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1) Additivity of dynamics in simple Markov models 
 

 
Figure S1: Schematics of 1D Markov models with distinct transition rates that result in average diffusivities that 
are additive (top) and non-additive (bottom). 

 
From a continuum point of view, the dynamics of heterogeneous systems can be explored 

with models as simple as continuous time Markov chains. Imagine a one-dimensional system with 
two types of sites, either 1 or 2, that can be arbitrarily arranged along a line that wraps periodically 
in space (Figure S1). Note that the dimension and boundary conditions of the problem are chosen 
for convenience of illustration, though in principle the results are more general. Let us assume that 
if a random walker is at a type 1 site, the rate with which it leaves to either of the neighboring 
states is !, while this rate is " for type 2 sites. This results in a transition rate matrix corresponding 
to Figure S1 (top) as 

# =

⎣
⎢
⎢
⎢
⎢
⎡
−2! ! 0 0 0 !
! −2! ! 0 0 0
0 ! −2! ! 0 0
0 0 " −2" " 0
0 0 0 " −2" "
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⎥
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If we require that detailed balance be satisfied, the equilibrium occupation probability of any site 
1 is related to the probability of any site 2 via  

℘/ =
!
"
℘0 
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which fully specifies the problem if we assume that we start from an ensemble in which the 
equilibrium probabilities of each state are satisfied. For any time 1, the time evolution of the 
occupation probabilities follows 

234⃑ (1)
21

= 34⃑ ∙ # 

which is formally solved by 
9(1) = :#; 

If we then measure the slope of the average mean-squared displacement at long times, the 
diffusivity is given by  

< =
〈2/(1 + ?1)〉 − 〈2/(1)〉

2?1
 

=
∑ ℘B ∑ 9(1 + ?1)B,D(E − F)GDB − ∑ ℘B ∑ 9(1)B,D(E − F)GDB

2?1
 

Note that the time must be long enough that a walker visits domains of both type 1 and 2, but short 
enough that the periodicity scale of the system remains comparatively large (this difficulty 
vanishes for infinitely sized systems). Though the above expressions are analytical, numerical 
solutions for arbitrary arrangements of sites 1 and 2 that address finite-size effects are easiest. Such 
results show that the diffusivity does not depend on the arrangement of sites of type 1 and 2, 
illustrating that a macroscopic model holds in which surface types have additive effects (i.e., the 
influence of a surface type is independent of neighboring site identities).  
 Additivity breaks down, however, as soon as we introduce edge effects between the 
domains, as shown in Figure S1 (bottom). This is the equivalent of creating new types of sites 
with asymmetric rates of transition to adjacent sites. The asymmetry allows specific patterning of 
domains to influence the average diffusivity since the number of such edges can vary from one 
arrangement to another. The effect is similar to what is observed for interfaces with spatial 
chemical heterogeneity as described in the main text. At each surface site, one can consider 
analogous rates for moving to any neighboring surface site. If these rates are all the same, 
depending only on the nature of the site itself and not where the walker is moving, then additivity 
will hold. However, it is obvious that the arrangement of other nearby chemical groups can produce 
rate asymmetry, with subtle effects appearing as the free energy landscape changes across the 
surface. In this way, molecular scale heterogeneities likely make additive models for dynamical 
behavior break down, instead requiring brute force atomistic molecular dynamics simulations to 
evaluate the detailed dynamics. 
 
 
2) Additional details of model systems 
 

Our SAM systems are similar to the work of Garde and coworkers (1–3) and to Levine et 
al (4), but with some small modifications. In the work of Mondello (5) referenced by the Garde 
group, all bonds between united atoms were constrained, whereas here we only constrain bonds 
involving hydrogens. In previous parametrizations of the SAM surface, it appears based on prior 
descriptions of methodology that no angle potential energy function was applied to the C-O-H 
angle of hydroxyl-terminated chains, with the OPLS/AMBER parameters (6) for such an angle 
instead applied to the C-C-O angle. We apply the usual OPLS/AMBER C-C-O and C-O-H angle 
terms to these atoms, which somewhat limits the flexibility and hydrogen bonding ability of the 
hydroxyl head group. Chains are arranged with their sulfur atoms in a hexagonal close-packed 
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(HCP) pattern with nearest-neighbor spacing of 4.97 Å. We place a total of 72 chains on this lattice 
consisting of 9 rows (along the y dimension) and 8 columns (along the x dimension), resulting in 
surfaces of size 39.7600 x 38.7373 Å2. An identical lattice defines the locations of LJ particles in 
those systems, with each layer along the direction perpendicular to the interface translated 
appropriately to maintain an overall HCP crystal structure. 

The original SAM and LJ surfaces developed in our work entail a defect in the HCP lattice 
due to the use of an odd number of rows. This is manifested more obviously for the LJ surfaces, 
for which the particles are restrained in place whereas the flexible chains of the SAM are able to 
re-arrange so that the surface-water interface is still approximately HCP. Re-running the genetic 
algorithm at a hydrophilic fraction of 0.25 for re-constructed SAM and LJ surfaces with 10 rows 
and no defect (dimensions of 39.7600 x 43.0415 Å2) makes no difference to the diffusivity values 
or range measured, and thus leads to no change in the conclusions presented. 
 
 
3) Additional simulation details and analyses of molecular dynamics trajectories 
 
Additional simulation details 
 

For all MD simulations, the velocity Verlet method (7) is used to propagate the equations 
of motion with constraints placed on all bonds involving hydrogens through LINCS (8). The 
Smooth Particle Mesh Ewald algorithm, with default GROMACS parameters, treats long-range 
electrostatics (9).  

Prior to each MD run, we use the following equilibration procedure: (1) The GROMACS 
solvate command centers and solvates a surface, followed by relaxation with steepest descent 
energy minimization and a very short NVT simulation with the Berendsen thermostat (10). (2) 
Short NPT equilibration with a Berendsen thermostat and semi-isotropic barostat (volume 
fluctuations only perpendicular to the surface) equilibrates the box size. (3) A second short pre-
production NPT simulation evaluates average box size, which is then fixed. (4) Finally, a short 
NVT simulation utilizing a weak Nose-Hoover thermostat (11, 12) with 10 chains (13) precedes a 
10 ns production run with the same settings and frames saved every 0.5 ps. 

We separately remove center of mass momentum from the water and surface atoms every 
30 time steps. This is sufficient to keep the H–cristobalite surfaces motionless relative to water. 
For the SAM surface, all united sulfur atoms are harmonically restrained in space, with each sulfur 
reference position scaled separately during NPT runs. LJ surface particles are also harmonically 
restrained, with the center of mass reference position of all particles rescaled during NPT 
simulations. 
 
Calculation of diffusivities 
 

To assess hydration water mobility, we determine the diffusivity via linear fits to the 2D 
mean-squared displacement (MSD) of water oxygen atoms parallel to the plane of the surface. 
Similar to earlier simulation studies (14, 15), we collect MSD data from water oxygen atoms as 
long as they remain within 8 Å of the surface, as defined by the most extreme surface heavy atom 
coordinates. For all systems, this includes approximately 2 hydration layers. We focus this 
calculation to a time window of 2-10 ps, which we find to be optimal for assessing lateral water 
dynamics near interfaces. At times shorter than this, waters do not exhibit diffusive behavior, while 
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at times beyond 10 ps, too many waters have left the surface and the slope of the MSD curve 
decreases as only the slowest-moving waters remain. Profiles of water lateral diffusivity in the 
direction perpendicular to the interface are obtained by the same procedure but using 3 Å slices 
with their centers spaced 0.5 Å apart along the interface normal. 
 
Calculation of excess hard-sphere chemical potentials 
  

We compute the spatially-varying excess chemical potential for hard-spheres of radius 3.3 
Å using the Widom insertion technique (16). We discretize the simulation box into cells and count 
the number of times a randomly-inserted sphere in any cell is empty of water oxygens or surface 
heavy atoms. Profiles of IJKLM  result from placing spheres randomly within 0.5 Å slices 
perpendicular to the interface, with at least 5.04 x 108 insertions attempted for each slice. The 
negative log probability for a successful insertion (main text Equation 1) then provides the hard-
sphere chemical potential and its spatial dependence. In the results presented, we reference hard-
sphere excess chemical potentials to the case in bulk TIP4P-Ew water at 300 K and 1 bar, where 
IJKLM ≈ 10.476	UVW.   
 
Determination of interfaces and interface fluctuations 
 

We use two definitions for the surface-water interface to spatially map surface 
hydrophobicity and hydrophilicity. The “mean” interface is defined by the box Z-coordinate where 
the average density of water becomes 0.3 of its bulk value (0.0332 Å-3 for TIP4P-Ew water). 
“Instantaneous” interfaces are defined according to the procedure of Willard and Chandler (17), 
utilizing the same parameters except for a density fraction cut-off of 0.3 instead of 0.5. In short, 
each water oxygen is assigned a truncated and shifted Gaussian function, with the density field 
represented by the sum of such functions. The interface is the iso-surface within this field where 
the density is 0.3 of the bulk value. The marching_cubes_lewiner method (18) provided by the 
scikit-image package (19) identifies the iso-surface after first evaluating the density field on a 1.0 
Å grid. For each X-Y bin on the grid (i.e. bins perpendicular to the surface slab), we prune the 
density field as necessary such that only two Z-coordinate iso-surface points are kept representing 
an upper and lower interface. Distances of waters to such an interface are defined by projecting 
the vector between a water oxygen and the nearest surface point onto the surface unit normal of 
said surface point. 
 
Calculation of water re-orientation times 
 

Water re-orientation times are determined by fitting a stretched exponential function to the 
time-decay of the cosine of the angle between the water dipole vector at an initial and later time. 
This was done only for waters remaining in the surface-water distance range of interest, as 
described by Debenedetti and coworkers (14). Profiles result from using 3 Å slices in the direction 
perpendicular to the interface with slice centers spaced 0.5 Å apart. 
 
Calculation of contact angles 
 
 We calculate water contact angles by placing an equilibrated water box of 2000 TIP4P-Ew 
water molecules over SAM or LJ surfaces with dimensions of about 119 x 116 Å2. Drops are 
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equilibrated under NVT conditions with molecular dynamics parameters as described in other 
sections. Once the drop shape stops changing (~1 ns for hydrophobic surfaces, and 5-10 ns for 
hydrophilic surfaces), a 10 ns production simulation is used to calculate the average drop 
geometry. The direction perpendicular to the interface is discretized into 1.0 Å bins, with the 
maximum water oxygen radial distance from the drop center of mass recorded at each timestep for 
each bin. At each frame, a fixed cut-off distance from the drop center is used to ensure that gas-
phase waters were not considered. The average maximum radial distance versus height from the 
interface is fit to a second order polynomial, with the coefficient on the term linear in radius 
providing the inverse tangent of the contact angle. 
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4) Supporting Data and Figures 
 

Table S1: Performance metrics for the surface design genetic algorithm 

Surface 

P-value for hypothesis 
that min diffusivity is 

greater than max using 
Welch’s t-test* 

Probability to observe 
min diffusivity surface 

pattern at least once 
through random sampling 

alone** 

Probability to observe 
max diffusivity surface 

pattern at least once 
through random sampling 

alone** 
cristobalite-101X, 
YLZ[ = 0.25 5.20 x 10-12 9.85 x 10-1 1.07 x 10-2 

cristobalite-101X, 
YLZ[ = 0.375 0.00 x 100 5.45 x 10-1 5.95 x 10-1 

cristobalite-101X, 
YLZ[ = 0.50 1.5 x 10-11 9.98 x 10-1 1.61 x 10-1 

cristobalite-101X, 
YLZ[ = 0.75 5.90 x 10-3 9.02 x 10-1 1.00 x 100 

SAM, 
YLZ[ = 0.25 5.20 x 10-7 9.66 x 10-1 5.21 x 10-6 

SAM, 
YLZ[ = 0.50 8.90 x 10-6 9.83 x 10-1 1.05 x 10-3 

LJ, 
YLZ[ = 0.25 1.80 x 10-1 1.00 x 100 1.00 x 100 

LJ, 
YLZ[ = 0.50 6.70 x 10-2 1.00 x 100 1.00 x 100 

*Uses Student’s t-distribution, but does not assume equal variances of the two sets of samples 
**Assumes a Gaussian distribution of diffusivities for randomly generated surfaces, with the binomial distribution 
then providing the probability of obtaining at least one equally or more anomalous diffusivity from a draw of the 
same size as the sample generated by the genetic algorithm optimization 
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Figure S2: Evolution of the genetic algorithm for various densities of the cristobalite surface. Blue points are 
minimum diffusivity surfaces for a given generation during minimization runs of the algorithm while orange points 
are maximum diffusivity surfaces from a separate maximization run. Blue and orange lines represent convex hulls. 
Generations 0 through 10 represent surfaces that were randomly generated without any optimization. For these 
early points, the blue and orange give the minimum and maximum diffusivities in the set of initial random surfaces. 
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Figure S3: For cristobalite at a fraction of 0.25 of the maximum possible number of silanol groups, correlations 
are shown between the measured diffusivity parallel to the plane of the surface (<^J; on the x-axis of all panels) 
and (a) the diffusivity measured below the surface (b) the diffusivity measured above the surface (c) <^J; itself (d) 
the measured diffusivity far from the surface (e) the average simulation temperature (f) the total simulation pressure 
(g) the component of simulation pressure perpendicular to the surface and (h) the equilibrated box dimension 
perpendicular to the surface. Black lines are linear regressions to the data with _/ values shown on each plot. While 
the average simulation box length perpendicular to the interface weakly correlates with diffusivity (larger volumes 
for faster diffusion), this is due to variation in effective surface hydrophobicity that modulates interfacial width at 
constant pressure. For cristobalite surfaces at low density (here and in Figure S4), it appears that the total system 
pressure (including all Cartesian directions) correlates weakly with the mobility of hydration water. Noting that the 
surface area is fixed in the plane of the interface and not relaxed during constant-pressure equilibration, it is clear 
that arrangements of silanol groups can affect the in-plane strain of these surfaces by changing the bonding pattern. 
Thus, a weak correlation is observed between measured diffusivity and total simulation pressure as the pattern of 
functional groups in cristobalite is adjusted. 

 
 

 
Figure S4: Same as Figure S3, but for cristobalite surfaces at a fraction of 0.375 of the maximum possible number 
of silanol groups. 
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Figure S5: Same as Figure S3, but for cristobalite surfaces at a fraction of 0.50 of the maximum possible number 
of silanol groups. 

 
 

 
Figure S6: Same as Figure S3, but for cristobalite surfaces at a fraction of 0.75 of the maximum possible number 
of silanol groups. 

 
 

 
Figure S7: Same as Figure S3, but for the SAM surface at an OH-terminated chain fraction of 0.25. 
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Figure S8: Same as Figure S3, but for the SAM surface at an OH-terminated chain fraction of 0.5. 

 
 

 
Figure S9: Same as Figure S3, but for the LJ surface at an attractive particle fraction of 0.25. For LJ surfaces at 
all coverages, the pressure normal to the interface correlates with the diffusivity. It should be noted, however, that 
the range of Z-pressures observed is the same as for other surface types. With surface patterning playing little to no 
role in determining diffusivity for the LJ surfaces (see main text), system properties that vary with system set-up 
and equilibration, like the Z-pressure, are more statistically significant, whereas these same fluctuations primarily 
introduce statistical noise to diffusivities on SAMs or cristobalite.  
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Figure S10: Same as Figure S3, but for the LJ surface at an attractive particle fraction of 0.50. 

 
 
 

 
Figure S11: Probability density distributions for the cosine of the tilt angle for SAM surfaces (the angle between 
the direction perpendicular to the interface and the vector between the restrained sulfur atom and the last united 
atom before the head group). The top panel shows the distribution for OH-terminated chains while the bottom for 
CH3-terminated ones. Each color represents an independent simulation, with solid lines corresponding to the 
minimum-diffusivity surface pattern and dashed lines to the maximum-diffusivity surface. Variations in tilt angle 
distributions between independent simulation runs are larger than any differences observed between the minimum 
and maximum diffusivity patterns, implying negligible changes in average surface structure. Additionally, freezing 
all but the head-group atoms of SAM chains results in nearly identical diffusivity ranges in Figure 2 (also see 
Figure S14), although the diffusivity is slightly reduced overall (by 0.014 to 0.032 Å2/ps). The decreases in 
diffusivity are more pronounced at higher surface densities and stem from the reduction, due to chain rigidification, 
in hydrogen bonding between surface hydroxyls, increasing the availability of water-surface hydrogen bonds. 
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Figure S12: Top-views for the normalized fluctuations in the number of waters within probes of radius 3.3 Å sitting 
with their edge at the mean interface of (a) cristobalite, (b) SAM, and (c) LJ surfaces. The mean interface is defined 
as the location at which the average water density is 0.3 of the bulk value for TIP4P-Ew of 0.0332 Å-3. For LJ 
surfaces, the middle column considers the patterns determined by optimization of the SAM surface at the same 
density. It is clear that fluctuations are enhanced near larger patches of more hydrophobic groups on both SAM and 
LJ surfaces. For cristobalite, both very small and large fluctuations are observed near hydroxyl groups. This in turn 
leads to higher excess chemical potentials for hard-sphere probes near the surface. 
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Figure S13: Top-views of height fluctuations for instantaneous interfaces for cristobalite (top), SAM (middle), and 
LJ surfaces (bottom). The instantaneous interface is defined according to the methodology of Willard and 
Chandler,(17) but with a surface density cut-off of 0.3 of the bulk value of 0.0332 Å-3 for TIP4P-Ew water. 
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Figure S14: Correlation between lateral diffusivities of water near minimum and maximum diffusivity surfaces 
and the average interfacial height fluctuations using the method of Willard and Chandler (17) to define the 
instantaneous interface. Hatched points represent surfaces at hydrophilic fractions of zero or one, filled points 
minimum diffusivity surfaces, and open points maximum diffusivity surfaces. The correlation is enhanced by 
freezing the united atoms (non-head-group atoms) of the SAM chains, as shown by the black versus blue diamond 
symbols. 

 



 15 

 

 
Figure S15: Profiles for water density, hard-sphere excess chemical potential, water diffusivity parallel to the interface, and water dipole re-orientation 
times as a function of distance from the mean interface (defined as the point where water reaches 0.3 of its bulk value). Dipole re-orientation times were 
computed by fitting the time decay of the cosine of the angle between the original dipole moment vector with a stretched exponential, as in the work of 
Debenedetti and co-workers (14). The qualitative trends are the same if an instantaneous interface definition is used instead. In general, hard-sphere excess 
chemical potentials are correlated with both lateral diffusivities and water re-orientation times. However, these spatial correlations seem to break down 
very close to the solid surfaces, where geometric constraints due to the presence of surface atoms seem to impact hard-sphere insertion probabilities and 
water mobility in an unrelated manner.  
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 Diffusivity  
(Å2/ps) Min Surface 

P-value for 
hypothesis 

that min 
diffusivity is 
greater than 
max using 

Welch’s t-test 

Max Surface Diffusivity  
(Å2/ps) 

!"#$ = 0.25 0.2883  
± 0.0029 

 

1.8 x 10-1 

 

   0.2897  
± 0.0033 

!"#$ = 0.25 
 

SAM 
pattern 

 
(super-

attractive) 

0.2874  
± 0.0022 

 
(  0.2660  
± 0.0020) 

 

6.1 x 10-2 
 

(9.4 x 10-1) 

 

   0.2890  
± 0.0017 
 
(  0.2643 
± 0.0021) 

!"#$ = 0.50 0.2603 
± 0.0026 

 

6.7 x 10-2 

 

   0.2624 
± 0.0030 

!"#$ = 0.50 
 

SAM 
pattern 

 
(super-

attractive) 

0.2622  
± 0.0025 

 
(  0.2243  
± 0.0017) 

 

6.4 x 10-1 
 

(7.5 x 10-1) 

 

   0.2617 
± 0.0023 
 
(  0.2237 
± 0.0014) 

Figure S16: Minimum and maximum diffusivity LJ surfaces from the genetic algorithm optimization, as well as LJ 
surfaces with the optimum patterns from SAM surfaces (values for these surfaces with super-attractive particles are 
shown in parentheses). Lateral diffusivities are averaged over 8 independent runs. The central column shows the P-
value for the hypothesis that the minimum value is greater than the maximum using Welch’s t-test, which in all cases 
shows that there are no statistical differences between the minimum and maximum surfaces. 
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Figure S17: The natural logarithm of the ratio of lateral diffusivity to its bulk value is shown as a function of the 
orientational, translational, and total contributions to hydration water entropy 8 Å from the interface (reported 
relative to bulk waters). Filled symbols are minimum diffusivity surfaces (distributed hydrophilic groups), open 
symbols are maximum diffusivity surfaces (clumped hydrophilic groups), and hatched symbols are surfaces with 
hydrophilic fractions of 0.0 or 1.0. When all atoms in SAM chains except head-groups are frozen, all correlations 
are enhanced, mainly due to more negative translational contributions.  
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 !"#$  = 0.125 !"#$  = 0.25 

regularly-
spaced 

  

circularly-
clustered 

  

single 
stripe  

 

Figure S18: Top-views of surfaces with specific patterns to further test the genetic algorithm. Regularly-spaced 
and circularly-clustered hydroxyl groups represent the extremes of diffusivity suggested by populations of surfaces 
discovered by the genetic algorithm. The single stripe configuration for 25% hydroxyl-terminated chains represents 
a more exotic patterned to rudimentarily test for anisotropy in the diffusivity in directions parallel to and 
perpendicular to the stripe, as discussed in the main text. 
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5) Dataset file descriptions 
 
Dataset S1: Example Cristobalite Structure File 
Dataset S2: Example Cristobalite Topology File 
Dataset S3: Example SAM Structure File 
Dataset S4: Example SAM Topology File 
Dataset S5: Example LJ Structure File 
Dataset S6: Example LJ Topology File 
Dataset S7: SAM Overall Parameter File 
Dataset S8: SAM Bonded Parameter File 
Dataset S9: SAM Non-bonded Parameter File 
Dataset S10: Methyl-terminated SAM Parameter File 
Dataset S11: Hydroxyl-terminated SAM Parameter File 
Dataset S12: VDW Radii for Solvation 
Dataset S13: Energy Minimization Input File 
Dataset S14: Equilibration NVT1 Input File 
Dataset S15: Equilibration NPT Input File 
Dataset S16: Equilibration NVT2 Input File 
Dataset S17: Production Input File 
Dataset S18: Cristobalite Simulation Run File 
Dataset S19: SAM Simulation Run File 
Dataset S20: LJ Simulation Run File 
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