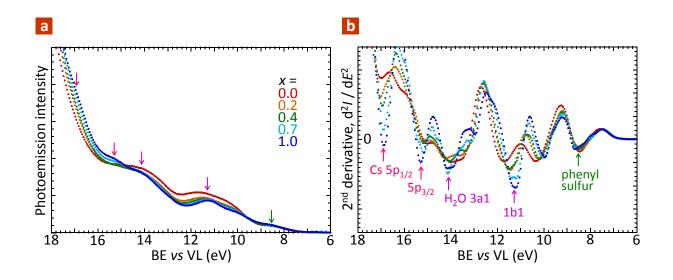
# Ohmic transition at contacts key to maximizing fill factor and performance of organic solar cells

Jun-Kai Tan,<sup>1,2</sup> Rui-Qi Png,<sup>1,2</sup> Chao Zhao<sup>1,2</sup> and Peter K.H. Ho<sup>1,2\*</sup>

- <sup>1</sup> Department of Physics, National University of Singapore, Lower Kent Ridge Road, S117550, Singapore
- <sup>2</sup> Solar Energy Research Institute of Singapore, National University of Singapore, Engineering Drive 1, S117574, Singapore


\* Correspondence to: P.K.H.H. (phyhop@nus.edu.sg)

## **Supplementary Information**

### Contents

| Supplementary Figure 1                                                | 2 |
|-----------------------------------------------------------------------|---|
| Supplementary Table 1                                                 | 3 |
| Supplementary Note 1: Fermi-Level Pinning and Effective Work Function | 4 |
| Supplementary Note 2: Fermi-Level Pinning Calculations                | 5 |
| Supplementary References                                              | 7 |

#### **Supplementary Figure 1**



Supplementary Figure 1. Valence band spectrum of PEDT: PSSCs<sub>x</sub>H<sub>1-x</sub> films. (a) Valence band spectrum, plotted against binding energy (BE) relative to vacuum level (VL) for film Arrows indicate peak positions determined from second-derivative spectrum. (b) Second-derivative spectrum, obtained by digital derivatization of the spectrum in (a) with appropriate smoothing. Spectral assignments are marked. Phenyl refers to the localized phenyl MO of PSS; sulfur refers to the localized (lone-pair) sulfur MO of PEDT. Molecular H<sub>2</sub>O is bound to the  $-SO_3^-...Cs^+$  ion clusters, but not  $-SO_3H$ . The constant energies of these features reveal the absence of any contribution from a varying surface-dipole layer to the work function shift. Assignments are based on Chia et al<sup>1</sup> for phenyl and sulfur and Winter et al for the others.<sup>2</sup>

## Supplementary Table 1

| Parameter                             |              | $oldsymbol{\phi}$ (eV)                                               |      |                           |                                      |      |      |  |
|---------------------------------------|--------------|----------------------------------------------------------------------|------|---------------------------|--------------------------------------|------|------|--|
|                                       |              | 5.17                                                                 | 5.10 | 5.03                      | 4.94                                 | 4.88 | 4.72 |  |
| Electron mobility                     | $\mu_{ m n}$ | 9 x 10 <sup>-4</sup> cm <sup>2</sup> V <sup>-1</sup> s <sup>-2</sup> |      |                           |                                      |      |      |  |
| Hole mobility                         | $\mu_{ m p}$ | 1 x 10 <sup>-4</sup> cm <sup>2</sup> V <sup>-1</sup> s <sup>-2</sup> |      |                           |                                      |      |      |  |
| Electron density, at electron contact | <b>N</b> n   | 2.0 x 10 <sup>17</sup> cm <sup>-3</sup>                              |      |                           |                                      |      |      |  |
| Hole density, at hole contact         | Pp           | 2.0                                                                  | 1.7  | 1.4<br>x 10 <sup>17</sup> | 0.9<br><sup>7</sup> cm <sup>-3</sup> | 0.6  | 0.1  |  |
| Recombination factor                  | ξ            | 0.2                                                                  |      |                           |                                      |      |      |  |
| Zero-K built-in<br>potential          | Vo           | 0.73 V                                                               |      |                           |                                      |      |      |  |
| Dielectric constant                   | <i>E</i> r   | 2.0                                                                  |      |                           |                                      |      |      |  |

**Supplementary Table 1.** Device parameter set employed for simulation of bulk *JV* characteristics for PEDT: PSSCs<sub>x</sub>H<sub>1-x</sub>/ P3HT: PCBM/ Ca solar cells. The parameters have been validated in crosslinked donor polymer network: fullerene solar cells with well controlled donor–acceptor morphology over wide thickness range.<sup>3</sup>  $P_p$  is a variable scaled by ( $\phi - \phi_{pin}$ ).

#### Supplementary Note 1: Fermi-Level Pinning and Effective Work Function

We use  $\phi$  to denote the vacuum work function of the electrode, in this case PEDT: PSS(Cs<sub>x</sub>H<sub>1-x</sub>), which is the energy difference between its Fermi level (FL) and the outside vacuum level (VL). This can be measured, for example by ultraviolet photoemission spectroscopy (UPS).<sup>4-6</sup> We denote the effective work function of the electrode in contact with the semiconductor by  $\phi_{\text{eff}}$ which is the energy difference between FL of the electrode and the effective VL of the bulk of the semiconductor.<sup>7</sup> The effective VL is what pertains when the semiconductor is notionally split to create a vacuum interface but without creating a dipole layer at the vacuum interface.  $\phi_{\text{eff}}$  rather than  $\phi$  is the quantity that is relevant to energy-level alignment in devices. It can be inferred from  $V_{\rm bi}$  measurements in diodes, assuming  $\phi_{\rm eff}$  at one of the contacts is known *a priori*, for example through systematic correlation.<sup>7</sup> Surveys of polymer organic semiconductor diodes suggest that  $\phi_{\text{eff}}$  is a well-defined and portable under some conditions, in particular in the absence of Fermi-level (FL) pinning.<sup>7</sup> When  $\phi$  exceeds the work function for the onset of FL pinning  $\phi_{\text{pin}}$ , charge transfer to the semiconductor band edge occurs, which opens a VL offset that greatly slows down the creep of FL up the density-of-states of the semiconductor.<sup>8,9</sup> As a consequence  $\phi_{\rm eff}$  appears to be pinned at  $\phi_{\rm pin}$ . The location of  $\phi_{\rm pin}$  can thus be obtained from the interpolated knee in the plot of  $\phi_{\text{eff}}$  against  $\phi$ . The resultant accumulation of carrier density in an ultrathin layer with diffused tail at the semiconductor side of the contact, which we refer to variously as the ' $\delta$ -doped layer' or ' $\delta$ -density', can be measured and quantified by subgap electroabsorption spectroscopy.<sup>10</sup>

#### Supplementary Note 2: Fermi-Level Pinning Calculations

| Parameter                        | Symbol          | Value                                 |
|----------------------------------|-----------------|---------------------------------------|
| Gaussian density-of-states       | $\sigma_{ m G}$ | 3 x 10 <sup>13</sup> cm <sup>-2</sup> |
| Static dielectric constant       | ε <sub>r</sub>  | 2.0 <sup>a</sup>                      |
| Effective dielectric thickness   | d               | 2.5 nm                                |
| Contact double-layer capacitance | C <sub>dl</sub> | $0.7 \ \mu F \ cm^{-2}$               |

Calculations were performed at 290 K with the following parameters:

#### Footnotes:

<sup>a</sup> We used a  $\varepsilon_r$  lower than 3 because of the absence of the conjugated polymer in the local ion cluster.

In a typical calculation, a certain density-of-states (DOS) function for the semiconductor is assumed. Then for each assumed effective work function of the hole contact  $\phi_{eff}$  given by the work function for the semiconductor, we computed the vacuum-level offset at the contact  $\Delta \phi_{dl}$  and the associated work function of the electrode  $\phi$ , according to:  $\phi = \phi_{eff} + \Delta \phi_{dl}$ .  $\Delta \phi_{dl}$  is given by the voltage drop associated with the double-layer capacitance due to the accumulated hole density and its image, which in the zero-K limit is given by:  $\Delta \phi_{dl} = \frac{e\sigma}{c_{dl}}$ , where  $\sigma$  is the accumulated hole density given by  $\sigma = \int_{\varepsilon_F}^{\infty} N_i(\varepsilon_i)(1-f_i(\varepsilon_i))d\varepsilon_i$ , where  $N_i(\varepsilon_i)$  is the DOS and  $f_i(\varepsilon_i)$  is the Fermi-Dirac function, and  $C_{dl}$  is the double-layer capacitance given by  $C_{dl} = \frac{\varepsilon_0 \varepsilon_r}{d}$ , where  $\varepsilon_0$  is the vacuum permittivity,  $\varepsilon_r$  is the local dielectric constant, and d is the effective double-layer thickness. For an interface with a perfect conductor, d is given by half the distance to the image charge. We have checked that a variation in  $\Delta \phi_{dl}$  by up to a factor of three, due to uncertainty in  $C_{dl}$ , does not change the form of the plots. The FL pinning onset work function  $\phi_{pin}$  is established from the kink in the  $\phi_{eff}$  vs  $\phi$  plot. This was computationally obtained by intersecting the unity-slope

straight line in the  $\phi < \phi_{pin}$  regime, with a straight line fitted over  $\phi_{pin} + 0.1 < \phi < \phi_{pin} + 0.4$  eV regime, following the usual experimental practice.

For a DOS with a hemi-gaussian frontier region with integrated hemi-gaussian DOS of 4 x  $10^{13}$  cm<sup>-2</sup>, our simulation gives  $\phi_{pin} \approx (2.35 \pm 0.02) * \sigma_G$ , where  $\sigma_G$  is the gaussian (standard deviation) width. For comparison, the ionization energy  $I_E$  conventionally defined by extrapolated onset of the highest-occupied molecular orbital (HOMO) band edge is at 2.00 \* $\sigma_G$ . Therefore in the absence of polarization-induced band-bending, Fermi-level pinning is expected to occur very close to the conventionally-defined band edge, at ca. 0.35 \* $\sigma_G$  into the gap from the band edge. This amounts to 63 meV for a typical  $\sigma_G$  of 0.18 eV. Furthermore, we found for  $\sigma_G$  of 0.18 eV that contact resistivity scales as:  $\rho_c \sim \sigma^{-0.82}$  for  $\phi$  in the range of  $\phi_{pin} \pm 0.2$  eV.

## **Supplementary References**

- 1 Chia, P. J. *et al.* Direct evidence for the role of the Madelung potential in determining the work function of doped organic semiconductors. *Phys. Rev. Lett.* **102**, 096602 (2009).
- 2 Winter, B. *et al.* Electron binding energies of aqueous alkali and halide ions: euv photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. *J. Am. Chem. Soc.* **127**, 7203 (2005).
- 3 Liu, B., Png, R. Q., Tan, J. K. & Ho, P. K. H. Evaluation of built-in potential and loss mechanisms at contacts in organic solar cells: device model parameterization, validation, and prediction. *Adv. Energy Mater.* **4**, 1200972 (2014).
- 4 Koch, N. Organic electronic devices and their functional interfaces. *ChemPhysChem* **8**, 1438 (2007).
- 5 Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. *Adv. Mater.* **21**, 1450 (2009).
- 6 Hwang, J., Wan, A. & Kahn, A. Energetics of metal–organic interfaces: new experiments and assessment of the field. *Mater. Sci. Eng. R-Rep.* **64**, 1 (2009).
- 7 Zhou, M. *et al.* Effective work functions for the evaporated metal/organic semiconductor contacts from in-situ diode flatband potential measurements. *Appl. Phys. Lett.* **101**, 013501 (2012).
- 8 Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/ metal and organic/ organic interfaces. *Adv. Mater.* **11**, 605 (1999).
- 9 Tengstedt, C. *et al.* Fermi-level pinning at conjugated polymer interfaces. *Appl. Phys. Lett.* **88**, 053502 (2006).
- 10 Zhou, M. *et al.* The role of delta-doped interfaces for Ohmic contacts to organic semiconductors. *Phys. Rev. Lett.* **103**, 036601 (2009).