Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201800065

The Alkaline Stability of Anion Exchange Membrane for Fuel Cell Applications: The Effects of Alkaline Media

Zhe Sun, Ji Pan, Jiangna Guo, and Feng Yan*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

The Alkaline Stability of Anion Exchange Membrane for Fuel Cell Applications: the Effects of Alkaline Media

Zhe Sun, Ji Pan, Jiangna Guo and Feng Yan*

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.

E-mail: <u>fyan@suda.edu.cn</u>

Figure S1. ¹H NMR spectra for various organic cations studied in this work including: (a) [DeIm][Br], (b) [DemIm][Br], (c) [DemBIm][Br], (d) [EPy][Br], (e) [EMPl][Br], (f) [ETMP][Br] and (g) [BTMA][Cl].

Figure S2. ¹H NMR spectra of $[ETMP]^+$ in 2 M KOH/D₂O at 80 °C for 24 h, before and after a second storage period in 2 M KOH/H₂O for 24 h at 80 °C. The green and red arrows indicate the disappearance and reappearance of α -C protons after the interconversion of hydrogen and deuterium, respectively.

Figure S3. ³¹P NMR spectra for [ETMP][Br].

Figure S4. ³¹P NMR spectra for $[ETMP]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) D₂O solution at 80 °C for 0, 24 and 168h, respectively.

Figure S5. ¹H NMR spectra for (a) $[DeIm]^+$, (b) $[DemIm]^+$, (c) $[DemBIm]^+$, (d) $[EPy]^+$, (e) $[EMPI]^+$, (f) $[ETMP]^+$ and (g) $[BTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution ($V_{D_2O}/V_{CD_3OD}=3:1$) at 80 °C for 24 and 96h, respectively.

Figure S6. ¹H NMR spectra for (a) $[DeIm]^+$, (b) $[DemIm]^+$, (c) $[DemBIm]^+$, (d) $[EPy]^+$, (e) $[EMPI]^+$, (f) $[ETMP]^+$ and (g) $[BTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution (V_{D_2O}/V_{CD_3OD} =1:1) at 80 °C for 24 and 96h, respectively.

Figure S7. ¹H NMR spectra for (a) $[DeIm]^+$, (b) $[DemIm]^+$, (c) $[DemBIm]^+$, (d) $[EPy]^+$, (e) $[EMPI]^+$, (f) $[ETMP]^+$ and (g) $[BTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution ($V_{D_2O}/V_{CD_3OD}=1:3$) at 80 °C for 24 and 96h, respectively.

Figure S8. ¹H NMR spectra for (a) $[DeIm]^+$, (b) $[DemIm]^+$, (c) $[DemBIm]^+$, (d) $[EPy]^+$, (e) $[EMP1]^+$, (f) $[ETMP]^+$ and (g) $[BTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) CD₃OD solution at 80 °C for 24 and 96h, respectively.

Figure S9. ¹H NMR spectra for (a) $[DemIm]^+$, (b) $[ETMP]^+$ in 4 M KOH CD₃OD solutions ([KOH]/[cation] = 15/1, molar ratio) at 80 °C for 24, 96 and 168h, respectively.

Figure S10. ¹H NMR spectra for (a) $[DeIm]^+$, (b) $[DemIm]^+$, (c) $[DemBIm]^+$, (d) $[EPy]^+$, (e) $[EMPI]^+$, (f) $[ETMP]^+$ and (g) $[BTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution ($V_{D_2O}/V_{CD_3CD_2OD}$ =1:1) at 80 °C for 24 and 96h, respectively.

Figure S11. ¹H NMR spectra for (a) $[DemIm]^+$, (b) $[BTMA]^+$ and (c) $[ETMP]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) $V_{D_2O}/V_{CD_3OD}=1:3$ and $V_{D_2O}/V_{CD_3CD_2OD}=1:3$ solution at 80 °C for 24 and 96h, respectively.

Figure S12. 1H NMR spectra for (a) $[DeIm]^+$, (b) $[DemIm]^+$, (c) $[DemBIm]^+$, (d) $[EPy]^+$, (e) $[EMPI]^+$, (f) $[ETMP]^+$ and (g) $[BTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution ($V_{D_2O}/V_{DMSO}=1:1$) at 80 °C for 24 and 96h, respectively.

Figure S13. ¹H NMR spectra for the vinyl monomer synthesized in this work including: (a) [MVBIm][Cl], (b) [DMVBIm][Cl], (c) [VBPy][Cl], (d) [VBMPl][Cl] and (e) [VBTMP][Cl].

Figure S14. ¹H NMR spectra for various cationic polymers studied in this work including: (a) [PMVBIm][Cl], (b) [PDMVBIm][Cl], (c) [PVBPy][Cl], (d) [PVBMP1][Cl], (e) [PVBTMP][Cl] and (f) [PVBTMA][Cl].

Figure S15. ¹H NMR spectra for (a) $[PMVBIm]^+$, (b) $[PDMVBIm]^+$, (c) $[PVBPy]^+$, (d) $[PVBMP1]^+$, (e) $[PVBTMP]^+$ and (f) $[PVBTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) D₂O solution at 80 °C for 24 and 96 h, respectively.

Figure S16. ¹H NMR spectra for (a) [PMVBIm]+, (b) [PDMVBIm]⁺, (c) [PVBPy]⁺, (d) [PVBMPI]⁺, (e) [PVBTMP]⁺ and (f) [PVBTMA]⁺ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution (V_{D_2O}/V_{CD_3OD} =1:1) at 80 °C for 24 and 96 h, respectively.

Figure 17. ¹H NMR spectra for (a) $[PMVBIm]^+$, (b) $[PDMVBIm]^+$, (c) $[PVBPy]^+$, (d) $[PVBMP1]^+$, (e) $[PVBTMP]^+$ and (f) $[PVBTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) CD₃OD solution at 80 °C for 24 and 96h, respectively.

Figure S18. ³¹P NMR spectra for [PVBTMP]⁺ and [PVBTMP]⁺ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) (a) D₂O, (b) V_{D_2O}/V_{CD_3OD} =1:1 and (c) CD₃OD solutions at 80 °C for 0, 24 and 96h, respectively.

Figure S19. ¹H NMR spectra for $[BTMP]^+$ and $[BTMP]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) D₂O solution at 80 °C for 0, 24 and 96h, respectively.

Figure S20. ³¹P NMR spectra for $[BTMP]^+$ and $[BTMP]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) (a) D₂O and (b) CD₃OD solutions at 80 °C for 0, 24 and 96h, respectively.

Figure S21. ¹H NMR spectra for (a) $[PVBMPI]^+$ and (b) $[PVBTMA]^+$ in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) mixed solution ($V_{D_2O}/V_{DMSO}=1:1$) at 80 °C for 0, 24 and 96h, respectively.

Table S1. The IEC values of cationic polymers in 2 M KOH ([KOH]/[cation] = 15/1, molar ratio) solutions at 80 °C for 96 h.

Cationic Polymers	IEC (mmol g ⁻¹)				
	Initial value	D ₂ O (2 M KOH 96h)	V _{D20} /V _{CD30D} =1:1 (2 M KOH 96h)	CD ₃ OD (2 M KOH 96h)	V _{D20} /V _{DMS0} =1:1 (2 M KOH 96h)
[PVBMPL][OH]	4.566	4.566	4.230	2.396	3.858
[PVBTMA][OH]	5.181	5.181	4.941	0.524	4.033
[PDMVBIm][OH]	4.348	0.000	0.000	0.000	\
[PMVBIm][OH]	4.630	0.000	0.000	0.000	\
[PVBPy][OH]	4.695	0.000	0.000	0.000	\
[PVBTMP][OH]	4.762	0.000	0.000	0.000	\