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1 Data analysis

We used data from [1] which is publicly available in the NCBI Sequence Read Archive under the acces-
sion SRA062737. It includes four data files (SRR630110, SRR630111, SRR630412, and SRR630413)
which we used for our analysis. We extracted the data corresponding to the MOI2 deep sequencing
experiment and separated it into time points by checking each read for matches to the primers iden-
tified in the supplementary information of [1]. Any reads with a mismatch between the annotation of
the forward and reverse primers were discarded. Any remaining unsorted reads were excluded from
the following analysis.

1.1 Identifying and sorting spacers

We extracted and catalogued spacers from the published raw read data of [1]. Since only the expanding
CRISPR end was sequenced, each read represents the longest possible sequence from wild type to
leader end and so further assembly was not required (SI Figure 1 and SI Figure 2).

Because of this very specialized data structure, detecting CRISPR spacers and inferring their
order was conceptually straightforward. A spacer was defined as any sequence flanked by two repeats.
Since each read was bordered by wild type sequence and leader end sequence, all repeat sequences
were complete and not truncated. SI Figure 2 shows a typical read in more detail. Note that in
this orientation, the spacer numbered “1” is found at the end of the read. To collect spacers, we
(1) detected repeat sequences, reversing the read if the repeats were reversed, (2) inferred spacers as
sequences between repeats, and (3) categorized spacers by comparing to previously detected spacers.

Repeat sequence variation was present due to sequencing errors or naturally occurring SNPs. We
used a regular expression to match variations on the number of Ts in a 5-T region of the repeat - the
forward repeat was matched with ”GTTT*GTACTCTCAAGATTTAAGTAACTGTACAAC” and the
reverse repeat was matched with ”GTTGTACAGTTACTTAAATCTTGAGAGTACAAA*C”. These
expressions match an identical string with three or more Ts or As in the region of the asterisk. This
is a reasonable allowance to make since the 454 sequencing platform used to sequence this data is
known to have high insertion and deletion rates in homopolymer regions [2].

To detect the most possible spacers, we developed methods to deal with repeat sequence variation
beyond simple insertions and deletions in the homopolymer region. We inferred the presence of an
undetected repeat by measuring the length of sequence before the first detected repeat, after the last
detected repeat, and between two repeats. If any of these lengths exceeded its threshold (determined
based on the known primer lengths and average spacer length, respectively), a more careful search
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Figure 1: Schematic of the portion of the S. thermophilus CRISPR locus sequenced in [1]. We identified
spacers with a type i, a locus position j, and bacteria number k. Coloured rectangles to the right
of the dashed line represent spacers sequenced as the locus expands. Wild type spacers are shown in
greyscale.

ATCAGACACGGAAAGTAAGGATTGACAAGGACAGTTATTGATTTTATAATCACTATGTGGGTATAA
AACGTCAAGATTTTATTTGAGGTTTTTGTACTCTCAAGATTTAAGTAACTGTACAACCCAACACTC
AAACGTTGCAAACGCAAGCTTGTTTTTGTACTCTCAAGATTTAAGTAACTGTACAACATCACTTAC
GAGGTTGACGGTTTTGTAGATGTTTTTGTACTCTCAAGATTTAAGTAACTGTACAACTGTTTGACA
GCAAATCAAGCGTGTCTGATCTGAGCGGGCTGGCAAGGCGCATAGN

CRISPR repeat, forward primer, reverse primer, spacer

Figure 2: Example read covering the expanding CRISPR locus. The forward primer which overlaps
with the leader sequence is shown in blue italics. The reverse primer which overlaps the first wild type
spacer is shown in green italics. CRISPR repeats are shown in bold red and spacers in bold black.
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for repeats was performed using the pairwise2 module in Biopython which performs a local pairwise
alignment between the ideal repeat sequence and the read in question.

1.1.1 Pairwise alignment settings

If the alignment with the true repeat (36 nucleotides long) was less than 31 nucleotides long, the
alignment was discarded. The scoring system was as follows: match score of 1, mismatch score of -1,
gap open score of -0.8 for the target sequence, gap open score of -0.7 for the repeat, and gap extend
penalty of -1 for each sequence. The gap open scores were chosen to be different for the repeat and
read so that the algorithm could identify how many gaps were opened and in which each sequence, in
order to properly identify the start and end of each spacer.

If no good match was found in a region between two repeats, the remaining “long” spacer was
discarded and a placeholder was inserted to preserve position information. Using this method, the
number of detected repeats increased from 550931 to 622067, a 12.9% increase.

Repeats detected in this second search sometimes contained gaps with respect to the read or vice
versa. In these cases, conventional labelling of nucleotide position prevented accurate detection of
the start and end of adjacent spacers. We detected how many gaps were present and whether they
occurred in the repeat or the read and then adjusted the indices of adjacent spacers accordingly. The
scoring scheme was carefully chosen so that the number and placement of gaps could be inferred from
the score.

1.1.2 Spacer type assignment

We compared newly detected spacers to a growing list of previously detected spacers to assign it a
type. If it matched an existing spacer exactly, it was assigned that type. Otherwise, a global pairwise
alignment was performed between the new spacer and all existing spacers. If a match was found for
which the score subtracted from the spacer length was within a chosen cutoff, the new spacer was
assigned that type. This definition of cutoff is equivalent to the number of allowed SNPs between
spacers under the scoring scheme used. If no match was found in either case, the new spacer was
assigned a new type.

To choose an appropriate tolerance for spacer alikeness, we tested this spacer sorting algorithm
on a small sample of data (190 reads) as the cutoff was increased from 0 to 9. SI Figure 3 shows the
number of unique spacer types detected as the cutoff is changed. It can be seen that there is a clear
plateau between cutoff values of 1 and 8, which indicates that the system is insensitive to the cutoff
if it falls in this range. We chose a cutoff of 2 for the analysis.

In this way, we created a master dataset for each time point that contained each detected spacer, a
number indicating the source read, the spacer position in the read, and the assigned spacer type. The
definition of spacer type was consistent across time points, or in other words the same comparison list
was carried through all time points.

1.2 Analysis

We extracted CRISPR spacers from the raw reads at each time point by finding sequences flanked by
an S. thermophilus CRISPR repeat (SI Figure 1). Newly detected spacers were added to an existing
group if they were within an edit distance of 2 of another spacer in that group. Data was organized
into an array sijk (equation 1).

sijk(t) =

{
1 if spacer type i is at position j in bacterium k

0 otherwise
(1)

We tracked individual spacer types, or “clones”, niB(t), by summing over all bacteria and all locus
positions: niB(t) =

∑
j,k sijk(t).
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Figure 3: Number of unique spacer types vs. cutoff for 190 reads from time point 11. The green
vertical dashed line indicates the selected cutoff.

Most bacteria acquired only a single spacer; over half of bacteria from days 4-14 which had acquired
1 or more spacers only acquired a single spacer (SI Figure 4).

2 Model description

Table 1: Model parameters
Parameter Description Value
1
gC0

Bacterial doubling time 41.7 min

C0 Inflow nutrient concentration in
units of bacterial cell density

α Phage adsorption rate 2× 10−10 min−1

B Phage burst size 170
F Chemostat flow rate
pV Probability of phage success

for bacteria without spacers
e Spacer effectiveness
r Rate of spacer loss
η Probability of spacer acquisition

Parameter values are as above unless otherwise indicated. Representative values estimated for
Streptococcus thermophilus bacteria in lab conditions.

We model bacteria and phages interacting in a chemostat. The populations we track are nutrient
concentration C, phages nV , and bacteria nb which can either have no spacer (n0b) or a spacer of type
i (nib). Nutrients flow in at concentration C0 with rate F , and all species flow out with rate F . The
total number of bacteria with a spacer is nsb and the total number of bacteria is nB . The phage in
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Figure 4: Total number of spacers at each time point in the experiment. Position 1 represents the
oldest spacer (closest to the wild type spacers). Over half of all bacteria that acquired spacers, even
at the end of the experiment, only acquired a single spacer.

the solution are all clonal and have m distinct protospacers. Bacteria grow at rate gC. With rate α,
a phage interacts with a bacterium. With probability pV , the phage will kill bacteria without spacers
and produce a burst of new phages with size B, while for bacteria with spacers that probability is
reduced to psv = (1− e)pV (0 ≤ e ≤ 1). Bacteria without spacers that survive an attack have a chance
to acquire a spacer with probability η. Bacteria with a spacer lose their spacer at rate r. Parameter
descriptions and default values are shown in SI Table 1.

2.0.1 Reactions

Table 2 lists all the interactions present in our model between individual bacteria (b), phages (V ) and
nutrients (C).

2.1 Master equation

The reactions in Table 2 can be formulated as a master equation describing the probability of observing
n0b bacteria without spacers, the set nib bacteria with spacers of type i, nV phages, and a nutrient
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Table 2: Model reactions
b0,i + C

g−→ 2b0,i bacterium divides

b0,i
F−→ ∅ bacterium flows out

V
F−→ ∅ phage flows out

∅ FC0−−−→ C nutrients flow in

C
F−→ ∅ nutrients flow out

b0 + V
αpV−−−→ BV interaction, phage wins

b0 + V
α(1−pV )(1−η)−−−−−−−−−→ b0 interaction, bacterium survives

b0 + V
α(1−pV )η/m−−−−−−−−→ bi interaction, bacterium survives and acquires a spacer

bi + V
αpsv−−→ BV interaction, phage wins

bi + V
α(1−psv)−−−−−→ bi interaction, bacterium survives

bi
r−→ b0 bacterium loses spacer

concentration of C at time t (equation 2).

dP (n0b , {nib}, nV , C, t)
dt

= g(C + 1)(n0b − 1)P (n0b − 1, {nib}, nV , C + 1, t)

+

m∑
j=1

g(C + 1)(njb − 1)P (n0b , {n
i 6=j
b }, n

j
b − 1, nV , C + 1, t)

+ F (n0b + 1)P (n0b + 1, {nib}, nV , C, t)

+

m∑
j=1

F (njb + 1)P (n0b , {n
i6=j
b }, n

j
b + 1, nV , C, t)

+ F (nV + 1)P (n0b , {nib}, nV + 1, C, t)

+ F (C + 1)P (n0b , {nib}, nV , C + 1, t)

+ FC0P (n0b , {nib}, nV , C − 1, t)

+ αpV (n0b + 1)(nV −B + 1)P (n0b + 1, {nib}, nV −B + 1, C, t)

+ α(1− pV )(1− η)n0b(nV + 1)P (n0b , {nib}, nV + 1, C, t)

+

m∑
j=1

α(1− pV )η

m
(n0b + 1)(nV + 1)P (n0b + 1, {ni 6=jb }, n

j
b − 1, nV + 1, C, t)

+

m∑
j=1

αpsv(n
j
b + 1)(nV −B + 1)P (n0b , {n

i 6=j
b }, n

j
b + 1, nV −B + 1, C, t)

+

m∑
j=1

α(1− psv)n
j
b(nV + 1)P (n0b , {n

i 6=j
b }, n

j
b, nV + 1, C, t)

+

m∑
j=1

r(njb + 1)P (n0b − 1, {ni6=jb }, n
j
b + 1, nV , C, t)

−

F (n0b +

m∑
j=1

njb + nV + C + C0) + gC(n0b +

m∑
j=1

njb)

+αnV (n0b +

m∑
j=1

njb) + r

m∑
j=1

njb

P (n0b , {nib}, nV , C, t)

(2)
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The 1st term is included only for n0b > 1, the 2nd term if njb > 1, the 7th term for C ≥ 1, 8th term

if nV > B − 1, the 10th term for njb ≥ 1, the 11th term for nV > B − 1 and the 13th term for n0b ≥ 1.

2.2 Mean-field dynamics

We can also write equations for the averages of the microscopic quantities (equations 3 to 6).

2.2.1 Microscopic equations

d
〈
n0b
〉

dt
= −F

〈
n0b
〉

+ g
〈
Cn0b

〉
− αpV

〈
n0bnV

〉
− α(1− pV )η

〈
n0bnV

〉
+

m∑
j=1

r
〈
njb

〉
(3)

d
〈
njb

〉
dt

= −F
〈
njb

〉
+ g

〈
Cnjb

〉
− αpsv

〈
njbnV

〉
− r

〈
njb

〉
+
α(1− pV )η

m

〈
n0bnV

〉
(4)

d 〈nV 〉
dt

=− F 〈nV 〉+ αpV (B − 1)
〈
n0bnV

〉
− α(1− pV )

〈
n0bnV

〉
+

m∑
j=1

αpsv(B − 1)
〈
njbnV

〉
−

m∑
j=1

α(1− psv)
〈
njbnV

〉 (5)

d 〈C〉
dt

= F (〈C〉 − C0)− g

〈
C

n0b +

m∑
j=1

njb

〉 (6)

We approximate the correlations 〈XY 〉 ≈ 〈X〉 〈Y 〉.

d
〈
n0b
〉

dt
= −F

〈
n0b
〉

+ g 〈C〉
〈
n0b
〉
− αpV

〈
n0b
〉
〈nV 〉 − α(1− pV )η

〈
n0b
〉
〈nV 〉+

m∑
j=1

r
〈
njb

〉
(7)

d
〈
njb

〉
dt

= −F
〈
njb

〉
+ g 〈C〉

〈
njb

〉
− αpsv

〈
njb

〉
〈nV 〉 − r

〈
njb

〉
+
α(1− pV )η

m

〈
n0b
〉
〈nV 〉 (8)

d 〈nV 〉
dt

=− F 〈nV 〉+ αpV (B − 1)
〈
n0b
〉
〈nV 〉 − α(1− pV )

〈
n0b
〉
〈nV 〉+

m∑
j=1

αpsv(B − 1)
〈
njb

〉
〈nV 〉 −

m∑
j=1

α(1− psv)
〈
njb

〉
〈nV 〉

(9)

d 〈C〉
dt

= F (〈C〉 − C0)− g 〈C〉

〈n0b〉+

m∑
j=1

〈
njb

〉 (10)

Then, we replace means by deterministic variables n0b , n
j
b, nV , and C.

dn0b
dt

= −Fn0b + gCn0
b − αpV n0bnV − α(1− pV )ηn0bnV +

m∑
j=1

rnjb (11)

dnjb
dt

= −Fnjb + gCnjb − αp
s
vn

j
bnV − rn

j
b +

α(1− pV )η

m
n0bnV (12)
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dnV
dt

= −FnV + αpV (B − 1)n0bnV − α(1− pV )n0bnV

+

m∑
j=1

αpsv(B − 1)njbnV −
m∑
j=1

α(1− psv)n
j
bnV

(13)

dC

dt
= F (C − C0)− gC

n0b +

m∑
j=1

njb

 (14)

2.2.2 Macroscopic equations

We can define new variables, nsb =
∑m
j=1 n

j
b, nB = n0b + nsb, ν = nsB/nB (1 − ν = n0B/nB), and

psV = (1− e)pV .

dn0b
dt

= −Fn0b + gCn0
b − αpV n0bnV − α(1− pV )ηn0bnV + rnsb (15)

dnsb
dt

= −Fnsb + gCnsb − α(1− e)pV nsbnV − rnsb + α(1− pV )ηn0bnV (16)

dnV
dt

= −FnV − αnBnV + αpV (1− eν)BnBnV (17)

dC

dt
= F (C − C0)− gCnB (18)

dnB
dt

= −FnB + gCnB − αpV (1− eν)nBnV (19)

2.3 Description of simulations

Simulations were written in C++ and performed on a Lenovo ideapad Y700 and on SciNet. We
primarily used the tau leaping method [3] and compared with Gillespie simulations for some cases.
Both methods showed good agreement for the mean-field behaviour of bacteria and phages (SI Figure
5) and produced the same qualitative behaviour for individual spacer types (SI Figure 6).

2.4 Parameter choices

Burst size for phage that target S. thermophilus is between 140-200 [4]. The rate of adsorption for
phage is of the order of 10−8 min−1 ml [5]. Using a volume of V = 50ml, our total adsorption rate is
α = 2× 10−10 min−1 per bacteria and phage.

[6] measured the maximum growth rate of S. thermophilus in milk at 42◦C to be 2.4×10−2 min−1.
This corresponds to gC0 in our model.

The other parameters were picked in order to get a stable fixed point where phage and bacteria
coexist, with population sizes relevant to experiments such as [1].

2.5 Simulation results

Our simulations were performed with a maximum of m = 500 spacer types that can be acquired by
bacteria. This upper limit on the number of spacer types limits the total diversity of spacer types
that can be observed and only impacts the spacer abundance distribution at large η. The qualitative
simulation results, namely a continuous turnover of individual spacers and the presence of a non-trivial
steady-state spacer abundance distribution, are insensitive to the choice of η provided not all m spacer
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Figure 5: Total bacteria (nB) and total phage (nV ) as a function of time for a Gillespie simulation
and a tau leaping simulation. The two simulation techniques produce very similar results.

0 100 200 300 400 500
Time (generations)

0

10000

20000

30000

40000

50000

60000

70000

80000

Po
pu

la
tio

n

A

0 100 200 300 400 500
Time (generations)

B

Figure 6: Comparison of individual spacer type trajectories using tau leaping and Gillespie simulation
techniques. (A) 10 spacer type trajectories vs time using Gillespie simulation methods. (B) 10 spacer
type trajectories vs time using tau leaping simulation methods.
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Figure 7: The average number of unique spacer types present at steady-state in simulations (circles
and solid lines) increases with increasing η. The simulation results are well-matched by the analytic
prediction from equation 29 (triangles and dashed lines). The parameters η and e were chosen for each
simulation so that all points on each colored curve correspond to a constant total bacterial population
size of 0.15C0 (blue points), 0.1C0 (green points) and 0.05C0 (red points).

types are acquired. This puts an upper bound on η of ≈ 10−4 in our simulation, but simulations with
higher η can be performed with large values of m. SI Figure 7 shows the average total number of
unique spacer types at steady state as a function of η for simulation data, compared to the analytic
prediction given by equation 29: the number of unique spacer types predicted at steady state is

∑
k bk.

We initialized each simulation with no bacteria with spacers, or in other words the rank-abundance
distribution is uniform at 0 abundance at the start of all simulations. The steady-state distribution
evolves from a very different shape at early times. SI Figure 8 shows the spacer rank-abundance
distribution for various time points of a simulation run.

2.6 Origin of rank-abundance curve

The spacer rank-abundance distribution resulting from our simulations can be analytically derived
from the following master equation, which describes bk, the number of spacer types, or clones, of size
k. The size of a clone can increase through bacterial division with rate gC (first term) or decrease
through flow (F ), spacer loss (r), and phage predation (αnV pv(1 − e)). The third term in equation
20 describes spacer acquisition: since in our simulations the total number of protospacers is fixed
at m = 500, a newly acquired spacer will be added to an existing clone of size k with probability
η/m, where η is the probability of acquiring any spacer in an interaction in which the phage does not
succeed (which happens with probability 1− pV ).

∂tbk = gC[(k − 1)bk−1 − kbk] + (F + r + αnV pV (1− e))[(k + 1)bk+1 − kbk]

+αn0bnV (1− pV )
η

m
[bk+1 − bk]

(20)

The variables nV , n0B , and C evolve according to their mean-field equations (15, 17, 18). The total
number of bacteria with spacers nsB =

∑
k kbk; ∂t

∑
k kbk is equivalent to equation 16.

At steady-state, all the population variables are constant, and equation 20 can be solved using a
generating function and the method of characteristics.

10



100 101 102

Abundance rank

10 5

10 4

10 3

10 2

10 1

Sp
ac

er
 fr

eq
ue

nc
y

A

Gen 0.1
Gen 0.3
Gen 0.7
Gen 1
Gen 3
Gen 5
Gen 10
Gen 20

100 101 102

Abundance rank

10 5

10 4

10 3

10 2

10 1

B

Gen 20
Gen 30
Gen 35
Gen 40
Gen 60
Gen 80
Gen 100
Gen 200

Figure 8: Spacer rank-abundance distributions for a simulation with η = 10−5 and e = 0.387. Time
is rescaled into units of bacterial generations. (A) The distribution at early times begins as a flat
distribution with a few bacteria having a single spacer (0.1 generations). As time progresses, more
bacteria acquire spacers and some spacer types grow to larger sizes, making the distribution steeper
and broader. (B) At longer times, the distribution reaches its steady-state shape at about generation
200.

2.6.1 Generating function solution

The generating function for the probability distribution bk(t) is G(z, t) =
∑
k z

kbk(t).
Let β = gC, µ = F + r + αnV pV (1− e), and D = αηn0BnV (1− pV ). Multiplying equation 20 by∑
k z

k and noting that ∂zG(z, t) =
∑
k kz

k−1bk(t), we get the following differential equation:

∂tG(z, t) = ∂zG(z, t)
(
z2β − z(β + µ) + µ

)
+G(z, t)

D

m
(z − 1) (21)

Equation 21 can be solved with the method of characteristics [7]. We parametrize the function
G(z, t) with a new variable s. Applying the chain rule:

∂sG(z(s), t(s)) =
∂G

∂z

∂z

∂s
+
∂G

∂t

∂t

∂s
(22)

And by comparison with equation 21, the characteristic equations are

∂t

∂s
= 1 (23)

∂z

∂s
= (1− z)(βz − µ) (24)

∂G

∂s
= G

D

m
(z − 1) (25)

From equation 23 we see t = s + c1, so we can choose t0 = c1 = 0 and replace s with t going
forward.

Solving the characteristic equation for z by integrating both sides gives equation 26.

1− z
µ− βz

e(β−µ)t = c2 (26)
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At t = 0, z will pass through some point z0, so we have the initial condition z(0) = z0. With z0
in equation 26 at t = 0, we get equation 27, where c2 is given by equation 26.

z0 =
c2µ− 1

c2β − 1
(27)

The variation of G along the z − t curve is

∂G

∂z
= −

GD
m (z − 1)

z2β − z(β + µ) + µ
= − GD

m(βz − µ)

Integrating both sides, we get

G(z) = Ω(c2)(βz − µ)−
D
βm

The constant Ω is a function of the characteristic z-t curve (equation 26). To find the particular
form of Ω(c2), we apply the initial condition G(z, 0) = zN0, meaning that we start with N0 clones of
size 1 at time t = 0.

G(z, 0) = zN0 = Ω

(
1− z
µ− βz

)
(βz − µ)−

D
βm

Let ξ = 1−z
µ−βz , therefore z = ξµ−1

ξβ−1 .

Ω(ξ)(β

(
ξµ− 1

ξβ − 1

)
− µ)−

D
βm =

(
ξµ− 1

ξβ − 1

)
N0

Solving for Ω(ξ):

Ω(ξ) =

(
ξµ− 1

ξβ − 1

)
N0(β

(
ξµ− 1

ξβ − 1

)
− µ)

D
βm

The full solution for G(z, t) can be written by replacing the constant Ω(c2) with the expression for
Ω(ξ) and replacing ξ with ξε, where ε = e(β−µ)t is the time-dependent part of the z − t curve.

G(z, t) = N0(βz − µ)−
D
βm

(
ξεµ− 1

ξεβ − 1

)
(β

(
ξεµ− 1

ξεβ − 1

)
− µ)

D
βm

Finally, replacing ξ with 1−z
µ−βz , we get

G(z, t) = N0(βz − µ)−
D
βm

(
(1− z)εµ+ βz − µ
(1− z)εβ + βz − µ

)
(β

(
(1− z)εµ+ βz − µ
(1− z)εβ + βz − µ

)
− µ)

D
βm

G(1, t) = N0, meaning that the total population remains conserved, consistent with our assumption
that all the population variables are at steady-state.

The limit as t→∞ of G(z, t) is

G(z) = N0

(
βz − µ
β − µ

)− D
βm

We can construct bk by taking successive derivatives of G(z): bk = 1
k!
∂G
∂z |z=0

bk =
N0

∏k
i=1[D/m+ (i− 1)β](µ−βµ )D/(βm)

k!µk
(28)

b0 = N0

(
µ− β
µ

)D/(βm)
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Figure 9: Equation 29 (dashed lines) compared with spacer clone size distributions from simulations
at steady-state (dots). (A) Distributions in cumulative form. (B) Distributions shown as a histograms
(dots). The analytic steady-state distribution matches well with the simulation results, except in the
cases where the acquisition rate η is very low and the choice of bin size has a large effect. Here
N0 = m, the total number of unique clones.

We can re-write this expression using Stirling’s approximation for k! to facilitate evaluation at
large k.

bk =
N0√
2πk

exp

[
D

βm
ln

(
µ− β
µ

)
+

k∑
i=1

ln

(
e

kµ
(
D

m
+ (i− 1)β)

)]
(29)

Equation 29 is an analytic expression describing the steady-state spacer abundance distribution
that results from our simulations. SI Figure 9 compares the analytic distribution to the steady-state
spacer clone size distribution from our simulations at several values of the spacer acquisition probability
η, with e chosen such that the total number of bacteria is the same for all cases. The corresponding
rank-abundance distribution can be obtained from the cumulative distribution (SI Figure 9A) by
flipping the axes and rescaling the frequency axis.

2.6.2 Rank-abundance distribution in ecology

The steady-state clone size distribution given in equation 29 can be approximated for large clone size
k and large m to give a gamma distribution and logseries distribution respectively, both of which have
a long history as descriptions of species abundance in ecology [8].

In the following expressions we replace N0 with m, since at steady-state the total number of clones
remains fixed at m.

We find the following expression for bk in the limit of large clone size (large k) by taking a series
expansion as k →∞ and keeping the first term.

bk ≈
m
(

1− β
µ

) D
βm

Γ
(
D
βm

) e−ln(µ/β)k
(

1

k

)1− D
βm

(30)

This is a gamma distribution with shape parameter D
βm and rate parameter ln(µ/β). Note that(

1− β
µ

) D
βm ≈ ln(µ/β)

D
βm , consistent with the canonical form of the gamma distribution. The ad-

ditional factor of m in equation 30 arises because we treat bk as the number of clones of size k; to
normalize bk we would divide by m, the total possible number of unique clones.
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The gamma distribution has been used to describe species abundance in a number of ecological
situations [9, 10, 11, 12]. For example, Dennis and Patil [9] arrive at a gamma distribution as “the
approximate stationary distribution for the abundance of a population fluctuating around a stable
equilibrium,” and Plotkin and Muller-Landau [12] use a gamma distribution to fit species abundance
distributions on a tropical island.

For practical purposes the gamma distibution given by equation 30 is a good approximation to
the true distribution for all the parameter values we considered in our simulation.

When the total number of unique spacer types m is large, our model is effectively an infinite alleles
model in which each newly acquired spacer is assumed to be completely unique. In the limit of large
m, we find the following expression for bk.

bk ≈
D

β

1

k

(
β

µ

)k
(31)

Up to a constant, this is a log-series distribution, made famous by Fisher et al. [13] and appearing
many times since [14].

3 Mean-field steady-state solutions

3.1 e = 0 model (no adaptive immunity)

Equations 15 to 18 describe the full model. If spacer effectiveness e = 0, the model reduces to three
dimensions: bacteria nB , phages nV , and nutrients C. Equations 32 to 34 describe this simpler model.

dnV
dt

= −αnBnV + αBpV nBnV − FnV (32)

dnB
dt

= gCnB − αpV nV nB − FnB (33)

dC

dt
= FC0 − gCnB − FC (34)

Solving equations 32 to 34 at steady state gives the following fixed points.

3.1.1 Trivial fixed point

There is a trivial fixed point where bacteria and phages are both zero.

n∗B = 0

n∗V = 0

C∗ = C0

The eigenvalues of the Jacobian at this fixed point are 1 − f,−f , and −f , where f = F/(gC0).
This means that this fixed point is stable for f > 1. f > 1 is a reasonable stability condition: this is
the case where the flow rate is too high for bacteria to persist.
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3.1.2 Phages unable to persist

n∗B = C0(1− f)

n∗V = 0

C∗ = C0f

0 < f < 1 is required for physical existence of this fixed point.

The eigenvalues of the Jacobian at this fixed point are f − 1, −f , and − (f−1)p(BpV −1)+fpV
pV

, where

p = pV α/g. The first two are negative under the requirement for existence. The third is negative for
BpV < gf

(1−f)α + 1. If this stability condition is satisfied, phages cannot persist in the population —

they will be driven to extinction.

3.1.3 All populations finite and stable

If all variables are non-zero, the fixed point is

n∗
B

C0
= fpV

p(−1+BpV )

n∗
V

C0
= (1−f)p(BpV −1)−fpV

p(p(BpV −1)+pV )

C∗

C0
= p(BpV −1)

p(BpV −1)+pV

The condition for existence is

BpV > gf
(1−f)α + 1

The eigenvalues are

−f

−
√
f
√

4(f−1)p2(BpV −1)2+4fppV (BpV −1)+fp2V +fpV
2p(BpV −1)

√
f
√

4(f−1)p2(BpV −1)2+4fppV (BpV −1)+fp2V −fpV
2p(BpV −1)

The first is always negative. The second is negative for

4p2(BpV −1)2
(2p(BpV −1)+pV )2 ≤ f < 1

The third is negative for

4p2(BpV −1)2
(2p(BpV −1)+pV )2 ≤ f <

p(BpV −1)
p(BpV −1)+pV = C∗

C0

The upper limit on f is the same as the existence condition (requiring all be solutions > 0).
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3.2 Nonlinear bacterial growth rate

Instead of the growth rate for nB being gC, we check what happens when the growth rate is a Hill
function of the form gkC

C+k , where k is the nutrient concentration at which bacterial growth rate is at

half maximum. If k >> C, the linear approximation used in our results is valid and gkC
C+k ≈ gC.

Solving for the non-trivial steady-state variables in the case when bacteria have no CRISPR spacers,
we find that n∗B is unchanged:

n∗B =
F

α(BpV − 1)
(35)

C∗ and n∗V , however, now depend on k:

C∗ =
1

2

(
C0 − k −

gkn∗B
F

)
+

1

2

√(
C0 − k −

gkn∗B
F

)2

+ 4C0k (36)

n∗V =
gkC∗

C∗ + k
− F (37)

This solution for C reduces to the linear growth rate solution (section 3.1.3) when k is large. This
can be seen by expanding the square root in C∗ and keeping terms up to order 1

k3 :

C∗

C0
≈ 1− 1

p(B − 1/pV )
+

1

p2(B − 1/pV )2
≈ p(B − 1/pV )

p(B − 1/pV ) + 1

The stability condition for bacteria and phage coexistence now depends on k. k must be greater
than the following parameter combination in order for phages to persist.

k >
F (F + α(C0 −BC0pV ))

Fg + α(F − C0g)(BpV − 1)
= C0

f(fg + α(1−BpV ))

fg + α(1− f)(1−BpV )

For f = F/(gC0) = 0.1, B = 170, pV = 0.02, g = 2.4 × 10−11, C0 = 109, and α = 2 × 10−10, k/C0

must be greater than ≈ 0.11. SI Figure 10 compares the full nonlinear growth solutions (equations
35 to 37) to the solutions for linear growth (equations 3.1.3). Provided k is large enough that phages
can persist, the picture is not qualitatively different, and in the low-nutrient limit (k >> C), the two
solutions are very nearly the same.

3.3 e 6= 0 model (adaptive immunity)

If e > 0, then the system is fully four-dimensional and all four variables are coupled.

3.3.1 Trivial fixed points

The two partially trivial fixed points are the same as in the case when e = 0, since if nV = 0, then
ν = nsB/nB = 0 at steady state. The stability and existence conditions are also the same; effectively
ν becomes uncoupled and the system is reduced to three dimensions if nV = 0.

3.3.2 Non-trivial fixed point

For convenience we define rescaled population sizes x = nB/C0, y = nV /C0, and z = C/C0. Solving
in the case where all dynamical variables are non-trivial, we get

z∗ =
p(BpV (eν∗ − 1) + 1)

p(BpV (eν∗ − 1) + 1)− pV
(38)

x∗ =
fpV
p

1

BpV (1− eν∗)− 1
(39)
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Figure 10: Solid lines: solutions to equations 32 to 34 with linear growth for nB . Green dashed lines:
solutions to equations 35 to 37 for different values of k.

y∗ =
(f − 1)p(BpV (eν∗ − 1) + 1)− fpV

p(eν∗ − 1)(p(BpV (eν∗ − 1) + 1)− pV )
(40)

And an implicit cubic equation for ν, where R = r/(gC0).:

0 = (1− ν) [−pV νe− η(1− pV )] [(1− f)p(pVB(1− eν)− 1)− fpV ]

+RνpV (1− eν)(BppV (1− eν)− p+ pV )
(41)

This cubic equation is analytically solvable, but the full solutions in terms of all parameters are
cumbersome.

Only one of the three solutions of equation 41 is physical in the parameter range we use (real-valued
and properly bounded):

ν∗ = −

(
1 + i

√
3
) 3

√√
(−27a2d+ 9abc− 2b3)

2
+ 4 (3ac− b2)

3 − 27a2d+ 9abc− 2b3

6 3
√

2a

+

(
1− i

√
3
) (

3ac− b2
)

3 22/3a
3

√√
(−27a2d+ 9abc− 2b3)

2
+ 4 (3ac− b2)

3 − 27a2d+ 9abc− 2b3

− b

3a

(42)

where the coefficients are
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Figure 11: x, y, z, and ν (A-D respectively) vs. f and e with R = 0.04, η = 0.0001, B = 170,
pV = 0.01, α = 2× 10−10, and gC0 = 0.024.

a = Be2fpp2V (f +R− 1) (43)

b = −efpV (p(f(B(pV (e+ η + 1)− η)− 1) (44)

+B(η − pV (e+ η − 2R+ 1))−R+ 1) + pV (f +R))

c = fp
[
Bp2V (e(f − 1)(η + 1) + (f − 1)η +R) (45)

− (e− 1)(f − 1)pV (Bη + 1)− (2B + 2)(f − 1)ηpV + (f − 1)η − pV (f +R− 1)]

+ fpV (efpV − fη + pV (fη +R))

d = −fη(pV − 1)((f − 1)p(BpV − 1) + fpV ) (46)

Total bacteria, phage, nutrients, and the fraction of bacteria with spacers are plotted for a range
of parameters in SI Figure 11 and SI Figure 14.

This fixed point is stable for a wide range of parameters, which we explored numerically. SI Figure
13 shows the number of negative eigenvalues vs. parameters; where all four eigenvalues have a negative
real part, this fixed point is stable.

We observed that the minimum success probability p0V = 1
B

(
gf

(1−f)α + 1
)

required for phages to

invade a bacterial culture is independent of e, which parametrizes adaptive immunity. To understand
this, note that the fraction of bacteria with spacers (ν = nsB/nB) = 0 whenever nV , the number of
phages is 0, since spacers are continually lost with a small rate r but cannot be acquired if there are
no phages. As a result, p0V is independent of e since there are no bacteria with spacers at the point of
phage extinction. SI Figure 12 shows ν and phages with and without adaptive immunity, illustrating
that both ν and nV go to zero at pV = p0V .

3.3.3 Large α limit

For large α (α >> α0, where α0 = gf
(1−f)(BpV −1) ), we can find an approximate value of e, e∗, at which

ν and nV peak (equation 47). This solution is plotted as a yellow dashed line in SI Figure 14.

e∗ =
1

BpV
+

R(1−BpV )

BpV (f − 1)(1−B(η + pV ) +BηpV )
(47)

4 Spacer dynamics

In our analysis of data from [1], we found that spacer abundance distributions were stable in time
after three days and were broad, spanning four orders of magnitude. This distribution ρ(v) is created
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Figure 14: x, y, z, and ν vs. η and e for α & gf
(1−f)(BpV −1) (top row) and α >> gf

(1−f)(BpV −1)
(bottom row). The yellow dashed line is the approximate value of e at which both ν (G) and y (F)
are maximized (equation 47) which agrees well with the full solution for large α.

by summing all spacer types of a particular abundance: ρ(v) =
∑
i δ(n

i
B − v). The normalized

cumulative distribution,
∑∞
v ρ(v)/

∑∞
0 ρ(v), is plotted in SI Figure 15. The corresponding rank-

abundance distribution is plotted in Figure 3C in the main text.
Individual spacer types experience continual turnover, both in our simulations and in experimental

data from [1]. In the experimental data, both high-abundance and low-abundance spacers can change
in abundance by an order of magnitude or more between time points, while in our simulations we find
that the large abundance spacers are approximately stable once the system has reached a population-
level steady state (SI Figure 16).

The observed turnover in large spacer types in the experimental data may reflect additional stochas-
ticity not accounted for in our model, changes in fitness for individual spacer types over time, or the
fact that the sequenced spacers are strongly undersampled. There are ≈ 108 to 109 bacteria at the
end of each day in the experiment, and there are ≈ 3 × 104 spacers recovered from sequencing each
day. The data is undersampled by a factor of ≈ 104, and apparent turnover may result from this.

SI Figure 17 compares the original simulation data with data undersampled by a factor of 102, 103,
or 104. The mean fractional abundance over time for a particular type appears mostly unaffected by
the undersampling, but there is indeed more variability when the degree of undersampling is higher.
At an undersampling factor of 104, spacer counts are in the ones and tens, much lower than than
counts of ≈ 103 or 104 in the experimental data. Variability in the experimental data is over more
orders of magnitude between time points than in the undersampled simulated data.

This undersampling of simulated data only considered that fewer organisms are sequenced than
are present in the population and does not take into account that the experiment was performed with
100:1 serial dilutions and so each time point was seeded with a random subsample from the previous
time point.

4.1 Time to extinction

To further investigate ongoing turnover in individual spacer types in our simulations and the exper-
imental data, we calculated the mean time to extinction as a function of spacer abundance. Only
data at steady state was used, beginning at Day 4 in the experimental data and generation 200 in the
simulated data. For each spacer type that went extinct during the simulation or experiment, the time
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Figure 15: Cumulative frequency of spacer types (clones) as a function of normalized clone size.
Darker blue indicates earlier times.

remaining to extinction was recorded as a function of its abundance at each time point after steady
state, and the average and standard deviation over all types were calculated at each abundance. Figure
18 shows the standard deviation envelope for simulated data overlaid with experimental data, indicat-
ing that for both simulations and experiment spacers continue to experience turnover at steady-state
and that the simulated time to extinction closely matches the experimental observations. Note that
the longest observed time to extinction can never exceed the length of the simulation or experiment,
meaning that shorter measurement windows will result in shorter average times to extinction. To
illustrate this effect we calculate two time to extinction distributions for a short simulation of similar
length to the experiment (generation 300 to 400) and a longer simulation (generation 300 to 500).
Figure 19 shows that the mean time to extinction is finite even for high abundance spacers in the
simulated data.

5 Regulation of CRISPR-Cas

5.1 Extent of bistability

We add regulation of CRISPR-Cas to our model by making spacer effectiveness e a function of bacte-
rial cell density, assuming Cas expression to also be a sigmoidal function of cell density. Many bacterial
behaviours controlled by quorum sensing are threshold-dependent: cells must switch between discrete
states such as motile and non-motile, biofilm and free-living, virulent and non-virulent. In many quo-
rum sensing systems, production of the autoinducer molecule is under positive feedback and increases
nonlinearly with increasing cell density, and so many of the resulting changes in gene expression are
switch-like [15]. For this reason we assume that spacer effectiveness depends strongly on cell density.

However, we observe bistability for a wide range of parameters and note that spacer effectiveness
does not necessarily need to be a sharp function of x, where x = nB/C0. SI Figure 20 illustrates
the additional dependence of e on x — wherever e(x) intersects the original solution, there is a fixed
point. SI Figure 20B shows that even a linear e(x) can intersect the original solution in three places
for certain parameters, in this case for certain values of f . Any curve that intersects one of the solid
lines in three places will result in bistability.

Changing the precise location of the transition from low to high spacer effectiveness does not change
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Figure 20: (A) The original dependence of bacterial population size at steady-state on spacer effec-
tiveness e and normalized flow rate f is plotted for three values of f (solid blue lines). We model
upregulation from quorum sensing by introducing a density-spacer effectiveness (dashed black line),

e(x) = emin + (emax − emin)
(

xn

xn+xn0

)
, so that spacer effectiveness is no longer a constant parameter.

Any intersection of the dashed line with a solid line is a fixed point; fixed points are indicated with
solid circles (stable) and open circles (unstable). (B) Spacer effectiveness e vs. bacterial population
size at steady-state for different values of f (solid lines). Line colour darkens as f increases. Three
different choices of e(x) are plotted (dashed lines), all of which intersect some of the solid curves in
three places, indicating bistability.
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Figure 21: Fixed points (bacterial population size) as a function of flow rate f for different values
of the transition point between low and high expression. As the transition point increases (lighter
colours), the bistability changes from an ‘S’ shape to a circle and a line. This bifurcation happens at
a transition point of approximately x = 0.15.

the existence of bistability, but it does cause an interesting bifurcation. SI Figures 21 and 22 show in
two and three dimensions what happens to the fixed points as the transition point x0 is scanned from
0 to 0.3. For a transition point at low cell density, the unstable fixed points are adjacent to the low
expression stable fixed points at one end and the high expression stable fixed points at the other end,
making hysteresis possible. However, as the transition point increases to higher cell density, the two
ends meet and form a closed loop with just the high expression state. In this situation, bistability
still exists, but the system can never jump from the low expression state to the high expression state
without being placed there since there is one continuous low expression stable state across the entire
range of f .

5.2 Bistability across system variables

Bistability affects all four dynamical variables in our model. SI Figure 23 shows each variable at
steady state vs. flow rate f in a regime with bistability.

5.3 Adding regulation to acquisition, loss, and growth rate

We model CRISPR-Cas regulation by making spacer effectiveness density-dependent, but it is reason-
able that up-regulation of CRISPR-Cas would affect other system parameters as well. In particular,
spacer acquisition rates would likely increase since acquisition relies on the Cas protein machinery as
does interference [16]. Additionally, spacer loss is thought to happen by homologous recombination
and to occur in tandem with acquisition [17, 18].
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Figure 22: Fixed points (bacterial population size and phage population size) as a function of flow
rate f for different values of the transition point between low and high expression.
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of f in a parameter regime showing bistability. The solid black lines indicates a stable fixed point and
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Figure 24: The dependence of bacterial population size x at steady-state on spacer effectiveness e when
r and η are both sharp functions of density (blue dots). A monotonic function for spacer effectiveness
as a function of x (green solid line) can still only intersect in at most three places, qualitatively giving
the same bistability result.

We added a sharp sigmoidal density dependence to both spacer acquisition probability and spacer
loss rate. SI Figure 24 shows the resulting steady-state bacterial population size as a function of spacer
effectiveness. The result is still monotonically increasing, which means that a monotonic function for
spacer effectiveness as a function of x can still only intersect in at most three places, qualitatively
giving the same bistability result.

Measurements of the fitness cost of CRISPR in Streptococcus thermophilus identified Cas protein
expression as having a fitness cost [19], making it reasonable that bacteria would down-regulate Cas
expression in times when CRISPR is not needed. [19] measured a selective advantage of 0.11 for S.
thermophilus with a cas9 or csn2 gene knockout in direct competition with wild type but did not
observe a difference in maximum growth rate. This definition of selective advantage corresponds to
the difference in average exponential growth rate per hour for each strain. We incorporated a Cas-
expression-dependent decrease in bacterial growth rate in our model and investigated its effect on
bistability. Here we model Cas expression as a theta function (discrete ‘off’ and ‘on’ states) with the
switch occurring at xC = 0.06 (arbitrarily chosen):

g(x) =

{
g1 x ≤ xC
g0 x > xC

(48)

The growth rate gC0 depends on the Cas expression state with g1C0 being the growth rate per
minute without Cas expression and g0C0 being the growth rate with Cas expression, where g0 < g1.
A selective advantage of 0.11 gives g0 = g1 − 0.11/(60C0).

SI Figures 25 and 26 show the resulting change in steady-state bacterial population size as a
function of spacer effectiveness for two different growth rate dependences on expression. For even a
50 percent reduction in growth rate at high Cas expression, the resulting curves are not qualitatively
altered, and as before, a monotonic curve for e(x) can intersect in at most three places to give
bistability.
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Figure 25: The dependence of bacterial population size x at steady-state on spacer effectiveness e
when g is a sharp function of cell density x. The value of x at which regulation is turned on or off
is indicated by the black dashed line. Lines are plotted for F instead of f = F/(gC0) because f
depends on g. Plotted is bacterial population size at steady state where the growth disadvantage for
Cas expression is g0 = g1 − 0.11/(60C0), calculated from the measured selection coefficient in [19].
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Figure 26: The dependence of bacterial population size x at steady-state on spacer effectiveness e
when g is a sharp function of cell density x. The value of x at which regulation is turned on or off
is indicated by the black dashed line. Plotted is bacterial population size at steady state where the
growth disadvantage for Cas expression is g0 = 0.5g1.
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Figure 27: The dependence of bacterial population size x at steady-state on spacer effectiveness e
in the model for different values of F and C0 (solid lines). For a given measured dependence of cas
expression on cell density (black dashed line, for example), F and C0 can tune whether the system is
monstable or bistable by changing the number of intersections between the two curves.

5.4 Experimentally measuring regulation

While we chose parameters that are reasonable for S. thermophilus, it is unlikely that our quantitative
results match experimental conditions for different organisms. Our prediction is that in an appropriate
parameter range, an experiment measuring bacterial population density as a function of flow rate may
exhibit hysteresis as the flow rate is first increased and then decreased, allowing the bacteria-phage
population to reach steady state after each change in flow rate. It is easy to imagine however that the
transition determining high or low Cas expression may not automatically align with the cell densities
in the chemostat. The first experimental step is to measure the true Cas expression as a function of
cell density for Pseudomonas, as done in [20]. In their experiment, cas3 expression increased by a
factor of about 10 for a 10-fold increase in cell density (from ≈ 8× 107 to ≈ 8× 108 CFU/mL).

Next, the concentration of nutrients in the inflow medium C0 can be used to tune the cell density
to one at which CRISPR would naturally be highly expressed at a high flow rate. Then the flow rate
F can independently tune the position along the bifurcation diagram in SI Figure 4. In this way an
experimental population of Pseudomonas can be tweaked to qualitatively align with our model.

SI Figure 27 shows the steady-state bacterial concentration vs. spacer effectiveness in our model
as C0 and F are varied. Provided the true Cas expression is a sharp enough function of density and
that the low expression state is below the plateau in effectiveness in SI Figure 27, it will be possible
to choose C0 and F such that the system is bistable. The position of the plateau in effectiveness
at which the bacterial density changes sharply is controlled by BpV : as BpV increases, the plateau
moves to higher effectiveness. B and pV are properties specific to the phage and may change with the
particular phage species used.
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5.4.1 Significance of regulation in natural populations

In natural populations, multiple states may define different ecological niches as seen in structured
populations from microbial mats [21] to the human microbiome [22]. Biofilms are an example of both
dense and structured communities of bacteria and are found in many natural environments such as
hot springs [21] and acid mine drainage [23] and in many clinically relevant environments such as
medical implants, lungs of cystic fibrosis patients, and dental plaques [24]. Because of their protective
polysaccharide coating, biofilms are often difficult to treat with antibiotics [24], and phage therapy has
been proposed as a potential treatment for antibiotic-resistant bacterial colonies. Høyland-Kroghsbo
et al. posited that upregulation of CRISPR-Cas could pose a challenge to potential phage therapies
for biofilms [20]. If such a biofilm-bound population is in the bistable regime we find, there may be a
way to prime the population in way that pushes it to the low CRISPR-Cas expression state to utilize
phage therapy effectively. More broadly, in a resource-limited environment, for example, a bacterial
population may do better to maintain a low density and avoid phage predation while repressing the
expression of Cas proteins, but consequently may lose their CRISPR-Cas system entirely. These
ecological constraints may shed light on why CRISPR-Cas is neither universal nor uncommon in the
microbial world.
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