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Supporting Information: 

There are a total of one supplemental table and 5 supplemental figures (Figure S1-5). The figures are included in 

this document. The supplemental table is included as a separate Excel files (Table S1.xlsx), whereas the legends 

and references for the table are provided below. 

 

Table S1. A list of SPTR-Gene Family precursor sequences in mollusca and annelida, and proctolin precursor 

sequences in arthropoda used for sequence alignment in Figure S1-3. We also indicated whether each precursor 

has been aligned in previous publications. 
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Figure S1. Alignment of 18 SPTR-Gene family precursor sequences and all the known arthropod proctolin 

precursors sequences using Bioedit. Threshold (%) for shading: 50. Similar: grey; identical: black. 



apSPTR-GF-DP2 sequence is marked with red arrows. 

 



 



Figure S2. Alignment of 18 SPTR-Gene family precursor sequences and the classical arthropod proctolin 

(RYLPT) precursor sequences using Bioedit. Threshold (%) for shading: 50. Similar: grey; identical: black. 

apSPTR-GF-DP2 sequence is marked with red arrows. 



 



Figure S3. Alignment of 18 SPTR-Gene family precursor sequences using Bioedit. Threshold (%) for shading: 50. 

Similar: grey; identical: black. The figure showed part of SPTR-like peptide precursor sequences among different 

species are highly similar, which may primarily originate from the comparable sequences for the C-terminal 

apSPTR-GF-DP2. apSPTR-GF-DP2 sequence is marked with red arrows. 

  



 

 
Figure S4. Phylogenetic tree resulting from the analysis of 18 SPTR-Gene family precursor sequences. Number 

on the nodes shows the bootstrap scores (percentage) out of 1000. The scale bar indicates the number of 

substitutions per site. Notably, Aplysia SPTR precursor is most closely related to Lymnaea SPTR precursor. To a 

large extent, the phylogenetic relationship matches with the relatedness of the different species. 

 

 

 

 

 

 

 



 

Figure S5. Specificity of apSPTR-GF-DP2 antibody. Preabsorption of the primary antibody with 

apSPTR-GF-DP2 abolished immunostaining. (a), Rostral surface of a buccal hemiganglion after immunostaining 

in a normal way, showing two apSPTR-GF-DP2 immunopositive neurons. (b), Rostral surface of a buccal 

hemiganglion after immunostaining with the primary antibody preabsorbed with 10
-4

 M apSPTR-GF-DP2 

overnight, showing a lack of staining. Scale bar: 100 µm. Nerve abbreviations as in Fig. 1. 

 

 

 

 

 

 

 

 


