## Stress affects the epigenetic marks added by natural transposable element

### insertions in Drosophila melanogaster

Lain Guio, Cristina Vieira, and Josefa González

# **Supplementary Tables**

Supplementary Table 1. List of DGRP lines used to create Outbred populations #2. All the lines used to create the outbred populations were obtained from The Drosophila Genetic Reference Panel project (DGRP)<sup>21,22</sup>.

| Lines with Bari-Jheh | Lines without Bari- |  |  |
|----------------------|---------------------|--|--|
|                      | Jheh                |  |  |
| RAL-441              | RAL-177             |  |  |
| RAL-88               | RAL-383             |  |  |
| RAL-820              | RAL-857             |  |  |
| RAL-716              | RAL-776             |  |  |
| RAL-391              | RAL-802             |  |  |
| RAL-371              | RAL-783             |  |  |
| RAL-195              | RAL-737             |  |  |

Supplementary Table 2. List of primers used in this study.

| Gene                                                                     | Primer        | Sequence                 |
|--------------------------------------------------------------------------|---------------|--------------------------|
| Rp49 positive control for H3K4me3 <sup>33</sup>                          | rp49 F        | cggatcgatatgctaagctgt    |
|                                                                          | rp49 R        | gcgcttgttcgatccgta       |
| 18S positive control for H3K9me3 <sup>32</sup>                           | 18S F         | tttcatgcttgggattgtga     |
|                                                                          | 18S R         | gtacaaagggcagggacgta     |
| <i>Ultrabithorax (Ubx)</i> positive control for<br>H3K9me3 <sup>34</sup> | Ubx F         | gaggcctgttcaaagtacgagt   |
|                                                                          | Ubx R         | ggaaaccaattcgtgtgaaatc   |
| Bari-CyP12a4                                                             | Bari-CyP-Fw   | gcattgatcaacttgccaaa     |
|                                                                          | Bari-CyP-Rv   | acttgctgcacaagcaactg     |
| Bari-Ppcs                                                                | Bari-Ppcs-Fw  | attcaggcaaatcggacaa      |
|                                                                          | Bari-Ppcs-Rv  | tggctcaatggtatcacaaca    |
| Bari-Jheh2                                                               | Bari-Jheh2 Fw | aacacgcggagcccttaata     |
|                                                                          | Bari-Jheh2 Rv | atttcaggcaaatcggacaa     |
| Bari-Jheh3                                                               | Bari-Jheh3 Fw | caactgtttgtgacccatgc     |
|                                                                          | Bari-Jheh3 Rv | tgtttgtaattgaccgcaaa     |
| Bari-Absent                                                              | Bari-Jheh2 Fw | aacacgcggagcccttaata     |
|                                                                          | Bari-Jheh3 Rv | tgtttgtaattgaccgcaaa     |
| Jheh1 5'                                                                 | Jheh1_Fw      | cagtgacacccatctgttccta   |
|                                                                          | Jheh1-Rv      | tatcatcatgagcgtcgaaaac   |
| Jheh2 5'                                                                 | Jheh2-Fw      | gataaggttccttcaatgttggac |
|                                                                          | Jheh2-Rv      | gcataaacacacaatggcgaac   |
| Jheh3 5'                                                                 | Jheh3-Fw      | aaagccgcttaagaactgactg   |
|                                                                          | Jheh3-Rv      | atagccagcgctatctaaacga   |

Supplementary Table S3. p-values for control genes RpL32, 18SrRNA and Ubx comparing the enrichment level of the corresponding histone marks H3K4me3, H3K9me3 and H3K27me3 respectively, sort by condition. Corresponding to Supplementary Figure1 A), B) and C) respectively.

| Histone comparison   | Condition  | Gene    | р-       |
|----------------------|------------|---------|----------|
|                      |            |         | value    |
| H3K4me3 vs. H3K9me3  | non-stress | RpL32   | 0.0001   |
| H3K4me3 vs. H3K27me3 | non-stress | RpL32   | 0.0001   |
| H3K9me3 vs. H3K27me3 | non-stress | RpL32   | 0.2507   |
| H3K4me3 vs. H3K9me3  | stress     | RpL32   | < 0.0001 |
| H3K4me3 vs. H3K27me3 | stress     | RpL32   | 0.0001   |
| H3K9me3 vs. H3K27me3 | stress     | RpL32   | 0.3556   |
| H3K4me3 vs. H3K9me3  | non-stress | 18SrRNA | < 0.0001 |
| H3K4me3 vs. H3K27me3 | non-stress | 18SrRNA | < 0.0001 |
| H3K9me3 vs. H3K27me3 | non-stress | 18SrRNA | 0.2148   |
| H3K4me3 vs. H3K9me3  | stress     | 18SrRNA | < 0.0001 |
| H3K4me3 vs. H3K27me3 | stress     | 18SrRNA | < 0.0001 |
| H3K9me3 vs. H3K27me3 | stress     | 18SrRNA | 0.7728   |
| H3K4me3 vs. H3K9me3  | non-stress | Ubx     | 0.6275   |
| H3K4me3 vs. H3K27me3 | non-stress | Ubx     | < 0.0001 |
| H3K9me3 vs. H3K27me3 | non-stress | Ubx     | < 0.0001 |
| H3K4me3 vs. H3K9me3  | stress     | Ubx     | 0.5637   |
| H3K4me3 vs. H3K27me3 | stress     | Ubx     | < 0.0001 |
| H3K9me3 vs. H3K27me3 | stress     | Ubx     | < 0.0001 |

## **Supplementary Figures**

#### Supplementary Figure S1. Testing immunoprecipitations and antibodies.

Enrichment of the histone marks relative to the input of each strain for each background under nonstress and stress conditions. Each panel represents a different genomic region well known to enrich a different histone mark: A) *18SrRNA* enriched in H3K9me3 and H3K27me3, B) *RpL32* enriched for H3K4me3 and C) *Ubx* enriched for H3K27me3.

