Cytosolic nucleic acid sensors of the innate immune system promote liver regeneration after partial hepatectomy

Sarah Schulze ¹, Christian Stöß ¹, Miao Lu ¹, Baocai Wang ¹, Melanie Laschinger ¹, Katja Steiger ², Felicitas Altmayr ¹, Helmut Friess ¹, Daniel Hartmann ¹, Bernhard Holzmann ^{1 + *}, Norbert Hüser ^{1 +}

- ¹ Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675 Munich, Germany
- ² Technical University of Munich, School of Medicine, Comparative Experimental Pathology, Institute of Pathology, Trogerstr. 18, 81675 Munich, Germany

* Corresponding author: bernhard.holzmann@tum.de

⁺ These authors contributed equally to this study

Supplemental Figure S1

Legend:

Bone marrow-derived macrophages from wildtype and DKO mice were generated by culture of bone marrow cells in RPMI1640 medium containing 10 % fetal calf serum and 15 % L cell-conditioned medium as a source of M-CSF for at least 7 d.

For controls, cells were used unstimulated (medium) or were stimulated with 10 ng/ml of the TLR4 agonist *E.coli* LPS (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) or 50 µg/ml of the TLR3 agonist polyl:C (Invivogen, Toulouse, France).

To stimulate cytosolic DNA sensors, macrophages were incubated with 3 µg/ml of the immunostimulatory DNA VACV-70 that was complexed with the transfection reagent LyoVec[™] to facilitate its uptake (Invivogen, Toulouse, France).

To stimulate cytosolic RNA sensors, macrophages were incubated with 1 µg/ml 5'ppp-dsRNA that was complexed with the transfection reagent LyoVec[™] to facilitate its uptake (Invivogen, Toulouse, France).

After 16 h of stimulation, CXCL10 levels were measured in culture supernatants using the Mouse CXCL10 Quantikine ELISA Kit (R&D Systems, Minneapolis, USA) according to manufacturer's instructions.

Supplemental Figure S2

Legend:

Liver sections of untreated wildtype and DKO mice (n=6) were stained with hematoxylin/eosin and mounted with Eukitt mounting medium (Merck, Darmstadt, Germany). Stained sections were imaged using an Axiolap microscope attached to an AxioCam MRc5 camera, an EC Plan-Neofluar 10x/0.3 NA and an Achroplan 20x/0.45 NA objective and analyzed using the Axiovision software (all Carl Zeiss Microscopy, Jena, Germany).

Representative images of wildtype and DKO mice are depicted. Scale bars indicate $50\mu m$.

Full length gels for Figure 2B

Legend:

Areas of the gel shown in Figure 2B are marked in red.

The membrane was probed first with anti-p-STAT3 and subsequently with anti-GAPDH antibodies. Predicted molecular weights for p-STAT3 and GAPDH are indicated.

Full length gels for Figure 2C

Legend:

Areas of the gel shown in Figure 2C are marked in red.

The membrane was probed first with anti-STAT3 and subsequently with anti-GAPDH antibodies. Predicted molecular weights for STAT3 and GAPDH are indicated.

Full length gels for Figure 4A (part 1)

Legend:

Areas of the gel shown in Figure 4A are marked in red.

The membrane was probed first with anti-cyclin D1 and subsequently with anti-Tubulin antibodies. Predicted molecular weights for cyclin D1 and β -tubulin are indicated.

Full length gels for Figure 4A (part 2)

Legend:

Areas of the gel shown in Figure 4A are marked in red.

The membrane was probed first with anti-GAPDH and subsequently with anti-cyclin E1 antibodies. Predicted molecular weights for cyclin E1 and GAPDH are indicated.

Full length gels for Figure 4A (part 3)

Legend:

Areas of the gel shown in Figure 4A are marked in red.

The membrane was probed first with anti-p-RB and subsequently with GAPDH antibodies. Predicted molecular weights for p-RB and GAPDH are indicated.

Full length gels for Figure 4A (part 4)

Legend:

Areas of the gel shown in Figure 4A are marked in red.

The membrane was probed first with anti-p-CDK2 and subsequently with anti-Tubulin antibodies. Predicted molecular weights for p-CDK2 and β -tubulin are indicated.

Full length gels for Figure 4A (part 5)

Legend:

Areas of the gel shown in Figure 4A are marked in red.

The membrane was probed first with anti-CDK1 and subsequently with anti-Tubulin antibodies. Predicted molecular weights for CDK1 and β -tubulin are indicated.