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Supplementary Figures 

 

Supplementary Figure 1: Diagram of the NEMS array and its associated custom electronics to 

simultaneously track mode 1 and mode 2 resonances with PLLs. For the sake of readability, only one 

resonator is shown on the figure, but the layout is identical for an array. PS: Power Splitter (or combiner) 

; LPF: Low Pass Filter. For each mode the beam is driven at ω (some tens of MHz) and the bias frequency 

is at ω – ∆ω to downmix the output at ∆ω (some tens of kHz) and circumvent signal attenuation caused 

by parasitic impedances. Typical drive and bias voltages for our arrays are a few 100mV and a few V 

respectively. In Closed Loop operation, the output signal phase difference is shaped by a corrector 

(CORR) that feeds a Voltage Controlled Oscillator (VCO) driving the NEMS resonator at its resonance 

frequency. The corrector is a robust H∞ controller whose coefficients are calculated using a loop shaping 

method1. 

 

Supplementary Figure 2: Equivalent electrical circuit of a resonator array. Each resonator is 

modelled as 2 gauge resistances (R) and an output resistance (RO). Only one resonator is vibrating at a 

given time, in this case Resonator 1: for that resonator, the gauges’ resistance is modelled as R(1 ±R), 

where R is the motional component of the resistance.  



 

 

Supplementary Figure 3: Equivalent electrical circuit of the measurement of an array in 

frequential addressing mode. The output measured signal VOUT is measured using a lock-in amplifier, 

with impedance ZLIA.  

 

 

Supplementary Figure 4: Frequency stability characterization. a) Solid black line: Allan deviation 

of a single resonator (not in array) at liquid nitrogen temperature with dimensions equal to those of the 

longest resonator in the array. Solid color lines: Allan Deviations of all 19 resonators in an array at liquid 

nitrogen temperature, measured individually (without frequency addressing). Mode 1 in main figure, 

mode 2 in inset. b) Frequency stability of all 19 resonators in an array at liquid nitrogen temperature 

with the frequency addressing scheme (see description of estimator above). The difference in estimators 

explains the difference in time scale. Mode 1 in main figure, mode 2 in inset. 

 

 



 

Supplementary Figure 5: Mode 1 and mode 2 linear fits of frequency shift rates with an array of 19 

NEMS with respect to the deposition rate on their surface measured with a QCM. Red curve corresponds 

to NEMS#1 and the color progressively turn to blue for smaller devices until dark blue for NEMS#19. 

We deposited a maximum mass of ~ 4 fg << ~ 1 pg (total resonator mass) to remain in the linear regime. 

This comparison yields the product 𝝆. 𝒕 with t the thickness of the resonator and 𝝆 its density. Mass 

sensitivity and effective mass for each mode is finally calculated from this product, width and length of 

each resonator. 

 

 

Supplementary Figure 6: TOF spectra obtained with tantalum clusters of increasing size and 

mass. The plot shows that both intensity and width of peaks degrade very quickly beyond 2MDa. There 

are two reasons for this degradation: first heavy ions are less accelerated and the ion detector of the TOF 

Mass Spectrometer becomes less efficient2. Secondly, the cluster source might produce a lower number 

of aggregates. Because of this degradation, we limited our mass range of operation below 3MDa. 

 

 



 

Supplementary Figure 7: Mass resolution for increasing masses. These numerical calculations 

present the mass uncertainty obtained for particles of different masses, obtained from the measured 

frequency stability of a given NEMS in the array. This mass uncertainty depends on the landing position 

on the beam (normalized, with 0 and 1 being the clamped ends and 0.5 the center). Only a fixed (shown 

here) portion of the beam is considered in all the analysis in order to obtain a chosen mass resolution. 

This mass uncertainty increases when the particle lands close to the anchors, where the motion becomes 

small. How close and how much the resolution increases depends on the particle mass. But for high 

enough masses (>2.5MDa), the mass resolution does not depend on measured mass anymore. This 

shows that the resolving power of NEMS-MS increases for heavier particles, with proportionally 

narrower peaks. 

 

Supplementary Figure 8: Mass spectrum of each individual NEMS for the 7.4 nm tantalum 

clusters. Each spectrum obtained with every individual NEMS is represented here with a different color. 

Their intensities are normalized by the total number of events in the overall spectrum. This plot clearly 

shows the variability across the array and how this variability contributes to the broadness of the overall 

peak. 

 

 



 

Supplementary Figure 9: Mass uncertainty of every detected particle for the 7.4 nm tantalum 

clusters. Each dot is the mass uncertainty of a detected particle obtained from the measured frequency 

stability of the resonator (both modes) on which the particle landed. The x axis is the position of the 

particle along the beam normalized by the length of the beam (0 is an anchored end, 0.5 is the middle of 

the beam). Each NEMS in the array is associated to a different color in the plot. The solid lines show 

the theoretical mass uncertainties calculated for particles of a fixed 2.15MDa mass. This plot shows that 

while the average mass resolution is about 250kDa across all events and all NEMS, ie very similar to an 

individual NEMS, there is a large spread in mass uncertainties. This mass uncertainty is proportional to 

both effective mass of the resonator and its frequency stability. While the relation between the former 

to resonator length is well established, the latter is less known. This explains why mass uncertainty in 

the plot is not a monotonic function of resonator length. In any case, this spread contributes to the 

broadness of the overall spectrum.  

 

Supplementary Methods 

Electrical signal with arrays 

In a frequency addressed architecture, all N resonators are connected in parallel and the array can be 

modeled as shown in Supplementary Figure 2. At a given time, only one of the resonators is in motion, 

so the resistance of the nanogauges in all the others is balanced, resulting in a virtual ground between 

them. In this case, the equivalent circuit is as shown Supplementary Figure 3, very similar to that of a 

single resonator.  

The load impedance at the output of the resonator is 𝑍𝑜𝑢𝑡 = 𝑍𝐿𝐼𝐴//
𝑅0

𝑁−1
≈

𝑅0

𝑁−1
, as 𝑍𝐿𝐼𝐴 ≈ 10𝑘Ω and 

𝑅0 ≈ 1𝑘Ω We can then use Millman’s theorem to find the voltage 𝑉1: 

V1 = −
Vb × δR × (R0 + Zout)

R0 + Zout +
R(1 − δR2)

2

≈
Vb × δR × R0

R0 +
R
2

 

The approximation is valid when N is large, and 
𝑅0

𝑁−1
≪ 𝑅0. The measurement voltage is then 



𝑉𝑜𝑢𝑡 = 𝑉1
𝑍𝑜𝑢𝑡
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R0 +
R
2
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