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SI Materials and Methods 
 
hiPSC Expansion  
Experiments were conducted using the BC1 hiPSC cell line (1, 2). Undifferentiated hiPSCs were 
expanded on an inactivated layer of mouse embryonic fibroblasts (MEF) in media containing 
80% ES-DMEM/F12, 20% knockout serum and 10 ng/mL of bFGF. in a humidified incubator set 
to 37 °C and 5 % CO2.  Stem cells were routinely tested for mycoplasma contamination in 3-
month intervals, karyotyped once a year, and stained for markers to ensure pluripotency.   
 
hiPSC Differentiation 
Activated micropatterned glass coverslips (CYTOO) were coated with collagen IV (Corning) at 
50 µg/mL for 1 hour at room temperature.  Following coating, samples were washed with 1X 
PBS and allowed to air dry for at least 20 minutes.  hiPSCs cultured on MEF were collected 
using EDTA, strained with a 40 µm strainer mesh, re-suspended and seeded in media 
containing α-MEM/DMEM, 10% FBS and 0.1 % β-Mercaptoethanol (Diff Media), supplemented 
with 10 µM Y-27632 (StemCell Technologies), at 1x106 per micropatterned coverslip.  After 4 
hours of attachment, Y-27632 was removed or retained as outlined in the text, and fresh Diff 
Media was replaced.  After 48 hours of culture, cells were fixed for immunofluorescence 
staining. 
 
To induce early vascular cell (EVC; specification containing a bi-potent population of endothelial 
cells (CD31+/VECad+) and pericytes (PDGFR-β+/SM22α +), seeded micropatterns were 
cultured in Diff Media, for a total of six days with media changed every other day.  On day six of 
differentiation, media was switched to EC Diff Media, containing complete Endothelial Growth 
Media (EGM), supplemented with 10 µM TGFβ-inhibitor and 50 ng/mL of VEGF as previously 
described (3-7).  Media was changed every other day until day 12 of differentiation, in which 
they were fixed and stained to access the degree of EVC specification. 
 
Immunofluorescent Staining  
Cells cultured on micropatterned surfaces were washed with 1 X PBS, then fixed for 20 minutes 
with 3.7% paraformaldehyde (PFA).  PFA was removed, and the samples were then washed 
three times with 1 X PBS.  Following washing the surfaces, cells were permeabilized with 0.1% 
Triton X-100 for 10 minutes.  Samples were washed then incubated with 1 % BSA solution for 
one hour at room temperature.  Subsequently, micropattern surfaces were incubated with 
primary antibodies overnight at 4°C, then secondary conjugated for 1 hour (SI Appendix, Table 
S1).  DAPI was incubated for 3-5 minutes to mark nuclei.  Finally, the stained micropatterns 
were inverted and mounted on glass coverslips using Mounting Media (Thermo Fisher 
Scientific). 
 
Imaging 
Images were acquired using a Zeiss 780 confocal microscope fit with a 10x objective.  To image 
the entire micropattern arena, title image acquisition was used in addition to a Z-stack (5 µm 
interval slices) in three channels corresponding to DAPI, Alexa Fluor 546, and Alexa Fluor 488.   
 
Image Quantification  
We report Brachyury expression as the nuclear / cytoplasmic intensity ratio: a measure which is 
independent of the imaging conditions and easily compared across multiple biological 
replicates, and the arbitrary threshold of 0.5 standard deviations above the mean was selected 
to indicate the positive ensemble. To quantify the degree of cytoskeletal tension imposed by 



micropattern geometry, integrated pixel intensities of RhoA or pMLC were normalized per 
geometric area.  Each marker was quantified in at least two independent micropattern 
experiments.  
 
Support Vector Machine Learning 
For a walkthrough of the protocol, please see Supplementary Methods. The 
immunofluorescence images were smoothed to obtain local population averages. First two 
masks were obtained: one for the patterns, or the entire field for the unconfined case, and a 
second for the nuclei. Both the pattern and nuclear masks were obtained by identifying bright 
regions of the field when compared to background intensity. Given the appropriate masks, each 
channel was averaged within discs of a few cell diameters in radius. For day 2 images, the three 
channels of interest for each experiment were mean RhoA or mean pMLC normalized by cell 
density, cell density, and Brachyury Expression. Mean RhoA and PMLC expression are local 
population averages within the disk. The local cell density was reported as the fraction of each 
disk occupied by portions of the nuclear mask. Brachyury Expression was similarly calculated 
by taking the local spatial average of intensities. For day 12, the channels of interest were again 
cell density with the addition of distance to the perimeter of the pattern, SM22ɑ, and VECad 
which were similarly reported as spatial averages. Note unlike RhoA and pMLC which are 
normalized by cell density, SM22ɑ, and VECad are not normalized by cell density. For day 2, 
two class learning was accomplished between low and high (0.5 standard deviations above the 
mean) Brachyury regions. For day 12, multiple SVM’s were trained to 100 masks for both the 
SM22ɑ, and VECad channels, predicting each percentile of the expression landscape. 
Performance statistics (sensitivity and specificity) were calculated. For day 2, the predictive 
power of only cell density, only pMLC/RhoA expression, and dual channels were contrasted. 
Note a radial box function (Gaussian) kernel was used within the implementation of the SVM. 
The MATLAB functions “fitcsvm” and “predict” were utilized. 
  



SI Figures 
 
 

 
 
Figure S1:  Micropattern Design.  (A) Representative images of large (1.0 x10^5 - 2.5 x10^5 
µm2), medium (1.0 x10^4 - 6.0 x10^4 µm2) and small micropatterns (4.0 x10^3 - 1.0 x10^4 µm2) 
used in this study are displayed. Micropatterns (manufactured by CYTOOTM) were designed to 
impose varying levels of cytoskeletal tension by creating multiple geometries (e.g. squares, 
triangles, stars, hexagons etc.) of different sizes. To prevent any morphogen cross-talk between 
the micropatterns, a gap distance of 200 µm was introduced between each shape.  (B) Table 
outlining the shapes and corresponding dimensions of the micropatterned geometries. (C) 
Pseudo-curvature for a variety of patterns. Cells attached at the boundary of a pattern express 
higher levels of pMLC/RhoA than those near the center of a pattern due to higher cytoskeletal 
tension. One explanation for the increased tension is the larger difference in osmolarity between 
the media and the interior of the cell than the interiors of two neighboring cells. In particular, 
points on the edge of patterns that are near cusps highlight this effect as cells in these regions 
have few neighboring cells. To illustrate this phenomenon, we constructed the following function 
we call pseudo curvature. First the distance to the shape’s perimeter 𝑃𝐷 is calculated. Next, a 
neighbor distance function for each point on the perimeter defined to be: 

Shapes Dimensions (µm)
Circle 10/30/40/50/100/300/600/1000 diameter
Isosceles Triangle 62.5/125/250/501 equal lengths
Equilateral Triangle 67/134/269/538/807/1346 lengths 
Square 88/117/354 length
Square + 2 semi-
circles 43/87/174 height

Square + 4 semi-
circles 33/66/132/197/328 square length

Hexagon 54/109/219
Octagon 42/82/164
Heart (1 equilateral 
triangle + 2 semi-
circles)

80/160/321

Star ( 5 equilateral 
triangles + 1 
pentagon)

22.5/45/90/180/270/449

Star (10 pointed) 16.7/67/133.9 pointed edge
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where [𝒙,𝒚] are the points which make up the shape’s perimeter; 𝐿 is the number of points in 
the shape’s perimeter; and 𝐸𝐷 is the equivalent diameter of the shape (the diameter of a circle 
with the same area as the shape) is calculated. This function is large for points far away from 
the majority of the pattern e.g. points on a star. The neighbor distance and distance to the 
shape’s perimeter are then normalized by the maximum and minimum values obtained for all 
shapes in the ensemble: 
 𝑁𝐷 → 𝑁𝐷 −min!"" !!!"#$(𝑁𝐷) / max!"" !!!"#$ 𝑁𝐷 −min!"" !!!"#!(𝑁𝐷)  and 
 𝑃𝐷 → 𝑃𝐷 −min!"" !!!"#$(𝑃𝐷) / max!"" !!!"#$ 𝑃𝐷 −min!"" !!!"#$(𝑃𝐷) .  
 
The pseudo curvature is then defined for every point within each shape to be: 𝑃𝐶 =  𝑟 +
𝑁𝐷 1 − 𝑃𝐷  where 𝑟 = 1.5. 
 
 
 
 
 
  



 

 
 

 
Figure S2:  SVM for pMLC/RhoA Expression and Density for Brachyury Expression in 
Unconfined Differentiation (A) Schematic describing mesoderm induction in unconfined 
domains.  Control samples for (Bi) pMLC and (Ci) RhoA expression at low and high-density 
fields separately analyzed (pMLC shown combined in the main text in Fig 1). (Bii, Cii) Brachyury 
expression is qualitatively much higher in low density cases (corresponding to higher levels of 
pMLC/RhoA as shown in the main text. Interestingly, the phase space is narrower in the low-
density cases suggesting cell density and tension have a stronger co-dependence. (Biii, Ciii) 
While Brachyury expression gradient shows a similar trend across the phase space, cell density 
remains as the strongest SVM Brachyury predictor. Scale bars, 100 µm. 
 
 



 

 
Figure S3.  RhoA/ROCK Inhibition with Y-27632 Decreased pMLC Expression.  (A)  
Representative images of hiPSCs seeded at low and high densities after 48 hours stained for 
pMLC, with and without 10 µM Y-27632.  (B) Quantification of mean pMLC expression shows 
decreased intensity with RhoA/ROCK inhibition.  Data quantified from 10 fields of view. 
Statistics acquired via an un-paired t -test where **p < 0.05, ***p < 0.001.   
Scale bar is 100 µm. 
 
 
 
 
 
 
 



 
 
Figure S4: Cytoskeletal Inhibition of Micropatterned Domains.  Fixed micropatterns after 48 
hours of differentiation as a function of RhoA/ROCK inhibition with Y-27632 (top) and 
microtubules with Nocodazole (bottom). While disruption of microtubules also results in the 
disruption of mesodermal patterning on the edge of the micropatterns, local nuclear 
deformations were not permissive to our image segmentation algorithms.  
 
 
 
 



 
 
Figure S5: Specificity and Sensitivity Analysis on Day 12. The unweighted pixel 
sensitivity/specificity are shown for regions bounded below by each percentile of the 
VECad and SM22α phase spaces (X Threshold Percentage) for (A) control and (B) with 
Y-27632. Additionally, the fraction of the phase space is displayed. As the percentile 
increases, the fraction of the phase space decreases and subsequently sensitivity 
decreases while specificity increases.  
 
 



 
 
Figure S6: Control Day 12 Micropattern Vascular Specification. (A i, ii) Bright-field images. 
We can see in the highest density cases, a ring of ECs (identified by white arrows) around a 
hypertrophic core of differentiated cells. (A iii) In cases where there is high density in smaller 
micropatterns, we can observe the entire patterns are occupied by ECs, (Aiv) while in small 
micropatterns with low density morphologically we can see pericytes. (B) Representative 
differences in early vascular specification showing (Bi) bright-field and immunofluorescence 
images (B,ii-iv). 



 
Figure S7: Example fluorescent traces of SM22α (green) and VECad (red) expression in 
control micropatterns at day 12 of differentiation.  

 



 
 
Figure S8: Example fluorescent traces of SM22α (green) and VECad (red) expression in Y-
27632 micropatterns at day 12 of differentiation.  
 
 
  



 
Supplementary Methods 

 
 
Figure S9: Image Processing for Day 2 Micropatterns. (Ai) First the original image is 
displayed and the image is segmented where the Dapi are blue, Brachyury in green and 
pMLC/RhoA in red.   (B) The Dapi and pMLC/RhoA channels are then used to construct the 



nuclear and pattern masks respectively. Note in the unconfined case, the pattern mask is 
replaced by a cell mask in the low-density case or the entire field of view in the high-density 
case. The Dapi mask is then used to calculate the approximate number of cells within each 
pattern based on the total area occupied by nuclei and the approximate nuclear area. Next, four 
channels – Dapi mask, pattern mask, Brachyury, and pMLC/RhoA – are resized by a factor of 
five. This step is done to speed up the computation roughly 25-fold and does not impact the 
results since we are not concerned with small subcellular detail – only distinguishing between 
nucleus and cytoplasm. (C) After this step, the Brachyury channel is separated into its nuclear 
and cytoplasmic components based on the masks. (D) Next, the local sum over an area of a few 
cells is calculated for six channels – nuclear area, cytoplasmic area, mask area, nuclear 
Brachyury, cytoplasmic Brachyury, and (E) pMLC/RhoA. Following this step, normalized 
channels are constructed: sum nuclear area is divided by sum mask area; sum nuclear 
Brachyury is divided by sum nuclear area; sum cytoplasmic Brachyury is divided by sum 
cytoplasmic area; and sum pMLC/RhoA is divided by sum mask area. This yields the nuclear 
fraction channel and normalized pMLC/RhoA expression channel used for the subsequent SVM 
analysis in addition to the nuclear Brachyury intensity and cytoplasmic Brachyury intensity. (F) 
Finally, our measure of the Brachyury expression is calculated by taking the ratio of the nuclear 
and cytoplasmic intensities. 
 
Support Vector Machine Workflow 

 
 

Figure S10. Aggregation of Channels Used for SVM:  First, the three channels used for SVM 
- normalized pMLC/RhoA expression (A), nuclear density (B), and Brachyury expression (C) – 
are aggregated across many patterns. Patterns are excluded based on density and size: small 
patterns, and overgrown patterns (where cells are clustered in 3D) are removed due to their 
poor segmentation in the Dapi channel. (Note that when multiple biological replicates were 
combined for the figure in the main text, the pMLC channel was scaled by the mean intensity on 
each day to account for variability in staining and imaging parameters.)  
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Figure S11. Generation of the Brachyury (T) space:  The aggregated channels are binned 
and a frequency distribution (B) is constructed in pMLC/RhoA (A) and nuclear density space 
(D). That space is then limited to only high frequency regions (C). For each point in the reduced 
phase space, the corresponding Brachyury Expression values (E) are averaged to generate the 
Brachyury expression space (F). That space is thresholded to obtain a binary indicating the high 
and low Brachyury expressing regions (G).  
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Figure S12. SVM Analysis: The high Brachyury space (A) is then smoothed to generate the 
training data used for SVM analysis (B). Three channels - normalized PMLC/RhoA expression, 
nuclear density, and binary Brachyury expression – are then used by implementing the 
MATLAB fitcsvm function where “Standardize” is set to true, and data is weighted based on the 
frequency distribution. Additionally, “BoxConstraint”, which impacts the cost associated with 
misclassifying training data, is set to 1. The “rbf”, radial basis function (Gaussian), kernel is 
selected and 80% of the data (C) is used to predict the remaining 20% (D) using the MATLAB 
function “predict”. This process is repeated five times and the points are randomly selected 
allowing for multiple classifications of the same point in the phase space, while some others 
remain untested (E,F). A binary is generated for the tested space (any point identified as high 
Brachyury in at least one run is considered positive)F. The accuracy measures (weighted 
sensitivity, weighted specificity, unweighted pixel sensitivity, and unweighted pixel specificity) 
are calculated comparing the tested binary (F) and the true binary (I) from the training data 
where weights are drawn from the frequency space (G). Finally, the predicted boundary is 
constructed, filling holes, smoothing edges, and displayed over the Brachyury expression space 
where true points are identified with dots (J). 
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Figure S13. Day 12 Support Vector Machine Learning to Predict Vascular Fate: This 
process is similar to Day 2. (Ai) The original image from day 12 analysis is processed. In this 
case, Brachyury expression is replaced by total VECad (Aii) and SM22α (Aiii) expression which 
are not normalized by cell number. PMLC/RhoA is similarly replaced with distance from the 
perimeter of the pattern (Aiv). After perimeter distance, and nuclear density are aggregated in 
the same fashion as is done for PMLC/RhoA and nuclear density for Day 2, the VECad and 
SM22α space is generated (SM22α example shown in Bii). Here rather than taking the average 
of all the pixels that contribute to each point within the space, the percent of contributing pixels 
which are above the threshold value for each channel is calculated. Binary masks (SM22α 
example shown Biii) are then generated for every percentile (0-99) of both spaces and multiple 



SVMs are trained. Here, a simple 2-fold cross validation is accomplished taking half the points 
as training data and testing the other half for a total of 400 SVMs constructed. Now each point in 
the phase space is identified with two numbers, VECad percentile and SM22α percentile. The 
2D Day12 colormap (Ciii) is then used to visualize both the predicted (Ciii) and measured 
landscape of VECad and SM22α expression. 
 

 

 
 
Figure S14: (A) Control micropatterns show clear measurable and distinct expression patters of 
SM22α and VECad expression as a function of density and distance from the perimeter. (B) The 
gradient of SM22α and VECad is much more uniform throughout the phase space under Y-
27632.  
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Supplementary Tables 
 
 
Experiment    Dual 

Sensitivity  
Dual 

Specificity  
Dense 

Sensitivity  
Dense 

Specificity  
pMLC 

Sensitivity  
pMLC 

Specificity  

n =1 (68 
patterns) 

Normalized 97 99 93 98 42 97 
Pixels 99 90 98 83 74 27 

                
n =2 (93 
patterns) 

Normalized 98 98 49 98 76 98 
Pixels 98 87 69 72 81 45 

                
n =3 (27 
patterns) 

Normalized 97 85 81 82 43 76 
Pixels 98 88 74 69 57 53 

                
Combined 

pMLC 
Normalized 96 99 92 99 50 99 

Pixels 98 92 97 81 81 26 
                

Mean  
Normalized 97.3 94 74.3 92.7 53.7 90.3 

Pixels 98.3 88.3 80.3 74.7 70.7 41.7 
                

Standard 
Deviation 

Normalized 0.58 7.81 22.75 9.24 19.3 12.42 
Pixels 0.58 1.53 15.5 7.37 12.34 13.32 

 
Table S1: Sensitivity and Specificity for Individual Biological Repeats from Day2. Here the 
sensitivities and specificities for each biological repeat are shown separately along with the 
combined results of all three repeats pooled and the mean/standard deviation of the separate 
biological repeats. The Normalized values correspond to the weighted results (labelled simply 
“Specificity/Sensitivity” in the main text). Pixel values correspond to statistics unweighted by the 
frequency of each pixel observed. 
 
 
 

Antibody Source Catalog # Purpose 
Host 

Species & 
Reactivity 

Working 
Concentration 

DAPI Roche 10236276 IF Nucleus 1:10,000 

Alexa Fluor 
488 

Life 
Technologies A-11008 IF Goat anti-

rabbit 1:1,000 



 
Table S2: Antibodies Used in This Study. IF = Immunofluorescence 
 
 
SI Movies 
 
Movie S1: Example 1-BC1 hiPSCs were imaged for 44 hours after 4 hours attachment 
in the presence of 10 µM Y-27632.  Cells seeded in a random fashion, are able to 
survey the micropattern area, grow into to the confined domains, and undergo 
mesodermal specification in differentiation medium. 
 
Movie S2: Example 2 – BC1 hiPSCs differentiating on micropatterned domains. 
 
Movie S3: Example 3 – BC1 hiPSCs differentiating on micropatterned domains. 
 
Movie S4: Example 4 – BC1 hiPSCs differentiating on micropatterned domains. 
  

Alexa Fluor 
546 

Life 
Technologies A-10036 IF Donkey anti-

mouse 1:1,000 

VECad (F-8) Santa Cruz Sc-9989 IF Mouse 
Polyclonal 1:100 

SM22α Ab Cam Ab 14106 IF Rabbit anti-
human  1:100 

Brachyury 
(T) 

R&D 
Systems MAB20851 IF Rabbit 

Monoclonal 1:200 

Brachyury 
(T) 

R&D 
Systems 

AF2085 
 IF Goat 

Polyclonal 1:200 

Rho A Abcam Ab54836 IF Mouse 
Monoclonal 10 µg/mL 

pMLC Light 
Chain 

(Thr18/Ser19 

Cell 
Signaling 

Technology 
3674T IF Rabbit 

Polyclonal 1:200 
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