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1 Analysis of Variance Tables

We list below the analysis of variance tables for the error rates and response times for correct choices
for all four studies including the combined analysis. Analyses on the response times were conducted
using the inverse of the RT (1/RT ). All analyses were carried out using JASP version 0.8 Beta 5
(JASP Team, 2017). Sums of squares are Type III Sum of Squares.

As the studies were designed within the framework of Null Hypothesis Testing, we rely on p-
values and estimates of effect sizes for the substantitive conclusions from the behavioral level analyses.
However, we also report Bayes factors for each effect as a means of informing the interpretation and
the degree of confidence one can have in the specific conclusion.

The reported Bayes factors are inclusion Bayes factors. Inclusion Bayes factors provide an
estimate for the evidence for the particular effect combined across all the possible ANOVA models
containing the effect (Rouder et al., 2016). The Bayes factors were estimated using JASP (JASP
Team, 2017; Morey & Rouder, 2015). We use the notation BF10 to indicate Bayes factors indicating
evidence in favor of the alternative hypothesis. Conventionally, Bayes factors between 1 and 3 are
understood as weak evidence for the given hypothesis, 3 to 20 as positive, 20 to 100 as strong, and
greater than 100 as very strong. Bayes factors less than 1 indicate evidence in favor of the other
hypothesis (Raftery, 1995).

1.1 Study 1

Table S1: ANOVA Summary Table for Study 1 Error Rates

Sum of Squares df Mean Square F p η2p BF10

Object 0.014 1 0.014 6.260 .015 .102 4.131
Residual 0.127 55 0.002
Race 0.018 1 0.018 7.262 .009 .117 8.797
Residual 0.139 55 0.003
Object * Race 0.008 1 0.008 5.039 .029 .084 3.014
Residual 0.092 55 0.002

Table S2: ANOVA Summary Table for Study 1 Correct Response Times

Sum of Squares df Mean Square F p η2p BF10

Object 2.446 1 2.446 349.038 <.001 .864 > 1000
Residual 0.385 55 0.007
Race 0.001 1 0.001 0.601 .442 .011 > 1000
Residual 0.118 55 0.002
Object * Race 0.162 1 0.162 75.445 <.001 .578 > 1000
Residual 0.118 55 0.002

1.2 Study 2
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Table S3: ANOVA Summary Table for Study 2 Error Rates

Sum of Squares df Mean Square F p η2p BF10

Context 0.005 1 0.005 0.194 .660 .002 0.0901
Residual 3.063 114 0.027

Object 0.122 1 0.122 8.903 .003 .072 73.840
Object * Context 0.004 1 0.004 0.261 .610 .002 0.068
Residual 1.1563 114 0.014
Race 0.010 1 0.010 2.107 .149 .018 0.397
Race * Context 9.399e-4 1 0.9.399e-4 0.190 .664 .002 0.033
Residual 0.564 114 0.005
Object * Race 0.061 1 0.061 10.562 .002 .082 1.609
Object * Race * Context 0.021 1 0.021 3.685 .057 .029 0.022
Residual 0.657 114 0.006

Table S4: ANOVA Summary Table for Study 2 Response Times in Correct Choices

Sum of Squares df Mean Square F p η2p BF10

Context 0.001 1 0.001 0.037 .849 .000 0.262
Residual 4.152 114 0.036

Object 7.214 1 7.214 462.498 < .001 .802 > 1000
Object * Context 0.051 1 0.051 3.252 .074 .028 0.935
Residual 1.778 114 0.016
Race 0.014 1 0.014 2.712 .102 .023 0.109
Race * Context 6.666e-4 1 6.666e-4 0.130 .719 .001 0.031
Residual 0.583 114 0.005
Object * Race 0.008 1 0.008 1.892 .172 .016 0.095
Object * Race * Context 0.024 1 0.024 5.377 .022 .045 0.024
Residual 0.500 114 0.004

1.3 Study 3
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Table S5: ANOVA Summary Table for Study 3 Error Rates

Sum of Squares df Mean Square F p η2p BF10

Object 6.342e-4 1 6.342e-4 0.080 .779 .002 13.431
Residual 0.295 37 0.008
Race 0.005 1 0.005 0.936 .340 .025 0.106
Residual 0.207 37 0.006
Context 0.072 1 0.072 11.591 .002 .239 16.240
Residual 0.230 37 0.006
Discrim. 0.019 1 0.019 5.289 .027 .125 18.698
Residual 0.130 37 0.004
Object * Race 0.034 1 0.034 8.138 .007 .180 0.518
Residual 0.156 37 0.004
Object * Context 0.011 1 0.011 2.452 .126 .062 0.368
Residual 0.167 37 0.005
Object * Discrim. 0.106 1 0.106 18.841 <.001 .337 87.994
Residual 0.207 37 0.006
Race * Context 1.978e-4 1 1.978e-4 0.035 .852 .001 0.064
Residual 0.206 37 0.006
Race * Discrim. 0.005 1 0.005 1.164 .288 .031 0.106
Residual 0.174 37 0.005
Context * Discrim. 0.013 1 0.013 4.530 .040 .109 0.408
Residual 0.110 37 0.003
Object * Race * Context 6.996e-4 1 6.996e-4 0.010 .922 .000 0.018
Residual 0.264 37 0.007
Object * Race * Discrim. 3.745e-4 1 3.745e-4 0.061 .807 .002 0.068
Residual 0.229 37 0.006
Object * Context * Discrim. 0.012 1 0.012 3.924 .055 .096 0.224
Residual 0.110 37 0.003
Race * Context * Discrim. 0.012 1 0.012 1.542 .222 .040 0.010
Residual 0.287 37 0.008
Object * Race * Context * Discrim. 0.007 1 0.007 1.481 .231 .038 1.701e-4
Residual 0.183 37 0.005
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Table S6: ANOVA Summary Table for Study 3 Correct Response Times

Sum of Squares df Mean Square F p η2p BF10

Object 2.238 1 2.238 15.166 <.001 .291 > 1000
Residual 5.460 37 0.148
Race 0.065 1 0.065 5.199 .028 .123 0.025
Residual 0.465 37 0.013
Context 0.242 1 0.242 1.741 .195 .045 0.095
Residual 5.151 37 0.139
Discrim. 0.052 1 0.052 3.719 .061 .091 0.025
Residual 0.515 37 0.014
Object * Race 0.104 1 0.104 5.554 .024 .131 0.032
Residual 0.695 37 0.019
Object * Context 0.194 1 0.194 1.423 .241 .037 0.155
Residual 5.049 37 0.136
Object * Discrim. 0.176 1 0.176 10.721 .002 .225 0.048
Residual 0.607 37 0.016
Race * Context 0.092 1 0.092 5.808 .021 .136 0.015
Residual 0.586 37 0.016
Race * Discrim. 0.025 1 0.025 0.182 .672 .005 0.004
Residual 4.979 37 0.135
Context * Discrim. 0.020 1 0.020 1.377 .248 .036 0.010
Residual 0.538 37 0.015
Object * Race * Context 2.958e-4 1 2.958e-4 0.017 .897 .000 0.001
Residual 0.640 37 0.017
Object * Race * Discrim. 0.207 1 0.207 1.579 .217 .041 0.001
Residual 4.861 37 0.131
Object * Context * Discrim. 0.018 1 0.018 1.257 0.269 .033 0.001
Residual 0.542 37 0.015
Race * Context * Discrim. 0.021 1 0.021 0.153 .698 .004 < .001
Residual 4.987 37 0.135
Object * Race * Context * Discrim. 0.072 1 0.072 0.542 .466 .014 < .001
Residual 4.896 37 0.132
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1.4 Study 4

Table S7: ANOVA Summary Table for Study 4 Error Rates

Sum of Squares df Mean Square F p η2p BF10

Race 2.611e-4 1 2.611e-4 0.070 .791 .001 6.610
Residual 0.397 107 0.004
Context 0.335 1 0.335 56.732 < .001 .346 > 1000
Residual 0.633 107 0.006
Object 1.086 1 1.086 28.914 < .001 .213 > 1000
Residual 4.017 107 0.038
Race * Context 0.005 1 0.005 1.292 .258 .012 0.332
Residual 0.374 107 0.003
Race*Object 0.143 1 0.143 37.938 < .001 .262 36.765
Residual 0.404 107 0.004
Context*Object 0.036 1 0.036 7.419 .008 .065 1.705
Residual 0.519 107 0.005
Object * Race * Context 0.009 1 0.009 2.045 .156 .019 0.200
Residual 0.450 107 0.004

Table S8: ANOVA Summary Table for Study 4 Response Times in Correct Choices

Sum of Squares df Mean Square F p η2p BF10

Race 5.336e-4 1 5.336e-4 0.012 .911 .000 0.037
Residual 4.580 107 0.043
Context 2.937 1 2.937 3.087 .082 .028 8.055
Residual 101.795 107 0.951
Object 5.753 1 5.753 44.759 < .001 .295 > 1000
Residual 13.754 107 0.129
Race * Context 0.184 1 0.184 1.329 .252 .012 0.026
Residual 14.813 107 0.138
Race*Object 0.274 1 0.274 1.570 .213 .014 0.031
Residual 18.683 107 0.175
Context*Object 0.593 1 0.593 2.718 .102 .025 0.675
Residual 23.331 107 0.218
Object * Race * Context 0.115 1 0.115 0.650 .422 .006 0.001
Residual 18.890 107 0.177

1.5 Composite Analysis

We also included the ANOVAs on the data used in the composite analysis. This analysis examined
the race bias effect across all four studies in the common conditions of the FPST (i.e., the neutral
context with a non-blurred object). Experiment was entered into the analysis as a between subjects
factor with four levels.
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Table S9: ANOVA Summary Table for Composite Analysis of Error Rates

Sum of Squares df Mean Square F p η2p BF10

Object 0.250 1 0.250 20.218 <.001 .073 >1000
Object * Study 0.085 3 0.028 2.2997 .078 .026 10.228
Residual 3.169 256 0.012
Race 9.802e-5 1 9.802e-5 0.026 .873 .000 21.283
Race * Study 0.049 3 0.016 4.262 .0006 .048 1.926
Residual 0.978 256 0.004
Object * Race 0.079 1 0.079 18.605 <.001 .068 119.209
Object * Race * Study 0.089 3 0.030 6.980 <.001 .076 10.670
Residual 1.090 256 0.004

Table S10: ANOVA Summary Table for Composite Analysis of Response Times of Correct Choices

Sum of Squares df Mean Square F p η2p BF10

Object 11.395 1 11.395 1055.289 <.001 .805 >1000
Object * Study 0.167 3 0.056 5.156 .002 .057 >1000
Residual 2.764 256 0.011
Race 0.020 1 0.020 4.709 .031 .018 23.57
Race * Study 0.041 3 0.014 3.151 .026 .036 26.36
Residual 1.109 256 0.004
Object * Race 0.063 1 0.063 15.240 <.001 .056 122.89
Object * Race * Study 0.133 3 0.044 10.783 <.001 .112 196.60
Residual 1.051 256 0.004

2 Bayesian Model Estimation

All of our analyses with SDT and the DDM were embedded within a hierarchical framework (Vandek-
erckhove et al., 2011; Wabersich & Vandekerckhove, 2014) and use Bayesian estimation techniques
(Kruschke, 2014; Lee & Wagenmakers, 2013) to estimate the parameters (and the effects of the
different conditions on the parameters). Uninformative priors were used for each parameter to let
the data have maximal influence on the posterior estimates.

Our model estimation procedure was implemented with JAGS 3.4 using Matlab via matjags to
interface with JAGS. The general JAGS code used is given below. The estimation of the SDT model
used four parallel chains. Each chain consisted of 1000 burn-in steps (unrecorded samples to allow
the chain to reach the reasonable parameter space) and 20,000 samples for a total of 80,000 samples.

The estimation of the drift diffusion model was a bit more computationally intensive. We used
32 chains each with 2000 burn-in steps and 2,500 samples for a total of 80,000 samples.

The chains were evaluated for the representativeness and accuracy using the procedures outlined
by Kruschke (2014). Representativeness was evaluated using visual inspection of trace plots of the
chains and density plots. All the chains at the group level were inspected visually with random
samples of chains from the individual level. Representativeness was also evaluated numerically using
the Gelman-Rubin statistic with the conventional heuristic that values of the Gelman-Rubin statistic

8



above 1.1 were worrisome. All the chains met these standards suggesting representativeness of the
posterior distributions. Accuracy was evaluated by examining the autocorrelation and the effective
sample size. The effective sample size estimates the sample size of the chain after accounting for the
autocorrelation present in the samples. As a rough standard we sought to have approximately an
effective sample size of approximately 10000. Our main focus in this paper was on comparing the
group level mean estimates of the parameters. All of those distribution were at least greater than
8000 and most were above 10000.

2.1 Hierarchical Bayesian Signal Detection Model

2.1.1 Description of Model

Many published studies using the FPST employ signal detection theory (SDT) to analyze the choice
data (e.g., Correll et al., 2002; Correll, Park, Judd, & Wittenbrink, 2007; Correll, Park, Judd,
Wittenbrink, Sadler, & Keesee, 2007; Greenwald et al., 2003; Kenworthy et al., 2011; Sadler et al.,
2012; Sim et al., 2013). According to this account, when participants are presented with a target
they draw a sample of information relating to the presence of the gun. They compare this internal
estimate of danger x against a criterion c, and if the value exceeds the criterion they choose “Shoot”;
otherwise, they choose “Don’t Shoot.” The model assumes that the targets encountered vary on
this danger dimension. The standard model used in the analyses assumes that the magnitudes are
normally distributed, with trials in which non-gun objects are presented producing danger estimates
that are normally distributed, with a mean of 0 and a standard deviation of 1. Trials in which gun
objects are presented have a mean of d′ and a standard deviation of 1. The parameter d′ measures
the degree to which the targets that are holding a gun have a higher average danger value.

The advantage of signal detection analysis is that it separates accuracy or sensitivity in dis-
criminating between dangerous and neutral targets from properties of the response, such as the
participants’ goals or expectations at the time of the decision. Past analyses have shown that ma-
nipulations of race and context primarily impact the criterion c that participants use, suggesting
that these manipulations primarily impact participants’ expectations. In particular, participants
tend to set a lower, more liberal criterion c for Black targets than for White targets.

We submitted the data from each of the four studies to a Bayesian signal detection analysis (Lee,
2008; Lee & Wagenmakers, 2013). The advantage of this approach is that the data can be modeled
hierarchically to yield group-level and individual estimates. Figure S1 shows a graphical model of
the hierarchical SDT model we used. The JAGS code for the model is given below.

The hierarchical structure means that each process parameter of the SDT model had a higher
order group-level prior. For example, focusing on d′, according to the model for each between-subject
condition i∗, within subject condition i, subject j there was a different sensitivity, d′i∗,i,j . Prior beliefs
in the distribution of the values for each subject in each condition was represented with a (diffuse)
normal distribution a mean µd

′

i∗,i and precision τi∗ (the inverse of the variance). We assume each
subject is from the same population or group. Thus, part of our uncertainty can be isolated to
uncertainty in what the sensitivity was at the group level as well as the precision. This uncertainty
was modeled with group level distributions shown at the top of Figure S1. The precision parameters
(τ) do not vary by within-subjects conditions. This approach was taken to model the within-subjects
nature of the manipulation, by building a dependency between the conditions for subjects (Kruschke,
2014). Between-subjects manipulations (indexed by i∗ in Figure S1) were structured so that both
the mean and precision parameters varied between the conditions.

As Figure S1 shows, our prior beliefs in possible values of these hyperparameters were set to be
normally distributed for the mean, and gamma distributed for the precision parameter. We used
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Figure S1: Diagram of the hierarchical signal detection model. The hth hit and fth false alarm for
subject j in within-subject condition i, between-subject condition i∗, are each generated by binomial
distribution.

diffuse priors on these hyperparameters so that the precision in our beliefs was low, letting the data
have maximal influence on the posterior estimates. In a Bayesian analysis, we used the observed
data to update our beliefs in these parameters, obtaining posterior distributions over their possible
values. The posterior distributions reflect the degree of belief or degree of certainty associated with
the possible values of the parameters after observing the data.
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2.1.2 JAGS code

model {
#hyperp r i o r s
f o r ( i in 1 : nWCon) { #index f o r with in c o n d i t i o n s

f o r ( j in 1 :nBCon) { # index f o r between condi t ion ,
#need to remove between index i f no between c o n d i t i o n s

muc [ i , j ] ˜ dnorm ( 0 , . 0 0 1 )
mud[ i , j ] ˜ dnorm ( 0 , . 0 0 1 )
mucPrior [ i , j ] ˜ dnorm ( 0 , . 0 0 1 )
mudPrior [ i , j ] ˜ dnorm ( 0 , . 0 0 1 )

}
}

f o r ( j in 1 : nBCon) {# index f o r between condi t ion ,
#need to remove between index i f no between c o n d i t i o n s

lambdac [ j ] ˜ dgamma( . 0 0 1 , . 0 0 1 )
lambdad [ j ] ˜ dgamma( . 0 0 1 , . 0 0 1 )
sigmac [ j ] <− 1/ s q r t ( lambdac [ j ] )
sigmad [ j ] <− 1/ s q r t ( lambdac [ j ] )

}
f o r ( i in 1 : nWCon) { #index f o r with in c o n d i t i o n s

f o r ( j in 1 : nSub ){#index f o r number o f s u b j e c t s
#p r i o r s
#repa ramete r i z a t i on us ing equal var gauss ian SDT
c [ i , j ] ˜ dnorm(muc [ i , bCon [ j ] ] , lambdac [ bCon [ j ] ] )
d [ i , j ] ˜ dnorm(mud[ i , bCon [ j ] ] , lambdad [ bCon [ j ] ] )
thetah [ i , j ] <− phi (d [ i , j ]/2− c [ i , j ] )
t h e t a f [ i , j ] <− phi(−d [ i , j ]/2− c [ i , j ] )
h [ i , j ] ˜ dbin ( thetah [ i , j ] , s [ i , j ] )
f [ i , j ] ˜ dbin ( t h e t a f [ i , j ] , n [ i , j ] )
#p o s t e r i o r p r e d i c t i o n
h i tPost [ i , j ] ˜ dbin ( thetah [ i , j ] , s [ i , j ] )
faPost [ i , j ] ˜ dbin ( t h e t a f [ i , j ] , n [ i , j ] )

}
}
}

The inputs to the model were as follows

h matrix of observed number of hits for each within subject condition, for each subject (i.e., Shoot, Gun trials) of
size (No. Within x No. Subjects)

f vector of observed number of false alarms for each within subject condition, for each subject (i.e., Shoot, Non-Gun
Trials) of size (No. Within x No. Subjects)

s vector of observed signal trials or each within subject condition, for each subject (i.e., Gun Trials) of size (No.
Within x No. Subjects)

n vector of observed noise trials or each within subject condition, for each subject (i.e., Non-Gun Trials) of size (No.
Within x No. Subjects)

bCon indicator vector of between subject condition

nWCon number of within subject conditions

nBCon number of between subject conditions

nSub number of subjects

11



2.2 Hierarchical Bayesian Drift Diffusion Model

2.2.1 Description of model

There are many different ways to parameterize the Hierarchical Bayesian DDM. We carried out
several preliminary analyses in terms of identifying how to parameterize the DDM to model the
data from the FPST (Heathcote et al., 2015). The model we used allowed the relative start point,
threshold separation, drift rate, and non-decision time to vary as a function of race and all other
experimental manipulations (e.g., context and discriminability), and only drift and non-decision time
were allowed to vary as a function of object type. Please see the main text for a description of how
and why we came to this specification.

Note we also examined whether including trial-by-trial variability in drift rate, relative start
point, and non-decision time, improves the fit of the model (Ratcliff, 1978; Ratcliff & Rouder, 1998;
Ratcliff & Smith, 2004). In Study 1 and Study 2 this model failed to converge, likely due to such few
observations per subject (only 80 to 100 observations per subject). In Study 3 and 4, we were able
to estimate the model, and the fit improves. But, the conclusions reported in the paper remain the
same. For parsimony and for consistency in the paper we rely on the model without trial-by-trial
variability in the parameters

We also conducted a parameter recovery analysis of the hierarchical drift diffusion model. A
summary of the analysis is provided below. Briefly, for the standard experimental design of the
FPST where N = 50 participants complete n = 100 trials our model recovery analysis shows that
we can accurately and reliably recover the parameters of the hierarchical DDM. We also confirmed
that changes in the relative start point, drift rate, and threshold separation, were accurately detected
by the model.

One challenge that arose in modeling the data from Study 1 and 2 is that the data were censored
above the response deadline (i.e., the observed response and response time were not recorded for
trials in which the response was made outside the response window). This is a problem for the
DDM and any model of the distribution of response times: If censoring is not accounted for, the
distribution of response times will appear faster than it is, which will in turn impact the parameter
estimates. The Bayesian approach makes it possible to build censoring directly into the model
(Kruschke, 2014, p. 730). The method models the probability of the observed time falling beyond
the response deadline. It does this by imputing a random value generated from the model and the
credible parameter values at that step in the chain. Importantly, the imputed value must fall beyond
the response deadline.

The code below shows how censoring was modeled within the hierarchical DDM. The model
requires the specification of the intervals in which the data were censored or not. For example,
in Study 1, responses longer than 0.63 s were not recorded. This means for the JAGS dwiener
distribution that data below -0.63 and above 0.63 were not recorded. These two thresholds define
three intervals. The first interval (bin = 0 in the code) identifies values below -0.63 that were
censored. The second interval (bin = 1) identifies responses that were recorded. The third interval
(bin = 2) identifies responses above 0.63 that were censored. JAGS uses the thresholds and their
associated bins to impute the values of the appropriate bin. One challenge in this approach is that
both the observed response and the response times were censored. To overcome this obstacle, we
inferred the responses (i.e., “Shoot” or “Don’t Shoot”) on these trials from the observed relative
frequency of these responses for gun and non-gun objects for each subject, collapsing across the
conditions.
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2.2.2 JAGS code

model {
#hyperp r i o r s
f o r ( j in 1 : nBtwn) { #between sub index
#remove between index complete ly i f no btwn condt ion

f o r ( i in 1 : nWConObject ) { #within sub index w ob j e c t
muDelta [ i , j ] ˜ dun i f (−5 ,5)
muNDT[ i , j ] ˜ dun i f ( . 0 0 1 , 1 )
#sample hype rp r i o r s f o r i n f e r e n c e t e s t s
muDeltaPrior [ i , j ] ˜ dun i f (−5 ,5)
muNDTPrior [ i , j ] ˜ dun i f ( . 0 0 1 , 1 )

}
}
f o r ( j in 1 : nBtwn) { #between sub cond i t i on
#remove between index complete ly i f no btwn condt ion

f o r ( i in 1 :nWCon) { #within sub cond i t i on wo ob j e c t
muBeta [ i , j ] ˜ dun i f ( . 1 , . 9 )
muBetaPrior [ i , j ] ˜ dun i f ( . 1 , . 9 )
muAlpha [ i , j ] ˜ dun i f ( . 1 , 5 )
muAlphaPrior [ i , j ] ˜ dun i f ( . 1 , 5 )

}
}
f o r ( j in 1 : nBtwn) { #between sub index
#remove between index complete ly i f no btwn condt ion

tauDelta [ j ] ˜ dgamma( . 0 0 1 , . 0 01 )
tauBeta [ j ] ˜ dgamma( . 0 0 1 , . 0 0 1 )
tauAlpha [ j ] ˜ dgamma( . 0 0 1 , . 0 01 )
tauNDT [ j ] ˜ dgamma( . 0 0 1 , . 0 0 1 )

}
#PRIORS
f o r ( j in 1 : nSub ) { #su b j e c t index

f o r ( i in 1 :nWCon) { #within con index wo ob j e c t
beta [ i , j ] ˜ dnorm( muBeta [ i , btwnCon [ j ] ] , tauBeta [ btwnCon [ j ] ] ) T( . 1 , . 9 )
alpha [ i , j ] ˜ dnorm( muAlpha [ i , btwnCon [ j ] ] , tauAlpha [ btwnCon [ j ] ] ) T( . 1 , 5 )

}
f o r ( i in 1 : nWConObject ) { #within con index w ob j e c t

d e l t a [ i , j ] ˜ dnorm( muDelta [ i , btwnCon [ j ] ] , tauDelta [ btwnCon [ j ] ] ) T(−5 ,5)
ndt [ i , j ] ˜ dnorm( muNDT[ i , btwnCon [ j ] ] , tauNDT [ btwnCon [ j ] ] ) T( . 0 0 1 , 1 )

}}

f o r ( i in 1 : nData ) {
ybin [ i ] ˜ d i n t e r v a l ( y [ i ] , censorLimitVec [ i , ] )
y [ i ] ˜ dwiener ( alpha [ wCon [ i ] , sub [ i ] ] , ndt [ wConObject [ i ] , sub [ i ] ] , beta [ wCon [ i ] ,

↪→ sub [ i ] ] , d e l t a [ wConObject [ i ] , sub [ i ] ] )
#prey [ i ] ˜ dwiener ( alpha [ wCon [ i ] , sub [ i ] ] , ndt [ wConObject [ i ] , sub [ i ] ] , beta [ wCon [ i

↪→ ] , sub [ i ] ] , d e l t a [ wConObject [ i ] , sub [ i ] ] )
#use prey f o r the p o s t e r i o r p r e d i c t i o n s o f the r t s

}
}

The inputs to the model were as follows

y vector of observed response times (in seconds) coded as positive if trial was a ‘Shoot’ trial, negative
if trial was ‘Don’t Shoot’, and NaN if response fell outside response window.

nData number of observations

wConObject vector indicating the within subject condition including object for each trial
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nWConObject number of within subject conditions including object

wCon vector indicating the within subject condition ( excluding object) for each trial

nWCon number of within subject conditions (excluding object)

btwnCon indicator vector of between subject condition

nBtwn number of between subject conditions

sub vector indicating subject for each trial

nSub number of subjects

ybin vector indicating if the trial was censored and what bin the trial was in. The first interval (bin
= 0 in the code) identifies values that were a ‘Don’t Shoot’ and were less than −RW where
RW is the response window time in seconds. The second interval (bin = 1) identifies responses
that were recorded. The third interval (bin = 2) identifies responses greater than RW .

censorLimitVec A matrix of size No. of trials x 2 with the response window values, e.g., for one
trial this would be [−RW,RW ].

3 Signal Detection Analysis

3.1 Study 1

Table S11 summarizes the posterior group-level estimates of parameters of the model for Study 1.
Given past results showing no effect with the 850 ms response deadline, we did not expect to observe
any difference in the response criterion in this study. Consistent with this prediction, no credible
effect of race was found on the response criterion (Table S12). One unexpected effect was that there
was a credible effect of race on sensitivity, with participants having greater sensitivity for Black
targets than for White targets. (though see also Ma et al., 2013; Sadler et al., 2012; Sim et al.,
2013).

Table S11: Study 1 Posterior Means and 95% HDI (in Brackets) for the Group-Level Parameter
Estimates of the Signal Detection Model

Sensitivity µd
′

Criterion µc

White 3.39 [3.14, 3.64] −0.15 [−0.24,−0.06]
Black 3.81 [3.54, 4.09] −0.03 [−0.12, 0.07]

Table S12: Summary of Standardized Effects of Race on Group-Level µd
′

and µc for Study 1

95% HDI

Factor Mean Lower Upper Prop <0

Sensitivity µd
′

0.65 0.09 1.23 .009
Criterion µc 1.64 -0.38 4.75 .03
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3.2 Study 2

Table S13 summarizes the posterior group-level estimates of the Bayesian SDT model for Study 2.
Table S14 and S15 summarizes the effect of race, context, and their interaction on the group-level
estimates of sensitivity and response criterions. Consistent with past studies, there was no credible
effect of race, context, or an interaction on group-level sensitivity. Overall, participants did set a
lower criterion for Black targets. Consistent with Correll et al. (2011), the effect of race on criterion
was driven largely by the neutral contexts: Participants set a lower criterion for Blacks than for
Whites in the neutral condition (M = −0.17 [−0.28,−0.05]), but a similar criterion for both target
types in the dangerous condition (M = −0.07 [−0.19, 0.06]).

Table S13: Study 2 Posterior Means and 95% HDI (in Brackets) for the Group-Level Parameter
Estimates of the Signal Detection Model

Race Context Sensitivity µd
′

Criterion µc

White Neutral 2.31 [2.07, 2.54] 0.03 [−0.05, 0.11]
Black Neutral 2.46 [2.22, 2.71] −0.14 [−0.23,−0.06]
White Dangerous 2.40 [2.18, 2.62] −0.06 [−0.14, 0.03]
Black Dangerous 2.47 [2.25, 2.69] −0.12 [−0.21,−0.03]

Table S14: Summary of Standardized Effects of Race and Context on Group-Level µd
′

for Study 2

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.18 -0.17 0.52 .16
Context 0.07 -0.28 0.43 .34
Race * Context 0.06 -0.28 0.41 .36

Table S15: Summary of Effects of Race and Context on the Group-Level Criterion µc for Study 2

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.71 -1.32 -0.14 > .99
Context -0.18 -0.71 0.35 .75
Race * Context -0.31 -0.84 0.22 .88

3.3 Study 3

Table S16 lists the group-level mean sensitivity (µd
′
) and criterion (µc) estimates. Table S17 and S18

summarizes the effects of the manipulations on the group-level estimates. As in past studies, criteria
were lower for Black targets, but there was no effect of race on sensitivity. In this study, there was
no credible effect of context, neither was there an interaction with context on the response criteria.
However, participants did show increased sensitivity in the dangerous conditions.
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In terms of discriminability, the criterion estimates were larger when the objects were blurred
(M = 0.07 [0.02, 0.11]) than when they were clear (M = −0.08 [−0.13,−0.03]) (see Table S16).
There was no credible difference between blurred and non-blurred objects in terms of sensitivity to
shoot. The effect of discriminability on the decision criterion highlights the difficulty that the SDT
model has in properly characterizing this property. This is due to the fact that the non-gun objects
provided some signal for the shoot decision.

Table S16: Study 3 Posterior Means and 95% HDI (Brackets) for the Group-Level Parameter Esti-
mates of the Signal Detection Model

Race Context Discriminability Sensitivity µd
′

Criterion µc

White Neutral Clear 2.77 [2.43, 3.10] −0.02 [−0.12, 0.08]
Black Neutral Clear 2.54 [2.22, 2.88] −0.13 [−0.22,−0.04]
White Dangerous Clear 2.88 [2.53, 3.22] −0.05 [−0.15, 0.05]
Black Dangerous Clear 2.83 [2.50, 3.18] −0.11 [−0.21,−0.01]
White Neutral Blurred 2.41 [2.08, 2.74] 0.13 [0.05, 0.22]
Black Neutral Blurred 2.48 [2.16, 2.82] 0.09 [−0.01, 0.18]
White Dangerous Blurred 2.84 [2.51, 3.18] 0.10 [0.00, 0.20]
Black Dangerous Blurred 2.75 [2.41, 3.08] −0.06 [−0.15, 0.04]

Table S17: Summary of Standardized Effects of Race and Context on Group-Level µd
′

for Study 3

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.08 -0.36 0.19 .73
Context 0.32 0.04 0.59 .01
Discrim. -0.16 -0.43 0.12 .87
Race * Context 0.00 -0.28 0.27 .49
Race * Discrim. -0.07 -0.35 0.20 .70
Context * Discrim. -0.09 -0.36 0.19 .73
Race * Context * Discrim. -0.10 -0.38 0.18 .76

Table S18: Summary of Standardized Effects of Race and Context on Group-Level µc for Study 3

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.56 -1.82 -0.46 .88
Context -0.64 -1.98 0.39 .91
Discrim. 2.05 0.46 4.52 0
Race * Context 0.211 -0.81 1.33 .33
Race * Discrim. 0.10 -0.93 1.21 .43
Context * Discrim. 0.59 -0.44 1.91 .11
Race * Context * Discrim. -0.56 -1.82 0.46 .88
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3.4 Study 4

Table S19 lists the group-level mean sensitivity (µd
′
) and criterion (µc) estimates. Table S20 and S21

summarizes the effects of the manipulations on the group-level estimates. The criterion was lower
for Black targets, but there was no effect of race on sensitivity. There was also no credible effect of
context or interaction with context or sensitivity on the response criterion.

Table S19: Study 4 Posterior Means and 95% HDI (in Brackets) for the Group-Level Parameter
Estimates of the Signal Detection Model

Race Context Sensitivity µd
′

Criterion µc

White Neutral 1.49 [1.37, 1.62] −0.03 [−0.08, 0.01]
Black Neutral 1.47 [1.35, 1.59] −0.14 [−0.19,−0.09]
White Dangerous 1.20 [1.08, 1.32] −0.10 [−0.14,−0.05]
Black Dangerous 1.24 [1.12, 1.36] −0.16 [−0.21,−0.11]

Table S20: Summary of Standardized Effects of Race and Context on Group-Level µd
′

for Study 4

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.010 -0.208 0.224 .46
Context -0.461 -0.678 0.239 > .99
Race * Context -0.056 -0.272 0.161 .69

Table S21: Summary of Standardized Effects of Race and Context on the Group-Level Criterion µc

for Study 4

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.447 -0.132 -0.038 > .99
Context -0.212 -0.461 0.027 .96
Race * Context -0.122 -0.359 0.130 .84

3.5 Composite Analysis

We also fit the hierarchical signal detection model to the data used in the composite analysis. We
report the effects tables below. For ease of interpretation we report the effects in terms of response
window instead of Study. Table S22 shows that there was a credible increase in sensitivity as the
response window was increased across the studies. Table S23 shows that across experiments partic-
ipants tended to set a lower decision criterion for Black than White targets though the HDI does
overlap with 0. This is consistent with the interaction between race and response window where, if
you recall, in Study 1 participants did not show a credible effect of race on the decision criterion
(Table S12). This result is understood as the result of the larger response window in Study 1, and
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illustrates the limitation in modeling the decision to shoot as a signal detection process.

Table S22: Summary of Standardized Effects of Race and Context on Group-Level µd
′

for Composite
Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.128 -0.121 0.377 .16
Window 1.876 1.577 2.174 0
Race * Window 0.028 -0.224 0.278 .41

Table S23: Summary of Standardized Effects of Race and Context on the Group-Level Criterion µc

for Composite Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.365 -0.715 0.001 .98
Window -0.081 -0.436 0.279 .67
Race * Window 0.429 0.068 0.788 .01

4 Parameter Recovery Analysis for the Hierarchical Drift
Diffusion Model

We conducted a set of parameter recovery analyses using the Hierarchical Drift Diffusion Model.
Here we summarize the results from three different analyses: one where the race bias was in the
group level starting point, an analysis where the race bias was in the group level drift rates, and
an analysis where the race bias was in the drift rates and larger thresholds for Black targets. For
each analysis, we generated data at the experiment level. Each experiment had N = 50 simulated
participants with n = 100 trials per participant (i.e., 25 trials per condition). This is the typical
dataset size used with the First Person Shooter Task, like in Study 1.

We simulated datasets with several different parameter values, but the ones reported below
come from the composite analysis reported in the main table collapsing across all four experiments
and race. The group level means and standard deviations (the square root of the inverse of the
precision parameter) used to generate the data are given in Table S24. Without an a priori estimate
of the effect size for race we used the estimate from Study 1. The difference in drift rates for
armed Black and White targets was 0.62. Accounting for the precision in the group level drift
rates, using the estimated parameters from the composite analysis this difference corresponds to a

d =
µδBlack−µ

δ
White√

1/τδ
≈ 1.00. We used this estimate to generate a race effect in the start point, the drift

rates, and/or threshold separations. The data were generated using a random walk approximation
of the stochastic differential equation of a drift diffusion process where each time step in the walk
was set to take 0.0001s (Tuerlinckx et al., 2001).
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After simulating a dataset, we then fit the DDM used in the main analyses of the paper to the
data. This model allowed the group level mean relative start point µβ and threshold separation µα to
vary between the race conditions and allowed the the group level mean drift rates µδ and non-decision
time µNDT to vary between race and object conditions. Fitting the model was computationally
intensive so we aimed to have at least 50 simulated datasets per model analysis. Due to occasional
datasets resulting in non-converging model fits (about 1 in 10), we actually simulated 60 datasets.
Using Matlab and JAGS 3.4.0 on a Linux machine with Intel Xeon E5-2670 with 32 cores with
processing speed of 2.6 GHZ to simulate and estimate the model (see Bayesian Model Estimation
for more details), each analysis took approximately 9 hours to complete.

Table S24 lists the average posterior mean estimates and the average values of the 95% HDI
for each of the generating parameters. As one can see the model recovery does an excellent job in
recovering the parameters.

We also used the parameter recovery analysis to estimate the proportion of times the hierarchical
DDM analysis would identify a credible race effect, a kind of power analysis (Kruschke, 2010, 2013).
Table S25 lists for each parameter the average difference between the race conditions, the average
estimates of the corresponding 95% HDI, and the proportion of times a credible effect of race was
identified using a 95% HDI. The model analysis shows that the DDM (a) never incorrectly identifies
a race effect in a different process parameter; and (b) does a good job of correctly identify credible
effect.

One will note that across the four studies the effect of race on the drift rates does get smaller.
This raises the question how this will impact the inferences. This is a difficult and computationally
intensive question to answer. However, we sought to at least get some insight here, though certainly
more work with a larger number of simulations is needed. Using the estimates from the composite
analysis, supposing the effect size drops to d = 0.5 and nothing else is changed (i.e., sample size
of N = 50 participants who each complete n = 100 trials total i.e. 25 trials per condition) our
simulation show that using a 95% HDI the proportion of times a credible effect is found in any of the
parameters approaches 50 to 70%. If the number of participants is increased to N = 100 participants
then the proportion of times a credible effect goes to > 85% for drift rates and threshold separations,
and > 60% for relative start points. Another option is to also increase the number of trials, which
has a similar effect. For instance, for a medium size effect using 160 trials (as in our Study 4) the
proportion of times a credible effect is found goes to > 85% for drift rates and thresholds and > 70%
for relative start points.

It is important to note that in all the model recoveries (as Table S24 illustrates) the estimation
of the parameters was quite accurate. That is the order and magnitude of the parameters was
maintained. This means the sign of the difference is maintained and the magnitude of the difference
is maintained (i.e., a low Type S and Type M error rate) (Gelman & Tuerlinckx, 2000; Gelman &
Carlin, 2014). Thus, even if a credible effect may not be found the values of the parameters carry
information speaking to the effect. This also means that we could also use a smaller HDI like 90%
or even 80%. This would increase the proportion of times a credible effect consistent with the race
effect would be identified.

In sum, the hierarchical DDM used in the paper accurately and reliably recovers the generating
parameters using simulated datasets that correspond to those used in the literature. It also has rea-
sonable accuracy in detecting medium to large race effects in the process parameters. Nevertheless,
we do recommend increasing the number of subjects and the number of trials for smaller effects,
and to estimate other interesting aspects of the decision process such as trial-by-trial variability in
the parameters.
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Table S24: Summary of parameter recovery for three different possible effects of race on the process parameters.

Race Bias in Start Point Race Bias in Drift Rate
Race Bias in Drifts &

Incr. Thresholds for Black Targets

True
Value M 95% HDI

True
Value M 95% HDI

True
Value M 95% HDI

µβW 0.53 0.54 0.52 0.56 0.55 0.56 0.53 0.58 0.55 0.55 0.53 0.58

µβB 0.58 0.58 0.55 0.60 0.55 0.56 0.53 0.58 0.55 0.56 0.53 0.58√
1/τβ 0.06 0.05 0.04 0.07 0.06 0.05 0.04 0.07 0.06 0.05 0.04 0.07

µαW 1.13 1.14 1.09 1.19 1.13 1.14 1.10 1.19 1.06 1.08 1.03 1.12

µαB 1.13 1.14 1.10 1.19 1.13 1.14 1.10 1.19 1.20 1.21 1.16 1.26√
1/τα 0.13 0.14 0.11 0.16 0.13 0.13 0.10 0.16 0.13 0.13 0.11 0.16

µδNonGun,W -2.33 -2.32 -2.57 -2.08 -2.71 -2.71 -2.99 -2.43 -2.71 -2.71 -2.99 -2.43

µδNonGun,B -2.33 -2.32 -2.57 -2.08 -1.95 -1.96 -2.23 -1.70 -1.95 -1.93 -2.20 -1.68

µδGun,W 2.23 2.21 1.97 2.46 1.85 1.86 1.60 2.13 1.85 1.88 1.61 2.15

µδGun,B 2.23 2.24 1.99 2.49 2.62 2.61 2.33 2.89 2.62 2.62 2.34 2.90√
1/τδ 0.76 0.76 0.66 0.86 0.76 0.78 0.66 0.90 0.76 0.77 0.67 0.87

µNDTNonGun,W 0.39 0.39 0.37 0.40 0.39 0.39 0.37 0.40 0.39 0.39 0.37 0.40

µNDTNonGun,B 0.39 0.39 0.37 0.40 0.39 0.39 0.37 0.40 0.39 0.39 0.37 0.40

µNDTGun,W 0.36 0.36 0.34 0.38 0.36 0.36 0.34 0.38 0.36 0.36 0.34 0.38

µNDTGun,B 0.36 0.36 0.34 0.38 0.36 0.36 0.34 0.38 0.36 0.36 0.34 0.38√
1/τNDT 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.07

The values for the mean and 95% HDI are averaged across the simulations.
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Table S25: Summary of hierarchical DDM ability to identify race effect

Race Bias in Start Point Race Bias in Drifts
Race Bias in Drifts &

Incr. Thresholds for Black Targets

M 95% HDI Pr(CE) M 95% HDI Pr(CE) M 95% HDI Pr(CE)

Relative Start Point 0.05 0.02 0.09 .92 0.00 -0.03 0.04 0 0.00 -0.03 0.04 0
Threshold Separation 0.00 -0.07 0.07 0 0.00 -0.07 0.07 0 0.14 0.07 0.21 .98
Drift for non-gun 0.01 -0.37 0.39 0 0.75 0.37 1.13 .98 0.78 0.40 1.16 .98
Drift for gun 0.00 -0.39 0.38 0 0.75 0.36 1.13 .98 0.74 0.36 1.12 1.00
Non-Decision Time 0.00 -0.02 0.02 0 0.00 -0.02 0.02 0 0.00 -0.02 0.02 0

The values for the mean and 95% HDI are averaged across the simulations. The Prop. CE table reports the proportion of simulated datasets

where a credible race effect at the group level was found for each process parameter using a 95% HDI.
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5 Posterior Predictive Checks for the Drift Diffusion Model

We also examined how well the posterior predictions from the DDM correspond to the observed
choice and response time data. For each study and each condition we examined the degree of
correspondence between choice probabilities, mean response times, and response time distributions.
In terms of the choice probabilities and mean response times we summarized the correspondence
between the posterior predictions and the observed data by showing the group-level predictions for
each condition and independent response type. We also plotted the observed average performance
measure in each plot as well as the average performance measure for each individual. Plotting the
distribution of choice proportions and mean response times at the individual level is important as
it illustrates that there is shrinkage in posterior predictions for the hierarchical DDM, where lower
level parameters are shifted towards the modes of the higher level distributions (Kruschke, 2014).
As a result, the posterior predictive HDIs are not centered around the observed average choice
proportions and response times from the data, which are more sensitive to extreme values.

We also calculated the proportion of subjects who fall outside the 95% posterior predicted interval
for the choice proportions and mean response times in each condition of each study. These are
provided in Tables S26, S27, S28, and S29. These statistics are similar to the ones suggested by
Gelman et al. (2003) (see Chapter 6) to evaluate lack of fit. They confirm what the figures show,
which is the model captures the data well. There are individuals who fall outside the 95% HDI, but
by and large it is our judgment that the model does reasonably well in capturing the data across the
each condition of each of the four studies. In some cases, particularly in the mean response times for
the errors there is some deviation, but this is to be expected given the low numbers of observations
at the subject level.

The posterior predictions of the mean response times in Studies 1 and 2 also reveal the conse-
quences of the response deadlines. All the observed data are, by design, before the response deadline.
Normally, this would be a problem for the DDM, as it predicts a response time distribution that
is continuous over all possible times. The Bayesian approach taken in this paper, however, makes
it possible to model this censoring of the data and, as a result, the posterior predictions do a good
job of recreating the data, even with the cutoff (see Section 2.2). However, one noticeable exception
is seen in the mean response times for the “Don’t Shoot” responses to non-gun objects in Study 2
(see Figure S6). The aggregate response time distributions in Figure S7 show that these responses
(which tend to be the slowest) were affected by the response window (630 ms) in this study cutting
off the right tail of the distribution leading to the poor fits. As this problem was only evident in
this study we left the DDM as is and did not work to correct this misfit.

As just mentioned, we also also examined the degree of correspondence between the observed
response time distributions and the predicted response time distributions. To generate the predicted
response times we used JAGS to sample from the DDM using the posterior group level distribu-
tions. For each condition and response, we then collapsed across subjects and trials to estimate the
predicted response time distribution. Note this creates an incredibly large amount of samples of
response times (e.g., 80,000 samples per trial) so we randomly sample a smaller sample of samples
per trial (e.g., 8000 per trial). Per the recommendation of Van Zandt (2000), to plot the response
time distributions we passed the observed response times and predicted response times through a
Gaussian kernel.

All in all given the different studies, each with multiple conditions, with many subjects, we believe
the fit of the model to the data is reasonably good. There are certainly places for improvement, but
we leave those for studies better designed to investigate more fine-tuned models.
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5.1 Study 1
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Figure S2: Posterior predictions of the false alarm and hit rates in Study 1. The large shaded dots
are the mean posterior prediction at the group level. The bars are the 95% HDI. The unshaded
squares are the observed average false alarm and hit rates. The small solid dots are the observed
individual rates, which are scattered horizontally to better show the distribution of individual rates.
All values were normalized to 25 observations each, the number of trials in each condition.
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Figure S3: Posterior predictions of the mean response times in Study 1. The large shaded dots are
the mean posterior prediction at the group level. The bars are the 95% HDI. The unshaded squares
are the observed average response times. The small solid dots are the observed average response
times, which are scattered horizontally to better show the distribution of individual response times.

Table S26: Proportion of observed choice proportions and mean response times falling outside the
posterior predicted 95%HDI in Study 1 (see Figures S2 and S3).

Choice Proportions Response Times

Don’t Shoot Shoot

White, Non-Gun .02 .02 .04
Black, Non-Gun .07 .05 .02
White, Gun .07 .05 .07
Black, Gun .07 0 .07
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Figure S4: Observed (black) and predicted (grey) response time distributions at the group level for
Study 1. The response window was 850 ms and all responses outside this window were not recorded.

5.2 Study 2
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Figure S5: Posterior predictions of the false alarm and hit rates in Study 2. The large shaded dots
are the mean posterior prediction at the group level. The bars are the 95% HDI. The unshaded
squares are the observed average false alarm and hit rates. The small solid dots are the observed
individual rates, which are scattered horizontally to better show the distribution of individual rates.
All values were normalized to 20 observations each, the number of trials in each condition.
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Figure S6: Posterior predictions of the mean response times in Study 2. The large shaded dots are the
mean posterior prediction at the group level. The bars are the 95% HDI. The unshaded squares are
the observed average response times. The small solid dots are the observed average response times,
which are scattered horizontally to better show the distribution of individual response times. Note
that the model systematically predicts faster response times in correct rejections (non-gun, “Don’t
Shoot”). As Figure S7 shows this appears to occur because the response window disproportionately
impacts non-gun objects (the slower responses), which is especially apparent in this study with the
smallest response window (630 ms). As a result the DDM struggles to account for the distribution
of response times for the non-gun objects. Given this misfit does not appear to happen in the other
responses or in the other studies we have chosen to leave the model as is.

27



Table S27: Proportion of observed choice proportions and mean response times falling outside the
posterior predicted 95% HDI in Study 2 (see Figures S5 and S6).

Choice Proportions Response Times

Don’t Shoot Shoot

White, Non-Gun, Neutral .03 .07 .07
Black, Non-Gun, Neutral .03 .03 .05
White, Gun, Neutral .05 .05 .03
Black, Gun, Neutral 0 0 .07
White, Non-Gun, Danger .03 .05 .02
Black, Non-Gun, Danger .05 .07 .03
White, Gun, Danger .09 .05 .05
Black, Gun, Danger .05 .07 .03
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Figure S7: Observed (black) and predicted (grey) response time distributions at the group level for
Study 2. The response window was 630 ms and all responses beyond this window were not recorded
in this study. Referring back to Figure S6 note the response window tended to have a larger impact
on the non-gun response time distributions, particularly for the “Don’t Shoot” response.

5.3 Study 3
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Figure S8: Posterior predictions of the false alarm and hit rates in Study 3. The large shaded dots are the mean posterior prediction
at the group level. The bars are the 95% HDI. The unshaded squares are the observed average false alarm and hit rates. The small
solid dots are the observed individual rates, which are scattered horizontally to better show the distribution of individual rates. Note
that the predicted hit rates appear more regressive to the average hit rate across conditions than the observed hit rates. This is due
to shrinkage in the hierarchical model. All values were normalized to 20 observations each, the number of trials in each condition.
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Figure S9: Posterior predictions of the mean response times in Study 3. The large shaded dots are the mean posterior prediction at
the group level. The bars are the 95% HDI. The unshaded squares are the observed average response times. The small solid dots are
the observed average response times, which are scattered horizontally to better show the distribution of individual response times.
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Figure S10: Observed (black) and predicted (grey) response time distributions at the group level for Study 3 in the clear condition.
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Table S28: Proportion of observed choice proportions and mean response times falling outside the
posterior predicted 95%HDI in Study 3 (see Figures S8 and S9).

Choice Proportions Response Times

Don’t Shoot Shoot

White, Non-Gun, Neutral, Clear .08 .11 .11
Black, Non-Gun, Neutral, Clear .08 .06 .16
White, Gun, Neutral, Clear .11 .21 .03
Black, Gun, Neutral, Clear .26 .13 .05
White, Non-Gun, Danger, Clear .16 .03 .16
Black, Non-Gun, Danger, Clear .08 .08 .13
White, Gun, Danger, Clear .11 .13 .05
Black, Gun, Danger, Clear .08 .08 .08
White, Non-Gun, Neutral, Blur .08 .08 .32
Black, Non-Gun, Neutral, Blur .05 .08 .08
White, Gun, Neutral, Blur .05 .11 .08
Black, Gun, Neutral, Blur .08 .08 0
White, Non-Gun, Danger, Blur .08 .08 .08
Black, Non-Gun, Danger, Blur .11 .05 .24
White, Gun, Danger, Blur .08 .21 .03
Black, Gun, Danger, Blur .08 .08 .05

Note the discrepancies between observed and the posterior predicted RTs tend to be greater

in the errors, which are the responses with the fewest number of observations.
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Figure S11: Observed (black) and predicted (grey) response time distributions at the group level for Study 3 in the blurred condition.
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5.4 Study 4

White Black White Black
.50

.60

.70

.80

.90

1.0
Gun, Shoot

Neutral Dangerous

White Black White Black
0

.20

.40

.60

.80

C
h

o
ic

e
 P

ro
p

o
rt

io
n

Non-Gun, Shoot

Neutral Dangerous

Figure S12: Posterior predictions of the false alarm and hit rates in Study 4. The large shaded dots
are the mean posterior prediction at the group level. The bars are the 95% HDI. The unshaded
squares are the observed average false alarm and hit rates. The small solid dots are the observed
individual rates, which are scattered horizontally to better show the distribution of individual rates.
All values were normalized to 40 observations each, the number of trials in each condition. Note
that the predicted hit rates appear more regressive to the average hit rate across conditions than
the observed hit rates. This is due to shrinkage in the hierarchical model.
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Figure S13: Posterior predictions of the mean response times in Study 4. The large shaded dots are
the mean posterior prediction at the group level. The bars are the 95% HDI. The unshaded squares
are the observed average response times. The small solid dots are the observed average response
times, which are scattered horizontally to better show the distribution of individual response times.

Table S29: Proportion of observed choice proportions and mean response times falling outside the
posterior predicted 95%HDI in Study 4 (see Figures S12 and S13).

Choice Proportions Response Times

Don’t Shoot Shoot

White, Non-Gun, Neutral .10 .05 .08
Black, Non-Gun, Neutral .04 .05 .08
White, Gun, Neutral .06 .04 .07
Black, Gun, Neutral .05 .10 .05
White, Non-Gun, Danger .02 .05 .03
Black, Non-Gun, Danger .03 .06 .02
White, Gun, Danger .05 .10 .06
Black, Gun, Danger .05 .15 .07

Note the discrepancies between observed and the posterior predicted RTs tend to be

greater in the errors, which are the responses with the fewest number of observations.
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Figure S14: Observed (black) and predicted (grey) response time distributions at the group level for
Study 4 in the clear condition. The correspondence between the posterior predicted response time
distributions and observed response times is lower in this study. The observed data have a more
symmetrical distribution. One way to account for this is to include trial-by-trial variability in the
start point. However, we leave this investigation of trial-by-trial variability in the parameters to a
study with more observations per subject.

6 Drift Diffusion Model Process Parameter Effects Tables

This appendix summarizes the effects on the group level process parameters in the DDM for Studies
2, 3, 4 and the composite analysis.

6.1 Study 2

37



Table S30: Summary of Standardized Effects of Race and Context on Group Level µβ for Study 2

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.159 -0.546 0.223 .792
Context -0.094 -0.479 0.292 .061
Race * Context 0.418 0.024 0.807 .476

Table S31: Summary of Standardized Effects of Race and Context on Group Level µα for Study 2

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.250 -0.204 0.728 .142
Context -0.071 -0.548 0.391 .616
Race * Context 0.573 0.088 1.084 .008

Table S32: Summary of Standardized Effects of Race and Context on Group Level µδ for Non-Gun
Objects in Study 2

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.043 -0.308 0.379 .405
Context 0.087 -0.260 0.438 .313
Race * Context 0.050 -0.293 0.405 .389

Table S33: Summary of Standardized Effects of Race and Context on Group Level µδ for Gun
Objects in Study 2

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.432 0.077 0.788 .005
Context 0.047 -0.313 0.401 .400
Race * Context 0.141 -0.213 0.497 .219

6.2 Study 3
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Table S34: Summary of Standardized Effects of Race and Context on Group Level µNDT for Study
2

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.008 -0.185 0.202 .468
Object -0.646 -0.842 -0.450 1.00
Context 0.041 -0.156 0.234 .340
Race * Object 0.169 -0.025 0.357 .043
Race * Context -0.205 -0.400 -0.011 .981
Object * Context -0.077 -0.269 0.114 .786
Race * Object * Context -0.084 -0.276 0.104 .808

Table S35: Summary of Standardized Effects of Race and Context on Group Level µβ for Study 3

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.047 -0.447 0.545 .424
Context -0.027 -0.532 0.470 .542
Blur -0.166 -0.662 0.327 .747
Race * Context -0.712 -1.259 -0.188 .997
Race * Blur 0.096 -0.401 0.593 .347
Context * Blur 0.109 -0.389 0.602 .333
Race * Context * Blur 0.228 -0.286 0.731 .184

Table S36: Summary of Standardized Effects of Race and Context on Group Level µα for Study 3

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.325 -0.683 0.683 .036
Context -0.248 -0.103 -0.103 .915
Blur 0.036 -0.396 0.396 .420
Race * Context -0.007 -0.348 0.348 .520
Race * Blur -0.078 -0.283 0.283 .671
Context * Blur 0.149 -0.498 0.498 .205
Race * Context * Blur -0.066 -0.282 0.282 .645
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Table S37: Summary of Standardized Effects of Race and Context on Group Level µδ for Non-Gun
Objects in Study 3

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.342 0.047 0.643 .012
Context -0.241 -0.535 -0.056 .944
Blur -0.158 -0.461 0.132 .851
Race * Context 0.272 -0.018 0.572 .035
Race * Blur -0.096 -0.391 0.197 .737
Context * Blur -0.007 -0.306 0.290 .516
Race * Context * Blur 0.097 -0.203 0.388 .262

Table S38: Summary of Standardized Effects of Race and Context on Group Level µδ for Gun
Objects in Study 3

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.075 -0.228 0.376 .312
Context 0.420 0.117 0.721 .004
Blur -0.624 -0.98 -0.318 .999
Race * Context 0.217 -0.083 0.522 .078
Race * Blur 0.104 -0.188 0.409 .247
Context * Blur 0.219 -0.743 0.525 .076
Race * Context * Blur -0.067 -0.361 0.236 .672

6.3 Study 4
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Table S39: Summary of Standardized Effects of Race and Context on Group Level µNDT for Study
3

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.153 -0.326 0.021 .959
Context 0.353 0.179 0.526 <.001
Blur 0.085 -0.087 0.255 .165
Object -0.615 -0.791 -0.442 1.00
Race * Context -0.015 -0.185 0.158 .568
Race * Blur 0.046 -0.127 0.216 .301
Race * Object -0.008 -0.178 0.161 .539
Context * Blur 0.007 -0.164 0.178 .469
Context * Object -0.042 -0.211 0.128 .688
Blur * Object 0.173 -0.000 0.340 .023
Race * Context * Blur 0.026 -0.145 0.197 .382
Object * Race * Context 0.167 -0.002 0.345 .028
Object * Race * Blur 0.083 -0.092 0.249 .172
Object * Context * Blur -0.142 -0.310 0.030 .949
Race * Object * Context * Blur -0.052 -0.223 0.116 .726

Table S40: Summary of Standardized Effects of Race and Context on Group Level µβ for Study 4

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.244 -0.502 0.015 .969
Context -0.206 -0.467 0.044 .944
Race * Context 0.044 -0.209 0.304 .368

Table S41: Summary of Standardized Effects of Race and Context on Group Level µα for Study 4

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.068 -0.135 0.270 .255
Context -0.105 -0.304 0.100 .845
Race * Context -0.125 0.324 0.0822 .886
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Table S42: Summary of Standardized Effects of Race and Context on Group Level µδ for Non-Gun
Objects in Study 4

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.311 0.088 0.530 .003
Context 0.475 0.255 0.696 < .001
Race * Context 0.012 -0.210 0.228 .456

Table S43: Summary of Effects of Race and Context on Group Level µδ for Gun Objects in Study 4

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.326 0.102 0.553 .002
Context -0.205 -0.433 0.016 .964
Race * Context 0.001 -0.212 0.235 .475

Table S44: Summary of Standardized Effects of Race and Context on Group Level µNDT for Study
4

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.064 -0.196 0.074 .827
Object -0.194 -0.331 -0.062 .998
Context 0.008 -0.127 0.142 .453
Race * Object -0.019 -0.154 0.115 .607
Race * Context -0.037 -0.174 0.096 .704
Object * Context 0.014 -0.121 0.148 .419
Race * Object * Context 0.006 -0.126 0.143 .468

6.4 Composite Analysis

Table S45: Summary of Standardized Effects of Race and Context on Group Level µβ for Composite
Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.007 -0.310 0.296 .519
Window -0.131 -0.436 0.172 .803
Race * Window -0.125 -0.425 0.181 .792
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Table S46: Summary of Standardized Effects of Race and Context on Group Level µα for Composite
Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.315 0.047 0.576 .010
Window 1.64 1.350 1.939 0
Race * Window 0.159 -0.099 0.421 .115

Table S47: Summary of Standardized Effects of Race and Context on Group Level µδ for Non-Gun
Objects in Composite Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.171 -0.075 0.421 .087
Window -1.18 -1.440 -0.926 1
Race * Window 0.041 -0.204 0.293 .374

Table S48: Summary of Effects of Race and Context on Group Level µδ for Gun Objects in Composite
Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race 0.254 0.008 0.511 .023
Window 1.23 0.980 1.502 0
Race * Window 0.028 -0.218 0.285 .415

Table S49: Summary of Standardized Effects of Race and Context on Group Level µNDT for Com-
posite Analysis

95% HDI

Factor Mean Lower Upper Prop <0

Race -0.083 -0.221 0.051 .885
Window 0.921 0.780 1.063 0
Object -0.470 -0.608 -0.335 1
Race * Window -0.002 -0.136 0.135 .510
Race * Object 0.039 -0.099 0.171 .284
Window * Object -0.002 -0.136 0.135 .510
Race * Window * Object -0.001 -0.133 0.136 .509
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