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A Calculation details of the UCM extension applied to kinematic
and dynamic task functions

Partial derivatives of ėee with respect to qqq and q̇qq

B(qqq, ¯̇qqq) =
∂J(qqq) ¯̇qqq

∂qqq
.

Let us write J(qqq) ¯̇qqq component-wise:

(J(qqq) ¯̇qqq)i =
n

∑
k=0

(J(qqq))ik ¯̇qk.

This leads to the component-wise expression of B:

Bi j =
∂ (J(qqq) ¯̇qqq)i

∂q j
=

n

∑
k=0

∂ (J(qqq))ik

∂q j
¯̇qk.

Note that configuration qqq contains rotational joints which are elements of the special orthogonal
group SO(3) and have to be time differentiated accordingly.

Partial derivatives of ëee with respect to qqq, q̇qq and q̈qq
Calculation of D

D(q̄qq, q̇qq, ¯̈qqq) =
∂ (J̇(q̄qq, q̇qq)q̇qq)

∂ q̇qq
.

Let us write J̇(q̄qq, q̇qq)q̇qq component-wise:

(J̇(q̄qq, q̇qq)q̇qq)i =
n

∑
k=0

(J̇(q̄qq, q̇qq))ikq̇k.

This leads to the component-wise expression of D:

Di j =
∂ (J̇(q̄qq, q̇qq)q̇qq)i

∂ q̇qq j
,

Di, j =
n

∑
k=0

∂ ((J̇(q̄qq, q̇qq))ikq̇k)

∂ q̇qq j
,

Di, j =
n

∑
k=0

∂ (J̇(q̄qq, q̇qq))ik

∂ q̇qq j
q̇k +δ jk(J̇(q̄qq, q̇qq))ik,

with δδδ the Kronecker delta.

Calculation of E

E(qqq, ¯̇qqq, ¯̈qqq) =
∂ (J̇(qqq, ¯̇qqq) ¯̇qqq)

∂qqq
+

∂ (J(qqq) ¯̈qqq)
∂qqq

.

Let us write J̇(qqq, ¯̇qqq) ¯̇qqq component-wise:

(J̇(qqq, ¯̇qqq) ¯̇qqq)i =
n

∑
k=0

(J̇(qqq, ¯̇qqq))ik ¯̇qk.

Let us write J(q) ¯̈q component-wise:

(J(qqq) ¯̈qqq)i =
n

∑
k=0

(J(qqq))ik ¯̈qk.
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This leads to the component-wise expression of E:

Ei j =
∂ (J̇(qqq, ¯̇qqq) ¯̇qqq)i

∂q j
+

∂ (J(qqq) ¯̈qqq)i

∂q j
,

Ei j =
n

∑
k=0

∂ (J̇(qqq, ¯̇qqq))ik

∂q j
¯̇qk +

n

∑
k=0

∂ (J(qqq))ik

∂q j
¯̈qk.

B Application of the UCM extension to the derivative of the cen-
troidal momenta task functions

The similarity between Eq. (8) and Eq. (17) provides a direct case of application of our
extension of the UCM theory. To this end, we compute the partial derivatives of ḣhhG(qqq, q̇qq, q̈qq)
around the mean performance of one participant (q̄qq, ¯̇qqq, ¯̈qqq):

∂ ḣhhG

∂ q̈qq

∣∣∣∣qqq=q̄qq
q̇qq= ¯̇qqq

= AG(q̇qq), (1a)

∂ ḣhhG

∂ q̇qq

∣∣∣∣qqq=q̄qq
q̈qq= ¯̈qqq

=
∂ (ȦG(q̄qq, q̇qq)q̇qq)

∂ q̇qq
, (1b)

∂ ḣhhG

∂qqq

∣∣∣∣q̇= ¯̇qqq
q̈qq= ¯̈qqq

=
∂ (ȦG(qqq, ¯̇qqq) ¯̇qqq)

∂qqq
+

∂ (AG(qqq) ¯̈qqq)
∂qqq

. (1c)

Then we apply the presented framework to the first order Taylor expansion of ḣhhG.

C Applying the Covariation by Randomization method to our dataset

The Covariation by Randomization (CR) method proposed by1 is intended to be used for
multidimensional systems with strong non-linearities where analysis of variance is made using a
common metric in the task space. This approach compares the variance of task related variables
obtained with the recorded human data to the variance of these variables generated by surrogate
data. Surrogate data is obtained by randomly permuting elemental variables with repetitions in
order to get rid-off possible correlations between these variables. Although this method looks
suitable for dealing with our data set, it fails to interpret variance as a measure of stability.
Moreover, structure of variance that is not caused by correlation but by different amounts of
variance in the elemental variables is undetected in this approach. See3 for a critical comparison
between the UCM and CR approaches. However, the results that come out of this analysis
corroborate the fact that the results obtained with the UCM method are not the consequence of
artifacts from highly covarying elemental variables, that would inherently not contribute to the
task. In this appendix we provide the results of the CR approach applied to our data set. An
index of covariation (ICR) was calculated by obtaining surrogate data with 9 permutations
(Figure 1 and Figure 2 of this appendix). Note that the same log transformation was applied to
the index of covariation in accordance with our ITC calculations.

All results suggest correlation between elemental variables (IC > 0). Note that IC and ITC
values does not have to be the same (see2 for a detailed explication). Finally, note that the task
function formalism presented in this manuscript also generalizes with the CR approach.
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Figure 1. ICR values at take-off. Mean (± confidence intervals) values of the indexes of
covariation by randomization (CR) during the take-off motion for the LMD(y,z) and the
AMD(y) task.

Figure 2. ICR values at landing. Mean (± confidence intervals) values of the indexes of
covariation by randomization (CR) during the landing motion for the LMD(z), the LMD(x,y)
and the AMD(x,y,z) task.
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