
Editorial Note: this manuscript has been previously reviewed at another journal that is not operating 

a transparent peer review scheme. This document only contains reviewer comments and rebuttal 

letters for versions considered at Nature Communications. 

 

Reviewer #1 (Remarks to the Author):  

 

Yao et al present a revised manuscript to address concerns in the first round of review.  

 

A very helpful addition is Figure 1. While my own taste would have some of those numbers changed 

(e.g., rather than total number of associations which most don’t care about, the number of physical 

loci tagged by LD-independent sentinel SNPs), this is helpful to focus on what’s potentially the 

reported outputs from the paper.  

 

The challenge I have on this read is that each of the presented analyses don’t feel “tight” or 

“conclusive” (save the initial discovery, minus the relatively large number of trans-pQTLs) around 

any given story. Each individual unit has some challenges that aren’t closed up:  

 

- “enrichment with eQTLs” — this represents enrichment, not formal co-localization. Chance overlap 

is very likely to happen, so the numbers there aren’t surprising nor to they tell us about specific 

pathways or biology  

- “functional, reg, clinical enrichments - enrichment of CAD pathways for a preselected set of 

proteins screened for CHD relevance is circular. The chance overlap with coding variants isn’t 

explored deeply - the work on page 5 is really high level or confirmatory reporting.  

 

- “MR” - done with trans-QTLs which is a difficult set to explore. The genes highlighted and 

connection to epidemiological correlation is not crisp. The genes that are implicated here don’t have 

an obvious, biological story.  

- “pQTL overlap with CHD SNP” - again, we care about co-localized results, not chance overlaps. 

You’d expect some of this. No “tight” inference directed to a biological inference.  

 

The above issues are placed in a context of a /large/ number of trans-pQTL discoveries (more 

numerous than cis-pQTLs), which even after a more stringent testing correction still makes me 

concerned.  

 



This is not to say that there aren’t potential good things in the paper - the discovery and efforts to 

replicate are laudable; multiple studies with different platforms for assessment of variation. It is 

definitely believable that there exists pQTLs in there.  

 

# Comments.  

 

1. power calcs. Given the size of the replication study, and the given effect sizes (which are likely 

winner’s cursed, which is central to the authors’ contention), it should be knowable the extent to 

which replication was expected. Does the given number match these expectations, exceed, or are 

less than?  

 

The author’s response here — that lower replication is due to loss of power from either (i) effect 

sizes, or (ii) sample size are essentially the ‘same coin’ by and large. But that is knowable, to some 

extent, given the replication attempt they did employ. Does the % yield make sense?  

 

If predicted power was high for all attempts, then it begs the question if the criteria for significance 

is not stringent enough, or that there's something else that is not able to be understood.  

 

2. eQTL/pQTL overlap.  

 

2a. Because it now seems clear that most variants (at least, associated with GWAS are eQTLs), are 

eQTLs, the ‘enrichment’ of eQTLs around pQTLs is a much less interesting observation.  

 

A more interesting, useful question - to what extent do pQTLs /co-localize/ their statistical 

association with pQTLs?  

 

In the previous review, I asked the authors to perform co-localization experiments. They state that 

5,239 (~40% of cis-pQTLs) ‘co-localized’ with an eQTL. I’m looking at that table, and it’s not clear 

where, if any, formal “co-localization” analysis has been performed. See existing tools: COLOC, 

eCaviar, etc. Perhaps this is most interesting to do with genome-wide significant pQTLs.  

 

2b. In addition, here you are also potentially implicating a specific gene. So the question is not just of 

statistical co-localization, but also that the same gene is implicated. At face, the fact that only 



11/114 of the sentinel pQTL variants ping the same gene probably begs some further scrutiny. If the 

tissues are approximately the same assayed, shouldn’t this be higher? What other ways in which a 

pQTL could be biologically bona-fide, yet not generate an eQTL signature in the appropriate tissue?  

 

2c. for the 11/14, there seems like a majority are directionally consistency (I read: 8/11), but 

shouldn’t this be substantially higher/near perfect? That is, unless the pQTLs and eQTLs aren’t co-

localized. Let’s say all of these 11 co-localized. Can the authors describe a model for which this 

inconsistency of directionality makes sense?  

 

3. CHD overlaps (comments 6a).  

 

3a. The authors state that the “localization” was performed “by direct matching” which isn’t exactly 

what one wants here. As above, how many of the pQTLs actually co-localize with CHD associations? 

COLOC and other statistical tools here will tell you if the distribution of associations signals for both 

scans “line up”, implicating the same causal variant. The implications is that two associations 

partially overlap, but don’t implicate the same causal variant and/or gene, which could be 

coincidental.  

 

4. trans-QTL effects. The number of effects here — measured as a function of the ’sentinel’ loci - is 

2:1 that of the cis-eQTLs. this doesn’t feel right. Empirically, at least in gene expression space, we 

find far more cis-eQTL effects than trans-eQTLs. I have to believe that a similar intuition applies here. 

Put another way: not all proteins measured have a detectable cis-pQTLs (at most 50%, 32 of / 71), 

which to me is surprising.  

 

5. The Causal inference / MR (+ epidemiological correlation) experiments, linking pQTLs to gene loci  

 

5a. These results (based on trans-QTLs which are undoubtedly amongst the most likely to have 

additional, pleiotropic effects) are perhaps the least optimal to include in an MR experiment for an 

outcome. intrinsically, these are the hardest to believe on face.  

 

5b. An example as stated earlier is the CELSR2, APOB relationship. surely this must reflect  

 

5b. But then Figure 5 attempts to put together the MR effect sizes with the associated hazard in FHS. 

The story to take back from this plot is challenging. You have a ton of things that are null (mostly the 



Epi HRs) but then opposite direction (PON1, BCHE, sRAGE). The positive controls are certainly 

working (LPA), and maybe there a signal there - but it looks very noisy.  

 

# minor comments  

- how were the statistical threshold determined? 1.2E-7 for cis pQTLs? the 7E-10 I savvy, given the 

back-of-envelope I suggested to the authors. But in the methods, it should be clear exactly how they 

arrived at the threshold they did.  

 

 

Reviewer #2 (Remarks to the Author):  

 

Yao et al. have much clarified and improved the manuscript, particularly emphasising the novel 

results, and those that had replication. It is now suitable for publication, in my opinion. The 

integration of the pQTL data with eQTLs in the NCBI database will be very useful for researchers to 

browse and to take the novel findings forward, and in my opinion is the main strength of the study. I 

look forward to seeing the published version.  

 



Detailed Response 

 

Reviewer #1 (Reviewer’s comments are presented in black, Authors’ replies are in blue): 

Yao et al present a revised manuscript to address concerns in the first round of review. 

A very helpful addition is Figure 1. While my own taste would have some of those numbers changed (e.g., 
rather than total number of associations which most don’t care about, the number of physical loci tagged 
by LD-independent sentinel SNPs), this is helpful to focus on what’s potentially the reported outputs from 
the paper. 

The challenge I have on this read is that each of the presented analyses don’t feel “tight” or “conclusive” 
(save the initial discovery, minus the relatively large number of trans-pQTLs) around any given story. Each 
individual unit has some challenges that aren’t closed up: 

- “enrichment with eQTLs” — this represents enrichment, not formal co-localization. Chance overlap is 
very likely to happen, so the numbers there aren’t surprising nor to they tell us about specific pathways 
or biology 

- “functional, reg, clinical enrichments - enrichment of CAD pathways for a preselected set of proteins 
screened for CHD relevance is circular. The chance overlap with coding variants isn’t explored deeply - the 
work on page 5 is really high level or confirmatory reporting. 

- “MR” - done with trans-QTLs which is a difficult set to explore. The genes highlighted and connection to 
epidemiological correlation is not crisp. The genes that are implicated here don’t have an obvious, 
biological story. 

- “pQTL overlap with CHD SNP” - again, we care about co-localized results, not chance overlaps. You’d 
expect some of this. No “tight” inference directed to a biological inference. 

The above issues are placed in a context of a /large/ number of trans-pQTL discoveries (more numerous 
than cis-pQTLs), which even after a more stringent testing correction still makes me concerned. 

This is not to say that there aren’t potential good things in the paper - the discovery and efforts to replicate 
are laudable; multiple studies with different platforms for assessment of variation. It is definitely 
believable that there exists pQTLs in there.  

Reply:  

We thank the reviewer for the complimentary comments and useful suggestions for further improvement. 
As detailed below, we have made numerous revisions in response to the reviewer’s suggestions: 

1. Based on reviewers’ comments, we have raised the SNP imputation quality r2 from 0.3 to 0.5. Our 
number of pQTL variants decreased from 17,893 SNPs associated with 60 proteins to 16,602 SNPs for 
57 proteins. Three proteins (Adipsin, IGFBP3, SDF1) were removed, because of low pQTL variant 



imputation quality. The number of sentinel pQTL variants (representing non-redundant genetic loci) 
decreased from 114 to 103. We have revised multiple sections of the manuscript accordingly. 
 

“pQTL Mapping: Using Bonferroni correction for multiple testing, we identified 16,602 pQTL 
variants (with Reference SNP cluster IDs) associated with 57 proteins (Table S3), including 11,806 
cis-pQTL variants (at P<1.25E-7) for 40 proteins and 4,796 trans-pQTL variants (at P<7.04E-10) for 
44 proteins; 27 proteins had both cis- and trans-pQTL variants. Our study had 80% power to detect 
a cis- or trans-pQTL variant that explained ≥0.6% of variance in protein levels (Table S4). Pruning 
of the pQTL variants (linkage disequilibrium [LD] r2<0.1) yielded 372 non-redundant variants (Table 
S5) representing 103 sentinel loci (the variant with the lowest pQTL-protein association P value, 
Table S6) consisting of 40 sentinel cis-pQTLs (Figure 2a) and 63 sentinel trans-pQTLs (Figure 2b). 
Among the 16,602 pQTL variants, 341 were coding variants associated with 19 proteins (Table S7) 
and 33 were rare variants (minor allele frequency <1% genotyped on Exome Chip) associated with 
17 proteins (Table S8). In addition, 1,689 insertion/deletion polymorphisms were identified for 55 
proteins (Table S9).” 
 
“Integrating pQTL Variants with CHD-associated SNPs: We integrated our pQTL variants with 
2,213 CHD-related SNPs from the CARDIoGRAMplusC4D Consortium GWAS1-3. A total of 210 pQTL 
variants (16 non-redundant variants at LD r2<0.1 representing 9 proteins; Table S13) exactly 
matched SNPs associated with CHD from prior GWAS. Table 1 displays the sentinel pQTL variants 
that coincided with CHD-related GWAS SNPs and the corresponding protein at each genetic locus. 
The proteins with pQTL variants coinciding with CHD-associated SNPs included LPA, APOB, B2M, 
CRP, GMP140, GRN, MCAM, sGP130, and sICAM1. It is important to note, however, that these 
results do not indicate a causal relationship between the pQTL-associated protein and CHD.” 

“Trans-pQTL variants and CHD: Of the nine proteins with pQTL variants that coincided with CHD-
associated SNPs, eight had pQTLs with trans effects (54 non-redundant trans-pQTL variants in 
total) and 69% of these trans-pQTL variants were also associated with the expression of nearby 
genes (cis-eGenes), i.e. these trans-pQTL variants were also cis-eQTL variants associated with the 
expression of nearby cis-eGenes. Based on these findings, we hypothesized that trans-pQTL 
variants may regulate circulating protein levels through cis-effects on the expression of nearby cis-
eGenes (Figure S3). To test this hypothesis, we employed Mendelian randomization (MR)16 using 
the expression of all genes within 1 Mb from the trans-pQTL locus  as the exposure, cis-eQTLs 
associated with these genes (from the FHS whole blood gene expression database20) as 
instrumental variables, and circulating protein levels as the outcome. We found that the effects of 
trans-pQTLs on circulating protein levels were causally regulated by expression of cis-eGenes for 
all eight proteins (Table S14). To extend these findings to other CHD-related tissues, we applied 
the same analyses to GTEx25 whole blood, liver, and heart eQTLs. For two of the proteins (APOB 
and GRN), there was additional experimental evidence in support of our results through 
interrogation of GTEx26 whole blood eQTLs (Table S14). Moreover, we found significant causal 
effects of PSRC1 expression on APOB levels (in liver), PSRC1 on GRN levels (in artery), and ABO on 
GMP140 levels (in heart atrial appendage).” 



“Causal Testing: We applied MR testing using pruned cis-pQTL variants (LD r2<0.1) as instrumental 
variable for circulating protein levels in order to identify proteins that were causal for CHD. MR 
testing was conducted for all 40 proteins with cis-pQTLs and causally implicated LPA, BCHE, PON1, 
MCAM, MPO, and cystatin C (P<0.05; Table S15). Causal testing for LPA and BCHE remained 
statistically significant after adjusting for multiple testing (P<0.05/40). “ 

“Protein Associations with Clinical Outcomes: For the 13 proteins with pQTL variants that either 
coincided with CHD GWAS SNPs (9 proteins) or tested positive by MR (6 proteins) at P<0.05, we 
sought to determine the longitudinal associations of circulating levels of these proteins with a) 
major CHD events (recognized myocardial infarction or CHD death; n=213 events) and b) CVD 
death (fatal CHD or death due to stroke, peripheral arterial disease, heart failure, or other CVD 
causes; n=199 events) with a median follow-up of 14.3 years (25th percentile 11.4, 75th percentile 
15.2 years) among 3,520 FHS participants 50 years of age or older. Ten of the 12 proteins were 
nominally associated (P<0.05) with incident CHD and/or CVD death (Table 2), and eight proteins 
remained statistically significant after adjusting for multiple testing (P<0.05/13). Two of the six 
proteins (PON1 and cystatin C) that tested causal for CHD by MR at P<0.05 were also associated 
with long-term CHD/CVD outcomes at P<0.0038. The protein effect sizes on CHD predicted from 
MR were directionally consistent with the observed prospective protein-CHD associations in all 
cases except for PON1 (Figure 5) “ 

2. Figure 1: We have clarified our flow diagram by stating the total number of physical loci identified: 
“GWAS of 71 proteins yielded 16,602 pQTL variants representing 103 loci for 57 proteins.” Please see 
revised Figure 1 below:   

 
 



3. Enrichment with eQTLs: We have replaced the “Enrichment of pQTLs with eQTLs” section with 
“Colocalization of pQTLs and eQTLs”. Please refer to our new analyses and our reply to Comment 2. 

4. Functional, regulatory, and clinical enrichments: We conducted pathway enrichment for each protein 
using the annotated genes corresponding to its pQTL variants. We did not conduct pathways 
enrichment using the preselected proteins because they represent a biased set of proteins with a high 
prior probability of association with cardiovascular disease. 

5. MR: We did not use trans-QTL variants as instrumental variables in any MR analyses. We only used 
cis-eQTL variants or cis-pQTL variants. Please refer to our detailed reply to Comment 5. 

6. pQTL overlap with CHD SNPs: We have conducted a new colocalization analysis of pQTLs and CHD 
GWAS SNPs. Please refer to our reply to Comment 3.  

 

Reviewer 1 Comments. 

Comment 1. Power calcs. Given the size of the replication study, and the given effect sizes (which are 
likely winner’s cursed, which is central to the authors’ contention), it should be knowable the extent to 
which replication was expected. Does the given number match these expectations, exceed, or are less 
than? The author’s response here — that lower replication is due to loss of power from either (i) effect 
sizes, or (ii) sample size are essentially the ‘same coin’ by and large. But that is knowable, to some extent, 
given the replication attempt they did employ. Does the % yield make sense?If predicted power was high 
for all attempts, then it begs the question if the criteria for significance is not stringent enough, or that 
there's something else that is not able to be understood.  

Reply: We thank the reviewer for this suggestion. We have performed 1000 re-samplings of 3300 FHS 
participants to evaluate our power for replication. We predicted that there would be 80 sentinel pQTL-
protein associations with 80% power to replicate. We found that 54 (67%) of them replicated in the 
external INTERVAL cohort. The failure of proteins to replicate may be due proteomic platform differences 
between discovery and replication studies. 

We have modified the Methods section as follows: 

“Power Calculation: For an estimate of empirical power in the replication stage (sample size of 
approximately 3300 in INTERVAL), we performed pQTL analysis with 1,000 resamplings of 3,300 
FHS participants. Half of them were unrelated and the rest were randomly sampled. We counted 
the number of results with P<0.05/n in the 1,000 resamplings, where n is the number of pQTL 
variants that were tested for replication in INTERVAL.” 

We have modified the Results section as follow: 

“External Replication: Among our 103 sentinel pQTLs linked to 57 proteins, 96 sentinel pQTLs (36 
cis- and 60 trans-pQTLs) associated with 51 proteins were not previously reported in GWAS. 
Therefore, we attempted to replicate all 103 sentinel pQTLs in the INTERVAL15 (N=3301) and the 
KORA11 studies (N=997). Among our 57 proteins linked to 103 sentinel pQTLs, 45 proteins 
(associated with 32 sentinel cis-pQTLs and 56 sentinel trans-pQTLs) were independently measured 



in the INTERVAL study. Of the 32 sentinel cis-pQTL-protein pairs (for 32 proteins) from the FHS, 21 
(66%) replicated in INTERVAL at P<5.7E-4 (alpha level of 0.05 after Bonferroni correction for 88 
tests; 0.05/88). Of the 56 sentinel trans-pQTL-protein pairs (for 37 proteins) from the FHS, 33 (59%) 
trans-pQTL-protein pairs (for 22 proteins) replicated in INTERVAL (P<5.7E-4; Table S10). One 
additional trans-pQTL-protein pair replicated in KORA. Four proteins (associated with four cis-
pQTLs and one trans-pQTL) that were not measured or did not replicate in INTERVAL or KORA 
replicated based on prior GWAS evidence (Table S10). The remaining 10 proteins without any 
available external source of replication were associated with six cis- and six trans-pQTLs (Table 
S10). In total, 24 (71%) sentinel cis-pQTLs and 35 (61%) sentinel trans-pQTLs replicated (at 
Bonferroni corrected P<0.05) with 100% consistent direction of effect compared with the FHS 
discovery results.” 
“Resampling analysis: Based on 1,000 re-samplings of 3,300 FHS participants in the discovery 
sample, 80 pQTL-protein associations (31 cis and 49 trans) yielded P<5.7E-4 (alpha level of 0.05 
after Bonferroni correction for multiple testing; 0.05/88) in ≥80% of samplings and thus were 
considered likely to replicate in a GWAS sample size of 3,300 individuals from INTERVA (Table S10). 
Among the 80 pQTL-protein associations that were considered likely to replicate, 54 (68%) 
replicated in INTERVAL. The discrepancy between predicted and observed replication may be due 
in part to proteomic platform differences between the discovery and replication studies.” 

 
Comment 2. eQTL/pQTL overlap.  

2a. Because it now seems clear that most variants (at least, associated with GWAS are eQTLs), are eQTLs, 
the ‘enrichment’ of eQTLs around pQTLs is a much less interesting observation. A more interesting, useful 
question - to what extent do pQTLs /co-localize/ their statistical association with pQTLs? In the previous 
review, I asked the authors to perform co-localization experiments. They state that 5,239 (~40% of cis-
pQTLs) ‘co-localized’ with an eQTL. I’m looking at that table, and it’s not clear where, if any, formal “co-
localization” analysis has been performed. See existing tools: COLOC, eCaviar, etc. Perhaps this is most 
interesting to do with genome-wide significant pQTLs. 

Reply: We thank the reviewer for this suggestion. We have conducted de novo colocalization analyses 
using the COLOC package as the reviewer suggested. Among the 33 proteins that have both cis-pQTLs and 
cis-eQTLs, 19 proteins were found to have >75% probability of sharing a causal SNP.  

We have modified the Statistical Methods section as follows: 

“Colocalization analysis: For the colocalization analyses, we first pruned our pQTL variants, 
retaining only those with LD r2<0.1. Using FHS eQTL results20, we then identified transcripts that 
were also associated with the same pQTL variant (i.e. pQTL variant = eQTL variant). To estimate 
the probability that cis-eQTLs and cis-pQTLs residing in the same genomic location shared the 
same causal variant, we conducted a Bayesian test for colocalization of all eQTL-pQTL pairs using 
the coloc package in R21. This method requires specifying a prior probability for a SNP being 
associated with gene expression only (p1), protein level only (p2), and with both traits (p12). We 



applied the default P values, with p1 and p2 set to 1E-4, assuming that 1 in 10,000 SNPs are causal 
for either trait and p12 was set to 1E-5. We also used p1 and p2 values based on the number of 
eQTL and pQTL variants observed in our data. For the eQTL analysis, we detected 19,613 non-
redundant eSNPs among 4,285,456 total cis-SNPs, indicating that the probability a SNP is a causal 
eSNP is 4.6E-3. This probability corresponds to the sum p1 + p12. For the pQTL analysis, we 
detected 254 non-redundant pQTL variants among 440,409 total cis-SNPs, indicating that the 
probability that a SNP is a causal pQTL variant is 5.7E-4. This probability corresponds to the sum 
p2 + p12. p12 was set to 0.003 corresponding to a probability of 75% that a causal eSNP is also a 
causal pQTL variant, an approach that has been shown to represent the best choice77.” 

We modified the Results section as follows: 

“Colocalization of pQTLs and eQTLs: Among the 372 non-redundant pQTL variants, we identified 
190 unique variants (associated with 53 proteins) that were also eQTL variants (genetic variants 
associated with whole blood gene expression levels in FHS participants20) at FDR<0.05. These 190 
eQTL variants consisted of 188 cis-eQTL variants and 27 trans-eQTL variants (Table S11), 
suggesting that a substantial number of causal eQTL variants may also be causal pQTLs. To test 
this hypothesis, we conducted a Bayesian test of colocalization of pruned cis-pQTL variants (LD 
r2<0.1) using the coloc package in R21 (see Methods). A total of 117 of 254 unique cis-pQTL variants 
(associated with 33 proteins) were tested for colocalization with gene expression for 136 
transcripts residing within 1 Mb of the cis-pQTL variant (FDR <0.05). Using transcripts and proteins 
associated with a shared SNP, we conducted a colocalization test for each protein to determine 
the probability that the two association signals were due to the same causal variant. The prior 
probabilities for a SNP being associated with gene expression only (p1), protein level only (p2), or 
with both traits (p12) were based on the number of eSNPs and pQTL variants observed in our data 
(see Methods). The value for p12 was set to 75%, i.e. the probability that a causal eSNP is a causal 
pQTL variant. For 19 out of 33 proteins that were associated with both cis-pQTL variants and eQTL 
variants, we observed a probability >75% that the pQTL variants colocalized with the eQTL variants 
(Table S12). We generated colocalization results for 19 proteins by applying default P values 
(p1=1E-4, p2=1E-4, p12=1E-5) in the coloc package assuming that 1 in 10,000 SNPs is causal for 
either trait.” 

Table S12.  Proteins with >75% probability of co-localization of pQTL variants with eQTLs variants (PP.H4 
value >0.75 represents co-localization of pQTL and eQTL causal variants) 

Protein #SNPs PP.H0 PP.H1 PP.H2 PP.H3 PP.H4 
GMP140 7 2.32E-196 7.06E-85 3.50E-115 0 1 
ADM 1 1.41E-54 7.14E-14 2.10E-44 0 1 
KLKB1 2 1.63E-130 1.30E-20 1.34E-113 1.91E-13 1 
sGP130 1 2.12E-29 1.07E-12 2.10E-20 0 1 
COL18A1 1 5.32E-80 8.33E-12 6.81E-72 0 1 
FGG 1 2.83E-16 3.03E-10 9.99E-10 0 1 
AGP1 2 2.63E-20 1.02E-11 2.75E-12 1.19E-08 1 



Ceruloplasmin 1 4.61E-19 1.20E-14 4.10E-08 0 1 
A1M 1 9.25E-17 5.44E-08 1.81E-12 0 1 
EFEMP1 3 1.69E-35 2.52E-12 7.16E-27 6.54E-08 1 
GP5 1 7.41E-18 8.20E-14 9.64E-08 0 1 
GRN 1 2.51E-17 4.38E-15 6.13E-06 0 0.999994 
CD40L 1 2.79E-09 2.32E-07 1.28E-05 0 0.999987 
NCAM 1 1.85E-11 1.22E-09 1.62E-05 0 0.999984 
MMP9 1 6.67E-19 2.29E-17 3.11E-05 0 0.999969 
MCAM 1 3.89E-07 3.38E-06 0.000122677 0 0.999874 
MMP8 1 2.77E-17 3.64E-17 0.000812252 0 0.999188 
CXCL16 2 9.00E-15 2.74E-10 3.92E-06 0.11847 0.881526 
UCMGP 4 6.37E-45 5.61E-39 2.66E-07 0.233573 0.766426 

PP.H0 (no causal variant), PP.H1 (causal variant for gene expression only), PP.H2 (causal variant for protein 
only), PP.H3 (two distinct causal variants), PP.H4 (one common causal variant) 

2b. In addition, here you are also potentially implicating a specific gene. So the question is not just of 
statistical co-localization, but also that the same gene is implicated. At face, the fact that only 11/114 of 
the sentinel pQTL variants ping the same gene probably begs some further scrutiny. If the tissues are 
approximately the same assayed, shouldn’t this be higher? What other ways in which a pQTL could be 
biologically bona-fide, yet not generate an eQTL signature in the appropriate tissue? 

Reply: Although pQTLs and eQTLs were both identified in FHS participants, gene expression and protein 
expression were measured at different time points, on average 6-7 years apart, as described in the 
Methods section. To avoid misinterpretation, we have replaced the “Enrichment of pQTLs with eQTLs” 
section with “Colocalization of pQTL variants and eQTL variants”. Please see the reply to Comment 2a for 
details. 

2c. For the 11/14, there seems like a majority are directionally consistency (I read: 8/11), but shouldn’t 
this be substantially higher/near perfect? That is, unless the pQTLs and eQTLs aren’t co-localized. Let’s say 
all of these 11 co-localized. Can the authors describe a model for which this inconsistency of directionality 
makes sense? 

Reply: Because gene expression and protein expression were measured at different time point, we are 
reluctant to compare directional consistency between gene expression and plasma protein levels. As the 
reviewer suggested, we have replaced the “Enrichment of pQTLs with eQTLs” section with “Colocalization 
of pQTL variants and eQTL variants”. Please see our reply to Comment 2a for details. 

Comment 3. CHD overlaps (comments 6a). 

3a. The authors state that the “localization” was performed “by direct matching” which isn’t exactly what 
one wants here. As above, how many of the pQTLs actually co-localize with CHD associations? COLOC and 
other statistical tools here will tell you if the distribution of associations signals for both scans “line up”, 
implicating the same causal variant. The implications is that two associations partially overlap, but don’t 
implicate the same causal variant and/or gene, which could be coincidental. 



Reply: We thank the reviewer for this suggestion. Colocalization analysis can only be applied to cis-pQTL 
variants that overlap with GWAS SNPs for CHD (at P<5e-8). The only protein eligible for colocalization 
analysis using cis-pQTL variants was LPA. The co-localization result for LPA was highly significant, as shown 
below. Note that for all other proteins with pQTL variants that coincided with GWAS SNPs for CHD, the 
pQTL variants were exclusively trans-pQTLs and colocalization could not be performed. Given the scarcity 
of proteins eligible for co-localization analysis, we decided to not present the results for LPA (for which 
we instead share the more informative MR results). The colocalization results for LPA are shown below: 

Protein #SNPs PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
LPA 5 1.03E-182 2.95E-36 1.15E-150 7.25E-13 1 

 

4. trans-QTL effects. The number of effects here — measured as a function of the ’sentinel’ loci - is 2:1 
that of the cis-eQTLs. this doesn’t feel right. Empirically, at least in gene expression space, we find far 
more cis-eQTL effects than trans-eQTLs. I have to believe that a similar intuition applies here. Put another 
way: not all proteins measured have a detectable cis-pQTLs (at most 50%, 32 of / 71), which to me is 
surprising.  

Reply: The reviewer is comparing cis-eQTLs with cis-pQTLs, but SNP effects on gene expression may be 
quite different from those on protein expression. We found that trans-pQTL variants can regulate remote 
proteins through the expression of nearby cis-eGenes (Please refer to the “Trans-pQTLs and CHD” section 
in manuscript for details). Therefore, it may not be surprising that we observed fewer cis effects than trans 
effect. To address this further, we checked on the cis vs. trans associations reported in the INTERVERAL 
study (https://www.biorxiv.org/content/early/2017/05/05/134551), which assessed pQTL variants for 
~3000 proteins. We discovered that they had very similar results to ours. They found 1478 proteins to 
have pQTLs. Among them, 374 (25%) proteins had cis-pQTLs only, 925 (63%) proteins had trans-pQTLs 
only, and 179 (12%) proteins had both cis- and trans-pQTLs. Therefore, we concluded that our cis-to-trans 
ratio, while different from that for eQTLs, is consistent with that from the INTERVAL study.  

5. The Causal inference / MR (+ epidemiological correlation) experiments, linking pQTLs to gene loci 

5a. These results (based on trans-QTLs which are undoubtedly amongst the most likely to have additional, 
pleiotropic effects) are perhaps the least optimal to include in an MR experiment for an outcome. 
intrinsically, these are the hardest to believe on face. 

Reply: We agree with the reviewer that trans-QTLs are more likely to violate the assumptions of MR 
testing, due to potential pleiotropic effects. The same concern had been raised in the last round of review. 
Therefore, in the submitted manuscript, we updated all MR analyses using only cis-pQTLs as instrumental 
variables for each protein. In the current manuscript, we further modified the Methods and Results 
sections to emphasize this information more clearly. 

We have modified the Statistical Methods section as follows: 



“Mendelian randomization: Leveraging the cis-pQTL variants identified in the current study, we 
used a two-sample MR approach to test for putatively causal associations between plasma 
proteins and CHD risk. Summary statistics for pQTL-CHD associations were from large meta-
analyses of CARDIOGRAMplusC4D1,78. Pruned cis-pQTLs (LD r2<0.1) for each protein were used as 
instrumental variables (IVs) for the corresponding protein. For proteins with only one independent 
SNP after LD pruning, causal effect estimates were determined using the Wald ratio test, i.e., a 
ratio of effect per risk allele on CHD to effect per risk allele on inverse-rank normalized protein 
levels. When multiple non-redundant pQTLs were present, we conducted multi-SNP MR using 
inverse-variance weighted estimates, i.e., a meta-result when using non-redundant pQTLs as an 
IV. All MR analyses were conducted using MRbase.79 Causal effect estimates of proteins on CHD 
were interpreted per standard error increments in inverse-rank normalized protein level.” 

5b. An example as stated earlier is the CELSR2, APOB relationship. surely this must reflect  

Reply: As noted above in our reply to Comment 5a, we only used cis-pQTLs to explore the causal 
associations between protein levels and CHD. As we did not identify any cis-pQTL variants for APOB in the 
current study, we did not further explore the causal effect of circulating APOB levels on CHD.  However, 
we considered it interesting to understand the underlying regulatory mechanism between trans-pQTLs 
and protein levels. Therefore, we used cis-eQTL variants for genes residing within the 
CELSR2/SORT1/PSRC1 locus as instrumental variables to test if circulating levels of APOB are causally 
affected by cis-eGene expression. We found that PSRC1 in the CELSR2/SORT1/PSRC1 locus causally 
affected APOB protein levels.  Please refer to Figure S3 and the “Trans-pQTLs and CHD” section in the 
manuscript for details. 

5b. But then Figure 5 attempts to put together the MR effect sizes with the associated hazard in FHS. The 
story to take back from this plot is challenging. You have a ton of things that are null (mostly the Epi HRs) 
but then opposite direction (PON1, BCHE, sRAGE). The positive controls are certainly working (LPA), and 
maybe there a signal there - but it looks very noisy. 

Reply: We thank the reviewer for this comment. When interpreting the results from the MR test, we 
considered it worthwhile to compare the putative causal estimates with the observed protein-trait 
associations, taking advantage of the longitudinal cardiovascular disease outcome data available in the 
FHS. When there was an overlap between the confidence intervals of the MR odds ratio and the 
longitudinal protein-trait hazards ratio, we considered the putative causal estimate and the observed 
protein-trait estimate to be not significantly different. We therefore included both estimates in Figure 5 
to allow such comparisons.  When the 95% CI of the MR odds ratio and the longitudinal protein-trait 
hazards ratio did not overlap, the putative causal estimate and the observed protein-trait association 
estimate were considered to be significantly different. This was the case only for PON1, where the putative 
causal estimate and observed protein-trait estimate differed significantly. We further addressed a 
potential explanation for this unexpected difference in the “Novel Proteins and Pathways Implicated in 
CHD” section.  

# minor comments 



- how were the statistical threshold determined? 1.2E-7 for cis pQTLs? the 7E-10 I savvy, given the back-
of-envelope I suggested to the authors. But in the methods, it should be clear exactly how they arrived at 
the threshold they did. 

Reply: We thank the reviewer for this suggestion. We have revised the Methods section as follows:  

“We estimated that there were 440,409 potential cis SNP-protein pairs in total. 
Therefore, the Bonferroni-corrected P value for cis-pQTL variants was calculated as 
0.05/440,409 = 1.25E-7. The number of potential trans SNP-protein pairs was 8.5 million 
(SNPs) x 71 (proteins) - 440,409, yielding a Bonferroni corrected P value for trans-pQTLs 
of 7.04E-10.”  

 



Reviewer #1 (Remarks to the Author):  

 

The authors provide a details response to my concerns. I have additional comments here.  

 

1. Functional, reg, clinical enrichments.  

 

a. In my previous comments, I suggested that because the enrichment analysis based on the proteins 

pre-selected to related to CHD, any enrichment analysis performed here is to be expected.  

 

In looking more closely at this, it doesn’t appear that there’s any statistical quantification of 

enrichment at all here (w.r.t. gene enrichment). The use of the specific tool is simply as one for 

annotation. The annotations w.r.t. gene location are fine.  

 

As such, I’m not sure at all what the the last 3 sentences add,  or Figure 2. If the genes selected for 

protein quantification are already CVD related, then all of this is known, enrichments are not tested, 

so I don’t know wha any of this actually adds.  

 

b. It looks to me like the KEGG Pathway analysis involves taking all the genes in the interval around a 

pQTL — not sure this realistically adds anything at all.  

 

c. It also seems like most of the supplement (Figure S2) is a long list of these outputs — again, I’m 

not sure 100+ pages of these figures really add much and certainly aren’t particularly useful.  

 

2. Co-localization analysis. The authors respond by performing a colocalization analysis with coloc. 

The authors state that the first thing they did was “pruned the pQTL variants, retaining only those 

with LD r2 < 0.1”. I’m not entirely sure I understand what this means; the specifics for priors I 

understand (could be left in methods), but the overall approach as worded is unclear enough to me 

that I want to make sure this analysis is performed in the way that I expect it to.  

 

Can the author confirm the following general approach:  

 



a. Identify a locus that harbors a pQTL - e.g., at least one sentinel SNP that is the most strongly 

associated, surpassing a multiple-test correction. Note the targeted associated gene of interest.  

 

b. Determine if, for the given target gene, if there exists an associated eQTL for that gene in FHS 

(blood).  

 

c. If there exists at least one eQTL associated variant in the interval, perform co-localization, i.e.  

 

d. Take the regional association data for all variants (say, that spans the territory), for pQTL and eQTL 

association. This step should involve all SNP associations data, not pruned data (looking at Table S12, 

not sure what n(SNP) means — this can’t be the number of SNPs going into the coloc analysis?)  

 

e. Report PP1, PP2, PP3, PP4 data. Ideally, PP4/(PP3+PP4) suggests some localization, very high PP4 

values denote very strong association  

 

f. Visual (heuristic) conformation of localization could be achieved using locus zoom plots.  I suggest 

manually checking to eyeball the statistical values reported. If there are truly strong PP4 scores, the 

patterns of eQTL and pQTL associations OVERALL in the region will appear strongly correlated.  

 

g. To close the loop, one could then also perform formal conditional analysis on the lead SNP. If the 

sentinel SNP is not the same, but the signals statistically localize, conditional analysis on one (or the 

other) SNP in the pQTL or eQTL can would ablate each other’s signals, respectively. I would perhaps 

perform this only if one had a really interesting result and want to make sure the signals truly to map 

to the same signal (and, potentially, the same causal variant). This doesn’t need to be done on 

everything (or anything, if specific pQTL:eQTL pairs aren’t interesting enough to warrant it).  

 

3a. Section trans-pQTL and CHD: They authors present a model whereby trans-pQTLs act as they do, 

because they are cis-eQTLs. I would believe this to the extent that the cis-eQTL and trans pQTL data 

localize to the same variant.  

 

3b. Moreover, the interpretation of this is challenged somewhat, as the “cis-eQTL” gene that is 

emphasize for many of the results is PSRC1. For the biology here, it’s clear that there is far more 

compelling data supporting SORT1 as the relevant gene. Because the eQTL for PSRC1 and SORT1 

(and another gene in the region) are the same, I think it must be because PSRC1 is an eQTL in blood 



and Liver, whereas SORT1 is specific to the liver. I understand why the authors are presenting the 

data “just the facts” as they are, but they must agree that the biology is more compelling, and that 

there must be ways to avoid confusion about it — unless they wish to make a case that PSRC1 is 

another causal gene. (though that would require far more evidence that is presented here).  

 

It could be as simply as presenting the gene tag as “CELSR2/SORT1/PSRC1” in the places where 

relevant instead of PSRC1. But the tables, main text, etc. do not at all mention any of what’s listed in 

the rebuttal.  

 

## Minor comments  

 

- Abstract:  

a. “comprehensively mapping over 16,000 pQTL variants” — this is overstated. The total number of 

LD-independent sentinel associations is 2-2.5 orders of magnitude smaller than this.  

 

b. “coincided with CAD risk” is not a particularly helpful statement, and again overstates what was 

actually observed — that is, 1 of the 13 pQTLs statistically co-localized with an established CHD 

association, and it occurs at a known locus (LPA). “coincided” i.e., ‘coincidental’ association means a 

lack of mechanistic link, which you formally evaluate  

 

c. the last sentence also seems like a stretch. I appreciate the need from the authors to drum up 

their work; but given the score of what is in this report, this claim does not feel particularly well 

justified.  

 

- Figure S3. I felt like I had to stare at this figure for 3 minutes to understand it. This could be 

visualized in a much better way (with a causal graph, for example).  

 

- I felt like the discussion of genes at the end felt a little much -- some discrepancies certainly are 

worth talking about, but this all felt a little bit speculative since I wasn't fully convinced by the MR 

analyses at the end. If presented more as a resource than putting a ton of weight on causal discovery 

(i.e., calibrated a bit more conservatively), suggesting follow-up efforts that require more work 

and/or data to proven convincingly, I think this would read much more amicably (at least for my 

taste, for what that's worth).  

 



 



Detailed Response 

Reviewer #1 (Remarks to the Author): 

The authors provide a details response to my concerns. I have additional comments here. 

Reply: We thank the reviewer for the useful suggestions for improving our manuscript and have made 
further revisions in response to each of the reviewer’s suggestions as detailed below. 

1. Functional, reg, clinical enrichments.  
a. In my previous comments, I suggested that because the enrichment analysis based on the proteins 
pre-selected to related to CHD, any enrichment analysis performed here is to be expected. In looking 
more closely at this, it doesn’t appear that there’s any statistical quantification of enrichment at all here 
(w.r.t. gene enrichment). The use of the specific tool is simply as one for annotation. The annotations 
w.r.t. gene location are fine. As such, I’m not sure at all what the the last 3 sentences add, or Figure 2. If 
the genes selected for protein quantification are already CVD related, then all of this is known, 
enrichments are not tested, so I don’t know what any of this actually adds.  
b. It looks to me like the KEGG Pathway analysis involves taking all the genes in the interval around a 
pQTL — not sure this realistically adds anything at all. 
c. It also seems like most of the supplement (Figure S2) is a long list of these outputs — again, I’m not 
sure 100+ pages of these figures really add much and certainly aren’t particularly useful.  
 
Reply: We thank the reviewer for these suggestions. We agree that the KEGG pathway analysis did not 
add much high-value information. Therefore, we removed Figure S2 (100+ pages!). We have retained 
Figure 2 and the last 3 sentences in the “pQTL Functional and Regulatory Annotations” section. We 
believe that functional annotation clarifies previously known biological pathways and identifies several 
novel proteins as candidate CHD drug targets by linking their pQTLs to CHD risk pathways. We have 
revised the manuscript as follows: 
 

pQTL Functional and Regulatory Annotations: We explored the function annotation of each 
protein. Some of the genes coding for CHD-related proteins are linked to known CHD risk 
pathways via previous GWAS of lipids (APOB, LPA, ANGPTL3), coagulation pathways (GMP140), 
and systemic inflammation (sGP130, sICAM1) as shown in Figure 2. Many of the proteins that 
share genetic underpinnings with CHD are known drug targets (DrugBank database) 1, or are 
currently under development as such (e.g. ANGPTL3, LPA, sICAM1, and GMP140). Several 
proteins with pQTLs linked to CHD, however, are not known drug targets, particularly those from 
genetic loci not previously linked to CHD risk pathways (e.g. BCHE, CXCL16, MCAM, and sRAGE).  

 
2. Co-localization analysis. The authors respond by performing a colocalization analysis with coloc. The 
authors state that the first thing they did was “pruned the pQTL variants, retaining only those with LD r2 
< 0.1”. I’m not entirely sure I understand what this means; the specifics for priors I understand (could be 
left in methods), but the overall approach as worded is unclear enough to me that I want to make sure 
this analysis is performed in the way that I expect it to.  



Can the author confirm the following general approach:  
a. Identify a locus that harbors a pQTL - e.g., at least one sentinel SNP that is the most strongly 
associated, surpassing a multiple-test correction. Note the targeted associated gene of interest. 
b. Determine if, for the given target gene, if there exists an associated eQTL for that gene in FHS (blood). 
c. If there exists at least one eQTL associated variant in the interval, perform co-localization, i.e. 
d. Take the regional association data for all variants (say, that spans the territory), for pQTL and eQTL 
association. This step should involve all SNP associations data, not pruned data (looking at Table S12, 
not sure what n(SNP) means — this can’t be the number of SNPs going into the coloc analysis?) 
e. Report PP1, PP2, PP3, PP4 data. Ideally, PP4/(PP3+PP4) suggests some localization, very high PP4 
values denote very strong association 
f. Visual (heuristic) conformation of localization could be achieved using locus zoom plots. I suggest 
manually checking to eyeball the statistical values reported. If there are truly strong PP4 scores, the 
patterns of eQTL and pQTL associations OVERALL in the region will appear strongly correlated.  
g. To close the loop, one could then also perform formal conditional analysis on the lead SNP. If the 
sentinel SNP is not the same, but the signals statistically localize, conditional analysis on one (or the 
other) SNP in the pQTL or eQTL can would ablate each other’s signals, respectively. I would perhaps 
perform this only if one had a really interesting result and want to make sure the signals truly to map to 
the same signal (and, potentially, the same causal variant). This doesn’t need to be done on everything 
(or anything, if specific pQTL:eQTL pairs aren’t interesting enough to warrant it).  
 
Reply: We thank the reviewer for this excellent suggestion. We have revised the methods used in our 
colocalization analysis and now use all variants instead of only LD-pruned SNPs. 

Methods: 

Colocalization of cis-pQTLs and eQTLs: Colocalization analysis involved a two-step procedure. 
Using our cis-pQTL results, we first identified the locus that harbored the sentinel cis-pQTL 
variant for each protein. Using FHS eQTL results2, we then identified all genes within ±1 Mb that 
were also associated with the lead pQTL variant. Because eQTL analysis was based on 1000 
Genomes imputed SNPs, we used the lead pQTL variant from 1000 Genomes imputation when 
the lead pQTL variant was from Exome Chip. Second, because genes at the same locus are often 
correlated and regulated by the same cis SNPs, we only retained the gene with the lowest SNP-
gene association P value for each qualifying sentinel pQTL variant, which resulted in gene-
protein pairs showing association with a common SNP and able to be tested for colocalization.To 
estimate the probability that cis-eQTLs and cis-pQTLs residing in the same genomic location 
share the same causal variant, we conducted a Bayesian test for colocalization of all eQTL-pQTL 
pairs using the coloc package in R3. This method requires specifying a prior probability for a SNP 
being associated with gene expression only (p1), protein level only (p2), and with both traits 
(p12). We applied the default P values, with p1 and p2 set to 1E-4, assuming that 1 in 10,000 
SNPs are causal for either trait and p12 was set to 1E-5. We also used p1 and p2 values based on 
the number of eQTL and pQTL variants observed in our data. For the eQTL analysis, we detected 
19,613 non-redundant eSNPs among 4,285,456 total cis-SNPs, indicating that the probability of a 



SNP being a causal eSNP is 4.6E-3. This probability corresponds to the sum p1 + p12. For the 
pQTL analysis, we detected 254 non-redundant cis-pQTL variants among 440,409 total cis-SNPs, 
indicating that the probability that a SNP is a causal pQTL variant is 5.7E-4. This probability 
corresponds to the sum p2 + p12. p12 was set to 0.003 corresponding to a probability of 75% 
that a causal eSNP is also a causal pQTL variant, an approach that has been shown to represent 
the best choice4.” 

Results: 

Colocalization of pQTLs and eQTLs: Among the 372 non-redundant pQTL variants, we identified 
190 unique variants (associated with 53 proteins) that were also eQTL variants (genetic variants 
associated with whole blood gene expression levels in FHS participants2) at FDR<0.05. These 190 
eQTL variants consisted of 188 cis-eQTL variants and 27 trans-eQTL variants (Table S11), 
suggesting that a substantial number of pQTL variants may share causal variants with eQTLs. To 
test this hypothesis, we conducted a Bayesian test of colocalization of cis-pQTL variants using the 
coloc package in R3 (see Methods). Among the 40 sentinel cis-pQTL variants, 26 were associated 
with the expression of genes residing within 1 Mb (FDR <0.05), and these 26 unique lead SNP-
transcript-protein pairs to test for colocalization. Using all SNPs shared by transcripts and 
proteins, we conducted a colocalization test for each protein to determine the probability that 
the two association signals were due to the same causal variant. The prior probabilities for a SNP 
being associated with gene expression only (p1), protein level only (p2), or with both traits (p12) 
were based on the number of eSNPs and pQTL variants observed in our data (see Methods). The 
value for p12 was set to 75%, i.e. the probability that a causal eSNP is a causal pQTL variant.  For 
16 out of 26 proteins that were associated with both cis-pQTL variants and eQTL variants, we 
observed a probability >75% that the pQTL variants colocalized with the eQTL variants (Table 
S12). We observed similar colocalization results by applying default P values (p1=1E-4, p2=1E-4, 
p12=1E-5) in the coloc package assuming that 1 in 10,000 SNPs is causal for either trait. 

Table S12.  Proteins with >75% probability of colocalization of pQTL variants with eQTLs variants (PP.H4 
value >0.75 represents colocalization of pQTLs and eQTLs) 

Protein Target gene  SNPs PP.H0 PP.H1 PP.H2 PP.H3 PP.H4 
CXCL16 CXCL16 1 1.06E-76 3.82E-68 9.39E-13 0 1 
CD14 CD14 223 3.18E-80 8.72E-35 5.49E-49 0.001 0.999 
MCAM CBL 6 4.31E-09 3.09E-06 2.23E-06 0.001 0.999 
MMP9 MMP9 9 3.70E-18 0.0002646 2.44E-17 0.001 0.998 
MMP8 MMP8 1 2.07E-16 0.0050028 1.39E-17 0 0.995 
GRN HIGD1B 55 3.97E-17 3.41E-05 6.91E-15 0.006 0.994 
GDF15 PGPEP1 18 6.16E-70 5.09E-05 1.17E-67 0.009 0.991 
FGG PLRG1 49 5.05E-16 9.30E-09 5.59E-10 0.00995 0.990 
sGP130 IL6ST 63 1.17E-32 3.51E-23 4.39E-12 0.0128 0.987 
A1M ORM1 3 1.93E-35 4.62E-31 7.89E-07 0.0185 0.981 
COL18A1 COL18A1 106 2.77E-126 3.39E-117 2.41E-11 0.029 0.971 



AGP1 ORM1 7 6.93E-52 5.87E-44 5.02E-10 0.042 0.958 
sRAGE PBX2 6 7.95E-49 0.0024945 3.05E-47 0.095 0.902 
Cystatin C CST3 116 4.29E-71 1.62E-05 4.01E-67 0.152 0.848 
MPO SUPT4H1 567 2.48E-149 5.98E-138 7.97E-13 0.192 0.808 
ADM ADM 419 1.89E-28 1.54E-17 2.70E-12 0.220 0.780 
GP5 ATP13A3 89 4.87E-30 2.11E-19 8.12E-12 0.351 0.649 
UCMGP MGP 262 3.51E-61 7.61E-23 4.62E-39 0.999 5.89E-04 
sICAM1 ICAM3 9 8.25E-47 4.07E-34 2.03E-13 1.000 1.41E-05 
CLEC3B ZNF502 26 8.87E-79 6.69E-61 1.33E-18 1 1.11E-10 
C2 NCR3 178 1.60E-66 6.51E-41 2.45E-26 1 4.39E-17 
SAA1 HPS5 105 5.15E-154 1.80E-26 2.86E-128 1 1.61E-17 
NTproBNP MFN2 147 1.54E-75 2.74E-41 5.61E-35 1 1.59E-24 
CD5L FCRL3 429 1.31E-307 5.11E-258 2.56E-50 1 8.76E-32 
GMP140 F5 165 5.27E-277 8.14E-196 6.47E-82 1 2.11E-70 
SERPINA10 SERPINA1 250 0 4.22E-124 0 1 6.22E-120 
PP.H0 (no causal variant), PP.H1 (causal variant for gene expression only), PP.H2 (causal variant for 
protein only), PP.H3 (two distinct causal variants), PP.H4 (one common causal variant) 
 
3a. Section trans-pQTL and CHD: They authors present a model whereby trans-pQTLs act as they do, 
because they are cis-eQTLs. I would believe this to the extent that the cis-eQTL and trans pQTL data 
localize to the same variant. 
3b. Moreover, the interpretation of this is challenged somewhat, as the “cis-eQTL” gene that is 
emphasize for many of the results is PSRC1. For the biology here, it’s clear that there is far more 
compelling data supporting SORT1 as the relevant gene. Because the eQTL for PSRC1 and SORT1 (and 
another gene in the region) are the same, I think it must be because PSRC1 is an eQTL in blood and Liver, 
whereas SORT1 is specific to the liver. I understand why the authors are presenting the data “just the 
facts” as they are, but they must agree that the biology is more compelling, and that there must be ways 
to avoid confusion about it — unless they wish to make a case that PSRC1 is another causal gene. 
(though that would require far more evidence that is presented here). It could be as simply as 
presenting the gene tag as “CELSR2/SORT1/PSRC1” in the places where relevant instead of PSRC1. But 
the tables, main text, etc. do not at all mention any of what’s listed in the rebuttal.  
 
Reply: We thank the reviewer for this suggestion. We have replaced PSRC1 with CELSR2/SORT1/PSRC1 
in the manuscript and supplementary tables as follows: 

Results: 

Moreover, we found significant causal effects of CELSR2/SORT1/PSRC1 on APOB levels (in liver), 
CELSR2/SORT1/PSRC1 on GRN levels (in artery), and ABO on GMP140 levels (in heart atrial 
appendage). 

 



 

Table S14: Mendelian randomization analysis of cis-eGenes as regulators of protein level  

cis-eGene locus Proteins Instrumental 
variable 
(trans-pQTL  
SNPs that are 
eQTLs)  

Beta SE P value Data 

CELSR2/SORT1/PSRC1 APOB rs12740374 -9.541 1.176 4.95E-16 FHS whole 
blood 

ATXN2/SH2B3 B2M rs10774625 -16.836 2.595 8.66E-11 FHS whole 
blood 

HNF1A/P2RX4 CRP rs7979473 -10.775 1.638 4.74E-11 FHS whole 
blood 

ABO GMP140 rs2519093 17.350 0.923 7.55E-79 FHS whole 
blood 

CELSR2/SORT1/PSRC1 GRN 2 SNPs -39.325 18.682 3.53E-02 FHS whole 
blood 

ABO MCAM rs550057 5.959 0.868 6.71E-12 FHS whole 
blood 

ABO sGP130 rs532436 8.316 0.932 4.66E-19 FHS whole 
blood 

ABO sICAM1 rs507666 12.054 0.887 4.39E-42 FHS whole 
blood 

CELSR2/SORT1/PSRC1 APOB rs629301 -0.650 0.080 2.45E-15 GTEx Whole 
blood 

CELSR2/SORT1/PSRC2 GRN rs629301 -2.700 0.080 4.83E-264 GTEx Whole 
blood 

CELSR2/SORT1/PSRC3 APOB rs7528419 -0.135 0.017 3.53E-15 GTEX Liver 
CELSR2/SORT1/PSRC4 GRN rs35558471 -0.567 0.105 7.50E-08 GTEx Artery 

Aorta 
ABO GMP140 rs11244053 -0.133 0.024 1.71E-08 GTEx Heart 

Atrial 
Appendage 

 

 
## Minor comments- 

Abstract:  
a. “comprehensively mapping over 16,000 pQTL variants” — this is overstated. The total number of LD-
independent sentinel associations is 2-2.5 orders of magnitude smaller than this. 
b. “coincided with CAD risk” is not a particularly helpful statement, and again overstates what was 
actually observed — that is, 1 of the 13 pQTLs statistically co-localized with an established CHD 



association, and it occurs at a known locus (LPA). “coincided” i.e., ‘coincidental’ association means a lack 
of mechanistic link, which you formally evaluate 

c. the last sentence also seems like a stretch. I appreciate the need from the authors to drum up their 
work; but given the score of what is in this report, this claim does not feel particularly well justified.  

Reply: We thank the reviewer for these suggestions. We have revised the abstract as follows: 

Identifying genetic variants associated with circulating protein concentrations (protein 
quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association 
studies (GWAS) may illuminate the proteome’s causal role in disease and bridge a GWAS 
knowledge gap regarding unexplained SNP-disease associations. We conducted GWAS of 71 
high-value proteins for cardiovascular disease in 6,861 Framingham Heart Study participants and 
then externally replicated our findings. We comprehensively mapped over 16,000 pQTL variants 
(372 non-redundant), explored their functional relevance, and created an integrated plasma-
protein-QTL database. Next, we identified 13 proteins with pQTLs that either matched coronary 
heart disease-risk variants from GWAS or tested causal for coronary disease by Mendelian 
randomization. Eight of these proteins were predictive of new-onset cardiovascular disease 
events in Framingham Heart Study participants with long-term follow-up. This body of work 
demonstrates that identifying pQTLs, integrating them with GWAS results, employing Mendelian 
randomization, and testing protein-trait associations holds the potential for elucidating genes, 
proteins, and pathways that are causally associated with cardiovascular disease and may 
identify novel therapeutic targets for its treatment and prevention. 

- Figure S3. I felt like I had to stare at this figure for 3 minutes to understand it. This could be visualized 
in a much better way (with a causal graph, for example). 

Reply: We agree with the reviewer. We have revised the Results and figure S3 as follows: 

Results: 

Trans-pQTLs and CHD: Of the nine proteins with pQTL variants that precisely matched CHD-
associated SNPs, eight had pQTLs with trans effects (54 non-redundant trans-pQTL variants in 
total) and 69% of these trans-pQTL variants were also associated with the expression of nearby 
genes (cis-eGenes), i.e. these trans-pQTL variants were also cis-eQTL variants associated with the 
expression of nearby cis-eGenes. Based on these findings, we hypothesized that trans-pQTL 
variants may regulate circulating protein levels through cis-effects on the expression of nearby 
cis-eGenes (Figure S2a). To test this hypothesis, we employed Mendelian randomization (MR)5 
using the expression of all genes within 1 Mb of the trans-pQTL locus  as the exposure, cis-eQTLs 
associated with these genes (from the FHS whole blood gene expression database2) as 
instrumental variables, and circulating protein levels as the outcome. We found that for eight 
proteins the effects of trans-pQTLs on circulating protein levels were causally regulated by the 
expression of cis-eGenes (Table S14). For example, we found decreased SH2B3 expression to be 
causal for higher circulating B2M levels. This extends prior knowledge of the associations of 



SH2B36 and B2M7 with hypertension as we demonstrate a unidirectional causal association 
between SH2B3 expression and plasma B2M levels, and thus provide plausible evidence for a 
causal role of the SH2B3-B2M axis in hypertension (Figure S2b). To extend these findings to other 
CHD-related tissues, we applied the same analyses to GTEx8 whole blood, liver, and heart eQTLs. 
For two of the proteins (APOB and GRN), there was additional experimental evidence in support 
of our results through interrogation of GTEx9 whole blood eQTLs (Table S14). Moreover, we 
found significant causal effects of CELSR2/SORT1/PSRC1 on APOB levels (in liver), 
CELSR2/SORT1/PSRC1 on GRN levels (in artery), and ABO on GMP140 levels (in heart atrial 
appendage). 

Figure S2. Trans-pQTL variants regulate circulating protein levels through the expression of nearby cis-
eGenes 

Figure 2a

 

Figure 2a: Trans-pQTL variants regulate circulating protein levels through the expression of nearby cis-
eGenes: a pQTL variant (SNP) is a cis-eQTL for Gene A (Cis-eGene) and a trans-pQTL for Protein B 
(Protein). Mendelian randomization establishes a causal effect of Gene A expression on circulating 
Protein B levels.  

 

 

 



Figure 2b

 

Figure 2b: Example of circulating B2M levels regulated by SH2B3 expression. The A allele of rs10774625 
(ATXN2/SH2B3 locus) reduces SH2B3 expression, which in turn increases CD8+ T cell differentiation6 and 
circulating B2M levels10. The resulting increases in CD8+ T cells and plasma B2M levels result in a greater 
risk of hypertension7,11.  

 
- I felt like the discussion of genes at the end felt a little much -- some discrepancies certainly are worth 
talking about, but this all felt a little bit speculative since I wasn't fully convinced by the MR analyses at 
the end. If presented more as a resource than putting a ton of weight on causal discovery (i.e., 
calibrated a bit more conservatively), suggesting follow-up efforts that require more work and/or data 
to proven convincingly, I think this would read much more amicably (at least for my taste, for what 
that's worth). 
 

Reply: We thank the reviewer for this suggestion, and have condensed the section on "Novel Proteins 
and Pathways Implicated in CHD" as follows: 

Novel Proteins and Pathways Implicated in CHD: Six proteins were implicated by MR analyses as 
nominally causal for CHD (Table S15). Lipoprotein (a) (LPA), which interferes with the fibrinolytic 
cascade12, has been previously demonstrated to be causal for CHD13, and served as a positive 
control. Butyrylcholinesterase (BCHE) has previously been reported to be inversely associated 



with long-term CVD mortality14,15, and several polymorphisms within BCHE have been reported16 
to be associated with CHD risk factors. rs1803274, the sentinel cis-pQTL variant for BCHE (A539T) 
(Table S6), is associated with decreased BCHE circulating levels and enzymatic activity17, and has 
been shown to predict early-onset CHD16. Our protein-trait analyses similarly demonstrated 
inverse associations between plasma BCHE and long-term cardiovascular outcomes, and MR 
analyses revealed lower BCHE to be causal for CHD.  

          Four additional proteins were nominally causal for CHD by MR. PON1 exhibits 
cardioprotective effects through prevention of LDL oxidation18, and overexpression of PON1 in 
mice inhibits the development of atherosclerosis19. Our protein-trait analyses similarly 
demonstrated an inverse association between PON1 levels and long-term cardiovascular 
outcomes, but MR revealed that higher PON1 levels are causal for CHD (Table 2). We 
hypothesize that this directional discordance may reflect down-regulation of PON1 expression in 
the setting of CHD. Myeloperoxidase (MPO), which promotes formation of atherosclerotic lesions 
by enhancing apolipoprotein B (APOB) oxidation within circulating LDL particles20, was positively 
associated with incident cardiovascular outcomes in our protein-trait and MR analyses. Cystatin 
C, a pro-atherosclerotic21 cysteine proteinase cathepsin inhibitor and well-characterized 
biomarker of CHD risk22, was also positively associated with CVD events in our protein-trait and 
MR analyses. MCAM, or CD146, was causally associated with CHD risk in an inverse manner by 
MR. This is directionally consistent with prior animal studies of limb ischemia, which have shown 
that injection of sCD146 into the circulation decreased fibrosis and inflammation and increased 
local perfusion23.  

       Several proteins lacked cis-pQTLs and therefore were unavailable for MR analysis. Six of 
these proteins, which had pQTL variants that perfectly matched CHD SNPs from GWAS, were 
associated with CHD/CVD outcomes in FHS participants with long-term follow-up: GRN, sGP130, 
sICAM1, APOB, B2M, and CRP. GRN has previously been implicated in atherosclerosis progression 
and incident MI24,25. Its precursor, progranulin, has been shown to bind to SORT1, which contains 
a trans-pQTL variant for GRN that is also associated with CHD26. sGP130 levels have been shown 
to positively correlate with long-term CVD mortality27, perhaps via pathways related to 
hypertension and vascular remodeling28. B2M, an essential component of the major 
histocompatibility complex I29, is associated with hypertension30, atherosclerosis, and CVD31. 
Finally, circulating APOB, an LDL particle ligand, is a well-characterized biomarker of CVD 
risk.32,33 
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Reviewer #1 (Remarks to the Author):  

 

The authors provide a second, detailed response to my concerns.  

 

I’m still a little bit confused on Co-Localization.  

 

1. I apologize for being daft, but I still confused as to what is present in the column labeled “SNPs” in 

Table S12.  

 

My understanding for co-localization is that one should take an interval around each respective 

signal - and one that is common for both traits.  

 

I would have thought this would have been somewhat straight forward — around the eQTL/pQTL 

locus, define a physical region which captures the association signal(s) for both traits  

 

Then, perform coloc().  

 

It seem like in methods that the authors are reporting using all SNPs in the region — so I am trusting 

that this is in order.  

 

But there isn’t much detail defining regional ‘span’ around the association signals; add that to the 

“SNPs” column, and that leaves me a little confused.  

 

Perhaps they just need to clarify what’s in that column, explain in methods how the physical 

intervals from which coloc() is perform are defined, and that will be sufficient.  

 

2. The authors also present a subtly that I did not fully appreciate - though I suppose could happen: a 

cis-pQTL and cis-eQTL could have localization, but to different genes.  

 

looking at S12, it seems to me that there’s an pretty strong enrichment for High PP3 Probs and 

Protein:Target eQTL MISmapping,  



 

i.e., of the 9 analyses with PP3 ~= 1.0, all of them are examples where Protein:target gene are 

different.  

 

This easily makes sense: You could have an eQTL for transcript X that has nothing to do with the 

pQTL, which is for transcript Y, and both are strongly associated (but not the same variant).  

 

That’s why in the original comment, I suggested that the authors focus on cases where the eQTL and 

pQTL both mapped to the same “Gene ID” (protein and target gene are the same).  

 

You can see that of those with PP4 > 0.75, 6 of 16 are the same. But that seems lower than what I 

might have thought.  

 

I’m reading and it seems like the authors based their co-loc for eQTLs on perhaps the strongest eQTL 

in the region  

 

that’s perhaps fine, but I think in my mind, the most important thing would be “synergy” across 

eQTL/pQTL gene target.  

 

I will concede that this can be complex (the absence of an eQTL evidence does not mean there is no 

eQTLs for the target gene).  

 

However, the pQTL was performed in a rather general way — so I would have expected eQTLs to be 

seen.  

 

Variation that obviously impacts gene expression may easily have an impact on protein abundance.  

 

 

 



Detailed Response 

Reply: We thank the reviewer for these comments. We have revised the text to clarify the co-
localization section. 

1. I apologize for being daft, but I still confused as to what is present in the column labeled “SNPs” in 
Table S12. My understanding for co-localization is that one should take an interval around each 
respective signal - and one that is common for both traits. I would have thought this would have 
been somewhat straight forward — around the eQTL/pQTL locus, define a physical region which 
captures the association signal(s) for both traits. Then, perform coloc(). It seem like in methods that 
the authors are reporting using all SNPs in the region — so I am trusting that this is in order. But 
there isn’t much detail defining regional ‘span’ around the association signals; add that to the 
“SNPs” column, and that leaves me a little confused. Perhaps they just need to clarify what’s in that 
column, explain in methods how the physical intervals from which coloc() is perform are defined, 
and that will be sufficient. 

Reply: We defined the colocalization region in the Methods section as follows: “Using FHS eQTL results, 
we identified all genes within ±1 Mb of an eQTL that were also associated with the lead pQTL variant.” 
To avoid confusion about the region used for colocalization testing, we modified the Methods and 
Results sections as follows: 

Methods: 

“Colocalization analysis involved a two-step procedure. Using our cis-pQTL results, we first 
identified the locus that harbored the sentinel cis-pQTL variant for each protein. The locus was 
defined as a 1 Mb region (upstream and downstream) from each sentinel cis-pQTL variant. Using 
FHS eQTL results, we then identified all genes within each locus for which expression of a gene 
was associated with the lead pQTL variant.” 

Results: 

“To test this hypothesis, we conducted a Bayesian test of colocalization of cis-pQTL variants 
using the coloc package in R for genes within 1 Mb (upstream or downstream) of each sentinel 
cis-pQTL variant (see Methods).” 

2. The authors also present a subtlety that I did not fully appreciate - though I suppose could happen: a 
cis-pQTL and cis-eQTL could have localization, but to different genes. looking at S12, it seems to me 
that there’s an pretty strong enrichment for High PP3 Probs and Protein:Target eQTL MISmapping, 
i.e., of the 9 analyses with PP3 ~= 1.0, all of them are examples where Protein:target gene are 
different. This easily makes sense: You could have an eQTL for transcript X that has nothing to do 
with the pQTL, which is for transcript Y, and both are strongly associated (but not the same variant). 
That’s why in the original comment, I suggested that the authors focus on cases where the eQTL and 
pQTL both mapped to the same “Gene ID” (protein and target gene are the same). You can see that 
of those with PP4 > 0.75, 6 of 16 are the same. But that seems lower than what I might have 



thought. I’m reading and it seems like the authors based their co-loc for eQTLs on perhaps the 
strongest eQTL in the region that’s perhaps fine, but I think in my mind, the most important thing 
would be “synergy” across eQTL/pQTL gene target. I will concede that this can be complex (the 
absence of an eQTL evidence does not mean there is no eQTLs for the target gene). However, the 
pQTL was performed in a rather general way — so I would have expected eQTLs to be seen. 
Variation that obviously impacts gene expression may easily have an impact on protein abundance. 

Reply: The reviewer is correct. Our co-localization analysis approach is based on the strongest eQTL in 
the region (1 Mb upstream or downstream of a sentinel pQTL), which is the same method used in the 
seminal co-localization paper that we cited: “Pierce, B. L. et al. Co-occurring expression and methylation 
QTLs allow detection of common causal variants and shared biological mechanisms. Nat Commun 9, 
804, doi:10.1038/s41467-018-03209-9 (2018).” The purpose of the approach is to generate one protein-
gene pair within each region, which will decrease the number of false positive results by using all genes 
within the 1 Mb region.  We understand that the reviewer expected to see a larger proportion of protein 
coding genes that co-localize with their corresponding proteins, which is the ideal situation. However, 
because gene expression and circulating protein levels vary in time and we did not measure protein 
levels and gene expression at the same time point, it is not surprising that protein and target gene have 
two distinct causal variants (high PP3). We modified the discussion as follows: 

“We acknowledge several limitations of our study...Finally, protein levels were measured in 
whole blood and may not accurately reflect tissue-specific patterns of expression. Furthermore, 
our gene transcript levels and circulating protein levels were not measured at the same point in 
time, which may limit the power to find colocalization of protein coding genes with their 
corresponding proteins.”   

 

 

 

 

 
 

 


