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Supplementary Note 1: The verbal explanation about structural entropy 

and a comparison to the Shannon entropy  

The Structural entropy1 is a metric to measure the information (uncertainty) 

embedded in a graph. The definition of Structural entropy was inspired by the 

Shannon Entropy2, however, they differ in the following aspects. 

First, the two Entropies were defined in different domains. The structural 

entropy was defined on graphs or structured data, while the Shannon entropy 

was defined on an unstructured probability distribution. Thus, the structural 

entropy measures the information (uncertainty) embedded in a graph, while the 

Shannon entropy measures the information in a probability distribution. 

Second, the structural entropy is directly associated with the structure of a 

graph, while the Shannon entropy has no structure associated with. Given a 

graph G, and a coding tree T of G, which is intuitively a hierarchical partitioning 

of G，the structural entropy of G given by T is the uncertainty between the 

partitions (T) while random walking in G. In another word, we can calculate a 

structural entropy of G with any hierarchical partitions. On the other hand, for 

any given probability distribution, the Shannon entropy is purely a fixed number 

that measures the uncertainty of the distribution.  

Thus, the goal of deDoc is to find a hierarchical partition (coding tree) of a 

given graph with minimal structural entropy. The algorithm starts from a trivial 

partition, which has each vertex as an individual domain. In each step, the 

algorithm greedily seeks an operation, i.e, to find two domains in the current 

partition to merge, such that the resulting partition has the maximally reduced 

the structure entropy over all possible combination of domain pairs.  

More formally, the deDoc seeks to find the optimal partition as follows: 

Suppose that P is the current partition with N domains 𝑋1,  𝑋2, … , 𝑋𝑁. We are 

going to merge two domains 𝑋𝑖  and 𝑋𝑗  in order to minimise the structural 

entropy. First, we notice that we only need to consider the two domains 𝑋𝑖 and 

𝑋𝑗 with the edges between the two domains. For each such pair (𝑖, 𝑗), we form 



a new partition 𝑄𝑖𝑗 consisting of X = 𝑋𝑖 ∪ 𝑋𝑗 and all the other domains of P. 

Let ∆𝑖𝑗= 𝐻𝑃(𝐺) − 𝐻𝑄𝑖𝑗(𝐺) . By the definitions of 𝐻𝑃(𝐺)  and 𝐻𝑄𝑖𝑗(𝐺) , ∆𝑖𝑗 

contains only the values associated with the two domains 𝑋𝑖 and 𝑋𝑗, so that 

∆𝑖𝑗 is locally computable. The algorithm deDoc then chooses (𝑖0, 𝑗0) such that 

∆𝑖0𝑗0
 is the maximum of ∆𝑖𝑗  for all possible i and j. Then we execute the 

operation of merging 𝑋𝑖0
 and 𝑋𝑗0

.  

 

Supplementary Note 2: Remarks on the similarity of the two partitions 

First, the predictions made by different algorithms have huge differences 

in TAD sizes, something which has also been noted in the literature. Thus, a 

good metric should ideally also consider such domain size effect. However, as 

far as we know, most of the simple symmetry metrics do not or are unable to 

take into account the domain size effect. For example, the Jaccard Index, which 

was defined as the ratio between the size of the intersection and the size of the 

union of interactions and TAD boundaries called in different replicates. The size 

of the union or the size of the intersection in the definition refers to the number 

of elements in each set, not the actual size (length) of the domains. Thus, it is 

a good metric for loop set or single domain comparisons, but it may not be the 

best for comparisons between partitions. Another example that we can define 

a metric is the following: Given a partition P, for every pair (𝑖, 𝑗) of vertices i and 

j, we define 𝑎𝑖𝑗 = 1 if i and j are in the same domain X in P, and 0 otherwise. 

This represents the partition P as an 0/1 vector VP. Suppose that Q is another 

partition, for which we define a similar vector VQ. We then use the distance 

between VP and VQ to define the similarity between P and Q. In this way, we 

may use different measures of distances between the two vectors, for instance, 

norm 𝐿1, norm 𝐿2, etc. A similarity defined in this way is symmetric. However, 

this similarity does not consider the balance of the size of domains and the size 

of intersections, and is therefore not suitable for comparisons between 

partitions.  



Second, we do not think that a simple symmetry metric may bring us 

significant new knowledge. For example, we could define 𝑤𝑠(𝑃, 𝑄)  to be 

minimum(s) of 𝑤𝑠𝑄
𝑃 and 𝑤𝑠𝑃

𝑄 . We did the same analysis as shown in Figure 1F 

using this symmetry metric 𝑤𝑠(𝑃, 𝑄) and found almost identical pattern as for 

𝑤𝑠𝑄
𝑃 did (Supplementary Figure 8). With the 𝑤𝑠𝑄

𝑃, we found that except for 

CNM and Arrowhead, the detected domains were rather similar between deDoc 

and the four other algorithms. The only difference is the comparison to 

Arrowhead. However, we argue that that is another reason why should we 

choose 𝑤𝑠𝑄
𝑃, as detailed in the following paragraph. 

Third, a simple symmetry metric may even introduce false assessment, 

such as in the case where a partition is not complete to a graph, i.e. a large 

portion of vertices are not included in the partition. In the above case, the reason 

why 𝑤𝑠(𝑃, 𝑄) between the predictions of Arrowhead and deDoc (and all the 

other algorithms) is so low is that the Arrowhead does not partition the whole 

genome completely (Figure 1C). Only about 17%, 18%, 15% and 7% of whole 

genome region were predicted as TADs by Arrowhead in hES, hIMR90, mES, 

and mCO cells, respectively. In other words, there are huge gaps in the genome 

which, however, were marked as unknown by Arrowhead. Therefore, when one 

partition is not complete to the genome, the 𝑤𝑠(𝑃, 𝑄), and any other metric that 

does not consider domain size and number effects, will report a rather low 

similarity. However, comparing the actual domains predicted by the algorithms, 

they share most of the boundaries, suggesting the predictions should be 

regarded as similar, and has thus been reported correctly using 𝑤𝑠𝑄
𝑃 (Figure 

1F).  

Last, when the two partitions are both complete, we argue that although 

𝑤𝑠𝑄
𝑃 is not strictly symmetric, it is sufficiently similar between 𝑤𝑠𝑃

𝑄
 and 𝑤𝑠𝑄

𝑃.  

Validation for similarity when the two partitions are complete. 

1. The similarity 𝑠𝐺(𝑋, 𝑌) in Equation 7 satisfies the following properties: 



1) It is symmetric, that is, 𝑠𝐺(𝑋, 𝑌) = 𝑠𝐺(𝑌, 𝑋); 

2) If 𝑋 = 𝑌, then 𝑠𝐺(𝑋, 𝑌) = 1; 

3) If the size of 𝑋 ∩ 𝑌 is small, relative to the sizes of X and Y, 

then 𝑠𝐺(𝑋, 𝑌) cannot be large; 

4) If X is small and Y is large, then 𝑠𝐺(𝑋, 𝑌) cannot be large; 

5) If 𝑠𝐺(𝑋, 𝑌) is large, then X and Y are similarly large, i.e., the 

sizes of the two sets are similar, and the intersection of X and Y is large 

relative to the sizes of X and Y. 

   Property 5) ensures that if 𝑠𝐺(𝑋, 𝑌) is large, then X and Y are similarly 

large and the intersection of X and Y forms a major part of both X and Y, 

implying that if X is a meaningful domain, Y is a similarly meaningful domain. 

2. The similarity function 𝑆𝑄
𝑃 in Equation 8 is not symmetric between P and 

Q. It assumes that P is a “standard”, e.g., a ground-truth partition. The metric 

measures how similar Q is to P. 

3. The weighted similarity 𝑤𝑠𝑄
𝑃  in Equation 9 is the average score of 

similarity by  𝑠𝑄
𝑃 in Equation 8, so it is not symmetric. 

4. The weighted similarity 𝑤𝑠𝑄
𝑃 satisfies the following properties: 

1) If 𝑤𝑠𝑄
𝑃=1, then 𝑤𝑠𝑃

𝑄
=1 

2) If 𝑤𝑠𝑄
𝑃  is large, then there is a sufficiently large set S of 

domains in P, such that for any domain X in S, there is a domain Y in Q 

such that 𝑠𝐺(𝑋, 𝑌) is high. This implies that the intersection of X and Y 

is large, and the X and Y are of similar sizes. Moreover, this similarity 

property holds for Q as well. 

3) Because of 2), we have that if 𝑤𝑠𝑄
𝑃 is large, then so is 𝑤𝑠𝑃

𝑄
. 

4) The arguments above demonstrate that although 𝑤𝑠𝑄
𝑃 is not 

strictly symmetric, 𝑤𝑠𝑃
𝑄
 and 𝑤𝑠𝑄

𝑃 are sufficiently close to each other.  



Supplementary Note 3: DeDoc is an easy-to-use and fast tool for TAD 

detection 

The deDoc is an easy-to-use tool. First, it does not require normalisation 

for input data. It is well known that Hi-C experiments are always subject to 

systematic bias, which, in turn, can seriously influence subsequent data 

analysis 3. Many normalisation methods have been proposed in the literature 

3,4,5, however, it remains empirical in Hi-C data analysis to choose a proper way 

to perform normalisation. Although normalisation is useful in some cases, it 

unavoidably introduces new noise that must be taken into account, and it fills in 

gaps in the entries which hugely increases the time complexity of the detecting 

algorithms. Except for CNM, normalisation of the input data is required for 

almost all current algorithms, and there is a substantial risk the results are 

affected by improper normalisation methods 6. It thus appears that the optimal 

strategy would be that the algorithm only uses the original data without 

normalisation (Supplementary Table 3). Because structural information theory 

does not require normalisation to find the minimum uncertainty1, the deDoc 

algorithm takes the raw Hi-C matrix as input, and identifies the essential 

structure from the raw Hi-C data directly. Second, deDoc needs no setting of 

arguments. Thus, these two features make deDoc very easy to use. 

The deDoc is also fast. The time complexity of deDoc and the modularity-based 

CNM method are nearly linear when input data are sparse, which is always the 

case for Hi-C data (Supplementary Table 3). We tested the speed of the 

algorithms. It took 72, 68, 50, 86, 3315, 4546 and 2220 minutes for deDoc(M), 

deDoc(E), CNM, Armatus, Arrowhead, MrTADFinder and TADtree, respectively, 

to finish TAD calling for the Hi-C data of chromosome 21 in GM12878 cells with 

1kb binsize from Rao et al4 (CPU: Intel Xeon 5160 at 2.30GHz, and memory: 

1024GB). Thus, deDoc, CNM and Armatus are orders of magnitude faster than 

the others. Taken together, this shows that deDoc is an accurate, easy-to-use, 

and fast tool for TAD detection.  



Dataset Figure,Table Reference URL 

hES, hIMR90, 

mES, mCO 

Figure 1, 

Supplementary Data 

1 

Dixon, J.R. 

et al7. 

http://www.ncbi.nlm.nih.gov/geo/ 

query/acc.cgi?acc=GSE35156 

GM12878 Figure 2,3, 

Supplementary 

Figure 1(a), 2, 6 

Rao, S.S. 

et al4.  

http://www.ncbi.nlm.nih.gov/geo/ 

query/acc.cgi?acc=GSE63525 

hESC_HindIII Figure 4, 

Supplementary 

Figure 5, 

Supplementary 

Table 2 

Dixon, J.R. 

et al7. 

http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE35156 

mouse 

CD41+ TH1 

cells 

Figure 5, 

Supplementary 

Figure 7 

Nagano, T. 

et al8. 

http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE48262 

GM06690 Supplementary 

Figure 1(b), 1(c), 

1(d) 

Lieberman

-Aiden, E. 

et al9.  

http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE18199 

ChIP-seq Figure 1a, 

Supplementary 

Figure 3,4 

NA https://www.encodeproject.org/ 

Supplementary Table 1. Public data used in this paper. 



1D-SI M-SI 

chr1 75 80 

chr2 90 55 

chr3 100 90 

chr4 95 90 

chr5 95 85 

chr6 100 85 

chr7 90 65 

chr8 95 95 

chr9 75 90 

chr10 100 95 

chr11 95 95 

chr12 80 80 

chr13 95 85 

chr14 90 95 

chr15 95 95 

chr16 85 90 

chr17 70 85 

chr18 80 95 

chr19 65 80 

chr20 55 85 

chr21 90 95 

chr22 75 90 

chrX 100 95 

chrY 100 80 

Supplementary Table 2. The best binsizes found for Dixon et al’s Hi-C data. 



Algorithms Time 

complexity 

Input data Reference 

deDoc(M) 𝑂(𝑛𝑙𝑜𝑔2𝑛) Raw data 

deDoc(E) 𝑂(𝑛𝑙𝑜𝑔2𝑛) Raw data 

CNM 𝑂(𝑛𝑙𝑜𝑔2𝑛) Raw data Clauset, et al10 

Armatus 𝑂(𝑛2) Normalised Filippova, et al11 

TADtree 𝑂(𝑛𝑆5) Normalised Weinreb and Raphael12 

Arrowhead 𝑂(𝑛2) Normalised Rao, et al4 

Domaincall NA Normalised Dixon, et al7 

MrTADFinder NA Normalised Koon-Kiu Yan and Mark 

Gerstein13 

Supplementary Table 3. Time complexity of the algorithms. In the Time 

complexity column, n and S denote the number of bins and the maximum 

domain size, respectively. 



GSE63525 GM12878
Chr21(binsize=500kb)

Subgraph of Hi-C data
Initialized coding tree

deDoc(M)

deDoc(E)

TAD

Mg(T;a,b) Cb(T;a,b)

Merging operator and combing operator

a

b
c

d

Supplementary Figure 1. The algorithm of deDoc. a, A cartoon demonstrating how the 
deDoc works. In the upper panel, it is a real data from GSE63525 in human GM12878 cells. 
Hi-C data from chr21 was first converted into a weighted fully connected graph. A trivial 
initialized coding tree was formed. By iteratively apply merging and combining operators, 
which showed on top, to seek minimal structure entropy, the final coding tree represents the 
detected domain structure. In the down panel, it is a cartoon showing a toy data, the basic 
idea of deDoc is to convert a domain prediction problem into a graph partition problem. b, 
The weighted similarities of domains as predicted by deDoc (E) in the 23 chromosomes of 
GM06690 cells. c, Heatmap of the Hi-C data. The deDoc(E) predicted domains and 
compartment were highlighted in black and yellow sawteeth, respectively. The 
compartment A and B were not distinguished in this plot. d, The relative distance to the 
nearest compartment boundary from deDoc(E) predicted domain boundaries.



Supplementary Figure 2. The spider chart shows similarities between 
the TADs as predicted by different algorithms. Each spoke represents a 
group of comparison from a reference algorithm, indicated as the colored 
square, to the other algorithms. The values in the spokes are weighted 
similarities (WS). As each algorithm did not compare to itself, the curves 
are not closed. The data was about GM12878 from the Rao et al  .4







Supplementary Figure 3. deDoc identified border regions are enriched with  some TF 
bindings. The Plot representing ChIP-seq peaks of TF enrichment from human ES cells 
(hES). Each curve represents a result from an algorithm. The data was from ENCODE 
project.



Supplementary Figure 4. deDoc identified border regions are enriched with 
some TF bindings. The Plot representing ChIP-seq peaks of TF enrichment 
from mouse ES cells (mES). Each curve represents a result from an algorithm. 
The data was from ENCODE project.



Supplementary Figure 5. The distribution of the relative distance to 
the nearest TAD borders using  deDoc(M) with Dixon et al’s data .7



Supplementary Figure 6. The side-by-side comparison of the TADs as predicted by each 
algorithm using Rao et al’s data  in chromosome 22.4



Supplementary Figure 7. Heatmap of ensemble and pooled Hi-C from a single cell. The
deDoc(M) predicted domains and ensemble TADs were highlighted in magenta and yellow 
sawteeth, respectively.



Supplementary Figure 8. Similarities as measured by ws(P,Q), which is defined 
to be minimums of ws   and ws  . Q

P
P
Q
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