 2s(/)] reflections

and

50414, 14890, 10260

Rint 0.049
(sin 6/A)max (A1) 0.771
Refinement

RIF? > 206(F?)], wR(F?), S

0.044, 0.118, 1.03

No. of reflections 14890
No. of parameters 619
No. of restraints 275

H-atom treatment

H atoms treated by a mixture of independent and constrained
refinement

Apmaxl Apmin (e A_?’)

0.76,-0.88

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick,

2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hubschle et al., 2011).
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Refinement details:

An anisyl substituent is disordered by rotation of the methoxy group. The two disordered moieties were
restrained to have similar geometries. U components of ADPs for disordered atoms closer to each other
than 2.0 A were restrained to be similar. Subject to these conditions the occupancy ratio refined to
0.550(4) to 0.450(4).

=
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.

Figure S74 Molecular structure of (L°¢)Zn(Ns), displayed with 50% probability ellipsoids. Select hydrogen
atoms are omitted.
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Compound: L"Me27Zn(N3),

Local Name: jk3120

Table S9. Crystallographic parameters for L"M®2Zn(Ns),

Crystal data

Chemical formula

Ca2HasN1600.81Zn-0.812(C4H100)-0.376(C2HsN)

M

917.97

Crystal system, space group

Monoclinic, P21/n

Temperature (K)

150

a, b, c(A) 17.5214 (13), 10.7394 (8), 24.7785 (15)
B(°) 90.811 (3)

v (A3) 4662.1 (6)

V4 4

Radiation type Mo Ko

i (mm) 0.58

Crystal size (mm)

0.27 x 0.15 x 0.07

Data collection

Diffractometer

Bruker AXS D8 Quest CMOS diffractometer

Absorption correction

Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Trnin, Tmax 0.656, 0.746

No. of measured, independent and|49997, 12078, 9205
observed [/ > 2s(/)] reflections

Rint 0.065

(sin 8/A)max (A7) 0.715

Refinement

RIF? > 206(F?)], wR(F?), S

0.040, 0.106, 1.04

No. of reflections 12078
No. of parameters 698
No. of restraints 296

H-atom treatment

H atoms treated by a mixture of independent and constrained
refinement

Apmaxl Apmin (e A_?’)

0.67,-0.45

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick,

2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hubschle et al., 2011).
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Refinement details:

A solvate pocket is occupied by either one molecule of diethyl ether, or two molecules of acetonitrile. The
diethyl ether is disordered over two slightly shifted positions. The two disordered moieties were
restrained to have similar geometries. The acetonitrile bond distances and angles were restrained to
expected values. U’ components of ADPs for all disordered atoms closer to each other than 2.0 A were
restrained to be similar. Subject to these conditions the occupancy rates refined to 0.571(3) and 0.241(3)
for the two ether moieties, and to two times 0.188(2) for the acetonitrile molecules.

Figure S75 Molecular structure of (LNM2)Zn(N3), displayed with 50% probability ellipsoids. Select hydrogen
atoms are omitted.
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Compound: (TPA)Zn(Ns),
Local Name: jk3156

Table S10. Crystallographic parameters for (TPA)Zn(Ns),

Crystal data

Chemical formula CisH1sN10Zn

M, 439.79

Crystal system, space group Monoclinic, P2;/n
Temperature (K) 150

a, b, c(A) 8.8065 (4), 14.9343 (6), 14.7137 (6)
B (%) 90.2374 (15)

v (A3) 1935.11 (14)

V4 4

Radiation type Cu Ka

p(mm?) 2.00

Crystal size (mm) 0.21x0.19 x 0.07

Data collection

Diffractometer Bruker AXS D8 Quest CMOS diffractometer

Absorption correction Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax 0354, 0.526

No. of measured, independent and|16920, 3994, 3659
observed [/ > 2s(/)] reflections

Rint 0.077

(5in 8/M)max (A1) 0.639

Refinement

R[F? > 26(F?)], wR(F?), S 0.052, 0.138, 1.05

No. of reflections 3994

No. of parameters 262

H-atom treatment H-atom parameters constrained
Dprmax, Bpmin (€ AP) 0.79, -1.02

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97
(Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Figure S76 Molecular structure of (TPA)Zn(Ns); displayed with 50% probability ellipsoids. Hydrogen atoms
are omitted for clarity.
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Compound: [(TPA)Zn(N3)][ClO4]
Local Name: jk3117

Table S11. Crystallographic parameters for [(TPA)Zn(N3)][ClO4]

Crystal data

Chemical formula CigH1sN7Zn-ClO4
M, 497.21

Crystal system, space group Monoclinic, P2:/c
Temperature (K) 150

a, b, c(A) 15.2872 (7), 9.1683 (5), 14.9606 (7)
B (%) 94.6552 (17)

v (A3) 2089.93 (18)

z 4

Radiation type Mo Ko,

i (mm) 1.34

Crystal size (mm) 0.55 x 0.29 x 0.08

Data collection

Diffractometer Bruker AXS D8 Quest CMOS diffractometer

Absorption correction Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax 0537, 0.747

No. of measured, independent and|40126, 9018, 7048
observed [/ > 2s(/)] reflections

Rint 0.044

(5in 8/M)max (A1) 0.808

Refinement

RIF? > 26(F2)], wR(F?), S 0.044, 0.118, 1.07

No. of reflections 9018

No. of parameters 281

H-atom treatment H-atom parameters constrained
Dpmax, Dpmin (€ A3) 1.64, -0.96

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97
(Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Figure S77 Molecular structure of [(TPA)Zn(Ns)][CIO4] displayed with 50% probability ellipsoids. The
perchlorate anion is omitted for clarity. Selected bond distances (&) and angles (°): Zn-Npyridine = 2.0722(14),
2.0858(15), and 2.0642(14); Zn-Nanchor = 2.2208(13); Zn-N5 = 2.0051(15); N5-N6 = 1.167(2); N6-N7 =
1.146(3); Zn-N5-N6 = 131.75(14).
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Compound: L"Zn(OH)(OTf)
Local Name: ed415

Table S12. Crystallographic parameters for L"Zn(OH)(OTf)

Crystal data

Chemical formula 2(C37H34F3N7045Zn)-CoH3N

M; 1631.33

Crystal system, space group Orthorhombic, Pna2;

Temperature (K) 85

a, b, ¢ (A) 35.9729 (6), 8.6719 (2), 23.2969 (3)
V(A3 7267.5 (2)

z 4

Radiation type Cu Ko

i (mm) 2.06

Crystal size (mm) 0.23x0.01x0.01

Data collection

Diffractometer Dtrek-CrysAlis PRO-abstract goniometer imported rigaku-D*TREK images

Absorption correction Multi-scan CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction, 2015)
Empirical absorption correction using spherical harmonics, implemented
in SCALE3 ABSPACK scaling algorithm.

Tmin, 7—max 0656, 1.000

No. of measured, independent and|106634, 13472, 12173
observed [/ > 2s(/)] reflections

Rint 0.097

(sin 8/A)max (A7) 0.608

Refinement

RI[F? > 26(F?)], wR(F?), S 0.072,0.196, 1.06

No. of reflections 13472

No. of parameters 986

No. of restraints 2

H-atom treatment H-atom parameters constrained
Dprmax, Bpmin (€ AP) 2.12,-1.02

Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.33 (3)

Computer programs: CrysAlis PRO 1.171.38.41 (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008),
SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev882 (Hiibschle et al., 2011).
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Figure S78 Molecular structure of L"Zn(OH)(OTf) displayed with 50% probability ellipsoids. Selected bond
distances (A): Zn-Npyridie = 2.169(7), 2.202(7), and 2.205(7); Zn-Nanchor = 2.176(6); Zn-OH = 1.976(6); Zn-OTf
= 2.404(6).
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Compound:[(L")ZnCI][ClO4]
Local Name: jk3146

Table S13. Crystallographic parameters for [(L")ZnCI][CIO4]

Crystal data

Chemical formula C36H33CIN7Zn-Cl04-2.5(C,H4Cl,)
M; 1011.34

Crystal system, space group Triclinic, P1

Temperature (K) 150

a, b, ¢ (A) 13.083 (2), 16.323 (3), 22.431 (4)
a, B,y () 69.675 (4), 85.118 (7), 82.517 (4)
v (A3 4449.8 (14)

z 4

Radiation type Mo Ko

i (mm) 1.02

Crystal size (mm) 0.55x0.17 x0.03

Data collection

Diffractometer Bruker AXS D8 Quest CMOS diffractometer

Absorption correction Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, 7—max 0103, 0.970

No. of measured, independent and|47836, 14561, 9924
observed [/ > 2s(/)] reflections

Rint 0.098

(5in 8/M)max (A1) 0.581

Refinement

RI[F? > 26(F?)], wR(F?), S 0.106, 0.330, 1.05

No. of reflections 14561

No. of parameters 1390

No. of restraints 1283

H-atom treatment H-atom parameters constrained
DPmax, Apmin (€ A7) 2.72,-0.74

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97
(Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2017), SHELXLE Rev882 (Hiibschle et al., 2011).
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Refinement details:

A perchlorate anion is disordered in place. The two disordered moieties were restrained to have similar
geometries as another not disordered perchlorate. U’ components of ADPs for disordered atoms closer
to each other than 2.0 A were restrained to be similar. Subject to these conditions the occupancy ratio
refined to 0.592(10) to 0.408(10).

Several 1,2-dichloroethane molecules are disordered. One was refined as not disordered. Three as two-
fold disordered (one of them around or slightly offset an inversion center), and one as three fold
disordered slightly offset an inversion center, and one four-fold disordered with one of the three moieties
incompatible with its symmetry created counterpart created by an inversion center. All 1,2-
dichloroethane molecules were restrained to have similar geometries, and some C-Cl and C-C distances
were in addition restrained to be similar to each other (disorder around inversion centers). U’ components
of ADPs for disordered atoms closer to each other than 2.0 A were restrained to be similar. Subject to
these conditions the occupancy rates refined to 0.808(7) and 0.192(7) (CI5, CI6 vs. CI5B, CI6B), 0.1367(13)
(Cl17),0.1011(8) (CI8), 0.525(9) (Cl9, Cl10), 0.376(7) (Cl11, CI12),0.211(9) (CI13, Cl14), 0.304(3) (CI15, CI16),
0.311(3) (CI17, CI18), 0.286(3) (CI19, CI20), 0.099(3) (CI21, CI22), 0.577(18) (CI23), 0.124(7) (CI24, CI25),
and 0.475(9) (CI26, CI27).
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Figure S79 Molecular structure of [L"ZnCI][CIO,] displayed with 50% probability ellipsoids. Select hydrogen
atoms, perchlorate anions, cocrystallized 1,2-dichloroethane solvates, and second asymmetric cation in
the unit cell have been omitted.
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Table S14. Experimentally determined bond distances and angles of zinc peroxide complexes

Bond (A) or Angle (o) [LCF3ZZn202]2* [L'-‘zanOz]Z+ [LOMezZI’\zOz]Z+ [LNMeZZZnZOZ]Z*

(X1=0) (X1=0) (X1=0) (X1=0)
Zn1-01 1.9507(16) 1.9656(7) 1.9724(16) 1.991(3)
Zn1-Npyridine 2.1406(18) | 2.1122(9) 2.1289(19) 2.148(2)
Zn1-Npyridine 2.1514(19) 2.1669(9) 2.1497(19) 2.156(3)
Zn1-Npyridine 2.305(2) 2.2597(9) 2.227(2) 2.185(3)
Zn1-Nanchor 2.0997(19) | 2.1216(9) 2.129(2) 2.131(3)
01-01 1.524(3) 1.4954(13) 1.518(3) 1.483(6)
Znl-Znl’ 4.719 4.745 4.784 4.742
Zn1-01-01’ 113.41(14) 114.21(7) 114.76(14) 112.1(3)
Ts 0.75 0.83 0.83 0.77

Table S15. Experimentally determined bond distances and angles of zinc azide complexes

Bond (A) or Angle (°) | L3Zn(Ns), LHZn(Ns), LOMeZn(N3), LNMe27n(Ns), (TPA)Zn(Ns),
Zn-N3(aial) 2.055(3) 2.1037(15) 2.0790(13) 2.0741(15) 2.035(2)

Zn- N3(equitorial) 2.063(3) 2.1010(15) 2.1056(14) 2.1357(15) 2.114(2)
Zn-Npyridine 2.309(3) 2.2581(13) 2.2083(12) 2.1956(14) 2.2115(19)
Zn-Npyridine 2.365(3) 2.2447(12) 2.2474(12) 2.2538(15) 2.202(2)
Zn-Npyridine 2.292(3) 2.2457(14) 2.3052(13) 2.2629(14) 2.153(2)
Zn-Nanchor 2.146(3) 2.1573(13) 2.1547(13) 2.1602(14) 2.2358(18)
Zn-N-N{ayia) 122.7(3) 126.72(13) 123.81(11) 121.36(12) 128.54(18)
Zn-N-Nequitorial) 127.1(3) 117.86(11) 130.69(11) 121.35(12) 126.44(19)
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Table S16. Experimentally determined bond distances and angles of zinc azide complexes

Bond (A) LCF3Zn(N3)2 LHZn(N3)2 LO'V'eZn(Ng)z LNMEZZn(Ng,)z (TPA)ZI’](N3)2
Zn-Na 2.055(3) 2.1037(15) 2.0790(13) 2.0741(15) 2.035(2)
Zn- Np 2.063(3) 2.1010(15) 2.1056(14) 2.1357(15) 2.114(2)
Na-Ng 1.207(5) 1.190(2) 1.1978(19) 1.198(2) 1.185(3)
Na-N¢ 1.147(5) 1.165(2) 1.150(2) 1.149(2) 1.156(3)
Np-Ne 1.230(6) 1.096(2) 1.180(2) 1.163(2) 1.185(3)
Ne-N¢ 1.138(6) 1.212(2) 1.170(2) 1.176(2) 1.151(3)
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Computational Details.

All calculations were performed using Gaussian 09! and visualized in GaussView. Head-Gordon’s long
range-corrected functional (wB97XD)*? was used with the Pople basis set 6-31G(d,p)*3 to calculate C, H,
and N atoms and the Ahlrich basis set def2-TZVP* to calculate Zn atoms. Spin-restricted structures were
freely optimized in C; symmetry from coordinates generated from the X-ray structure using a polarizable
continuum model (PCM) of CH,Cl,. Calculated vibrational spectra were used to verify that the optimized
structures were minima on the potential energy surface by the absence of imaginary frequencies and to
assign the experimental azide IR bands.

Table S17. DFT-calculated IR bands of (TPA)Zn(Ns),

IR Band Axial N3 Equitorial N3 | A (axial — equatorial)
Calculated, cm™ 2221.20 | 2196.03 25.17
Experimental, cm® | 2057.7 2032.8 24.9
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