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1. Supplementary methods: Mathematical description of Plasmodium vivax 

transmission model 

There is a rich tradition of studying the transmission dynamics of Plasmodium falciparum parasites between humans 

and mosquitoes using Ross-Macdonald models1,2. These models split the human and mosquito populations into 

compartments according to whether they are susceptible or infected, with the transition rates between these 

compartments being described by a system of differential equations. These models have been reviewed extensively 

in the literature3,4. In order to analyse the transmission dynamics of P. vivax in the Ross-Macdonald framework, we 

need to include a representation of relapse infections5. Here we describe how a Ross-MacDonald style model of P. 

vivax transmission5,6 can be extended to give a model that can be calibrated against a range of epidemiological data 

sets. This is done by including a more detailed representation of blood-stage P. vivax (section 1.1); accounting for 

human age structure (1.2) and heterogeneity in exposure to mosquito bites (1.3); relapses (1.4); the acquisition of 

immunity (1.5); and a model of mosqutio population dynamics accounting for larval stages (1.7). Notably, the model 

is described below in its deterministic format which is utilised for fitting to data. An equivalent, stochastic individual-

based formulation of the model is also developed to allow simulation of combinations of interventions. 

 

1.1. Model of blood-stage P. vivax dynamics in humans 

A large proportion of blood-stage P. vivax infections have very low parasite density, often remaining asymptomatic 

and undetectable via light microscopy. In order to provide a parsimonious representation of P. vivax blood-stage 

infection that accords with routinely collected epidemiological data, we represent blood-stage P. vivax via three 

states: 

 PCRI : sub-microscopic blood-stage infection not detectable by routine light microscopy, but detectable by 

laboratory-based PCR methods. 

 LMI : patent blood-stage infection detectable by light microscopy 

 DI : clinical disease – P. vivax parasitaemia accompanied by fever 

The exact definition of the above categories depends on the epidemiological and laboratory methods used for 

detecting parasites and measuring parasite density. For example, if two studies measure P. vivax prevalence by light 

microscopy (PvPRLM), the measurements may not be directly comparable if substantially different microscopy 

protocols were used. Similarly, the definition of a clinical episode of P. vivax is important. The definition of a clinical 

episode utilised in our model is constructed to match the data routinely collected in epidemiological studies where a 

clinical episode is defined as fever ≥ 38 °C in the last 48 hours with P. vivax parasite density ≥ 500/mL. All of the 

calibration data on P. vivax prevalence and incidence were collected using the same methodology and were 

overseen by the same teams based in the Papua New Guinea Institute of Medical Research (PNGIMR) and the Walter 

and Eliza Hall Institute (WEHI). 



In addition to the infection states described above, we include two states that account for the effects of anti-malarial 

treatment. In particular, we assume that a proportion χT of new episodes of clinical malaria receive prompt 

treatment with a blood-stage anti-malarial following the onset of symptoms. During this period T, individuals are still 

infectious but parasites are being rapidly cleared. Following clearance of parasitaemia, individuals enter a period of 

prophylaxis, P, where they are protected from new blood-stage infections, before finally returning to the fully 

susceptible state S. The model is described by the system of partial differential equations below as well as the 

schematic in Supplementary Figure 1.  

 

Supplementary Figure 1: Compartmental representation of P. vivax transmission model in humans. Infected individuals can be 
in one of three compartments depending on whether blood-stage parasitaemia is detectable by PCR (IPCR), light microscopy (ILM) 
or has high density with accompanying fever (ID). A proportion of individuals that progress to a symptomatic episode of P. vivax 
will be treated by a blood-stage drug (T) leading to clearance of blood-stage parasitaemia and a period of prophylactic 
protection (P) before returning to the susceptible state (S). The superscript k denotes the number of batches of relapse causing 
hypnozoites in the liver. Transitions between compartments occur at the rates shown, defined in supplementary equation (1) 
below. Each square denotes a compartment and the circles denote the dependence of transition rates between compartments 
on levels of anti-parasite immunity (AP) and levels of clinical immunity (AC). Red arrows denote new blood-stage infections 
arising from either new mosquito bites or relapses. 

 

The system of differential equations below describes the transitions between the compartments in Supplementary 

Figure 1. Note that at this stage we do not yet account for relapses and the force of infections on humans is entirely 

due to new mosquito bites  0

H Et d  , where dE is the latent period of 10 days to account for the time between 

mosquito inoculation of sporozoites, development of sporozoites into merozoites within the liver and the first 

detection of blood-stage merozoites. This model is therefore directly comparable to the compartmental version of 

the P. falciparum in Griffin et al.7, which is used as the starting point for P. vivax model development.  
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Supplementary equation (1) implies that in the absence of new infections, the time spent by an individual in a 

compartment is exponentially distributed with mean duration 1/rPCR (IPCR), 1/rLM (ILM), 1/rD (ID), 1/rT (T) and 1/rP (P). 

Furthermore, there are three factors which determine whether a new blood-stage infection will have low density 

and only be detectable by PCR (IPCR), become detectable by light microscopy (ILM), result in an untreated clinical 

episode of P. vivax malaria (ID), or a treated clinical episode of P. vivax malaria (T): 

 φLM: the probability that a blood-stage infection will become detectable by light microscopy 

 φD: the probability that a blood-stage infection that is detectable by light microscopy will progress to cause 

an episode of clinical malaria 

 χT: the proportion of symptomatic episodes of clinical P. vivax that receive blood-stage treatment 

The model represented in supplementary equation (1) does not account for ageing and human demography, 

heterogeneity in exposure to mosquito bites, the acquisition of immunity, or relapses. The first two of these factors 

are included in the model in the same as for the P. falciparum model in Griffin et al.7. For completeness these are 

included here in sections 1.2 and 1.3. The third factor builds on the P. falciparum model but is extended to 

incorporate relapses in section 1.5. The fourth factor (relapse) is specific to P. vivax and hence newly developed in 

section 1.4. 

 

1.2. Human demography and age-dependent exposure to mosquito bites 

Human demography 

We assume that all humans are subject to a constant death rate µH. This assumption is consistent with demographic 

data from developing countries with high birth and death rates. We assume that the population birth rate is µH so 

that the total population size is balanced over time. Finally we assume a maximum age amax. The distribution of ages 

in the population can therefore be described by the following truncated exponential distribution: 
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Age-dependent exposure to mosquito bites  

It has been repeatedly observed that an individual’s exposure to mosquito bites will vary over the course of their 

lifetime, with adults receiving substantially more bites than children8,9. This is due to several reasons including the 

larger surface area of adults and the tendency of adults to spend a greater proportion of time outdoors during the 

evening. In particular, we assume that age-dependent exposure to mosquito bites takes the following functional 

form: 
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where age  is a normalising constant calculated to ensure: 
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1.3. Heterogeneity in exposure to mosquito bites 

Heterogeneity in exposure to mosquito bites occurs across all spatial scales with differences in biting rates observed 

between villages, between houses within villages, and between individuals in houses10. This heterogeneity may arise 

due to variation in several factors including, but not limited to, attractiveness of humans to mosquitoes, housing 

standards, socio-economic status, and distance from mosquito breeding sites. We assumed that the heterogeneity in 

exposure can be described by a log-Normal distribution11. In particular, if the entomological inoculation rate (EIR) in 

a community is ε, then we assume that an individual’s exposure is ζε where ζ follows a log-Normal distribution 

defined as follows:  
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The mean exposure is thus ε with standard deviation
2

1e  .  

In a region with EIR = ε, the age and exposure dependent force of infection from mosquito bites will therefore be 
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In this equation for the force of infection, the superscript 0 denotes that relapses are not accounted for. The age and 

exposure dependent distribution of individuals is then given by: 

      ,W a W a W    (7) 

Note that although an individual’s age will change over time, we assume that their level of heterogeneity in exposure 

to mosquito bites is constant over time. 

  

 

 

 

 

 

 



1.4. Incorporation of relapses 

A bite from a P. vivax infectious mosquito may cause an initial episode of blood-stage infection, and may also lead to 

the formation of liver-stage hypnozoites which lie dormant in the liver for weeks to years before relapsing to cause 

new blood-stage infections. The dynamics of hypnozoite infection and relapses can be accounted for using models 

with a range of complexity, with more complex models facilitating a greater degree of realism. Here we provide an 

overview of three approaches of increasing complexity5,6: 

1. Binary hypnozoite model. Individuals can be in one of two states: infected or not infected with hypnozoites. 

Infected individuals experience relapses at rate f and clear hypnozoites at rate γL. There is no role for super-

infection, i.e. individuals cannot be infected more than once. 

2. Batch hypnozoite model. Similar to the above model except that the process of super-infection allows 

multiple batches of hypnozoites from different mosquito bites to be accumulated. Thus an individual may 

have k batches of hypnozoites. Hypnozoites from any batch may activate giving a relapse rate of kf. Each 

batch is subject to clearance at a constant rate so that the number of batches reduces from k to k - 1 at rate 

kγL. 

3. Hypnozoite density model. The number of hypnozoites in an individual’s liver is explicitly modelled. A new 

mosquito bite introduces a batch with a variable number of hypnozoites. Each hypnozoite can either activate 

to cause a relapse or die. Liver clearance occurs when all individual hypnozoites have either activated or 

died.  

For the batch hypnozoite model, it is necessary to limit the maximum number of batches to some value K. In 

particular, we find that the binary hypnozoite model is nested within the batch hypnozoite model by setting K = 1. 

The hypnozoite density model requires the number of hypnozoites to be explicitly accounted for6, incurring 

substantial computational cost, thus limiting its use in more detailed models of P. vivax transmission dynamics. It is 

thus not considered further. In the following, we provide the mathematical details of the batch hypnozoite model, 

noting that the binary hypnozoite model can be regained by setting K = 1. 

We assume that  , ,k

HZ t a  is the proportion of a population at time t, of age a, with exposure ζ that has k batches 

of hypnozoites. If the maximum number of batches of hypnozoites is K, then the dynamics of the hypnozoite 

reservoir can be described by the following system of partial differential equations: 
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Note that  0a I  is an indicator function ensuring that all individuals are born with age zero. The notation in 

supplementary equation (8) implies that
K

HZ  depends on time, age and heterogeneity. However, since an individual 

is not assumed to change levels of heterogeneity over their lifetime, in practice we have 0
K

HZ







. 

An individual in compartment
K

HZ will experience relapses at rate kf to give a total force of blood-stage infection of: 
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1.5. Acquisition of immunity 

In the model diagram represented in Supplementary Figure 1, a number of the transitions between compartments 

are depicted as being dependent on levels of anti-parasite immunity (AP) and clinical immunity (AC). In particular, 

anti-parasite immunity is assumed to have two effects: (i) reducing the probability that a blood-stage infection will 

achieve sufficiently high density to be detectable by light microscopy (φLM); and (ii) increasing the rate at which low 

density infections are cleared (rPCR). Clinical immunity is assumed to reduce the probability that a high-density blood-

stage infection (detectable by microscopy) will progress to cause a symptomatic episode of clinical malaria (φD). 

Modelling the acquisition of immunity 

The acquisition of both anti-parasite and clinical immunity is assumed to be age and exposure dependent. It is 

further assumed that both primary infections and relapses contribute to the acquisition of immunity. We follow an 

approach taken in previous work modelling the acquisition of immunity to P. falciparum7, and assume that each new 

infection boosts immunity, but that after each immune boost there is a refractory period of duration u during which 

immunity cannot be further boosted. Under this assumption, it can be shown that if an individual is subject to a 

force of infection λ with refractory period u, then their immunity is boosted at rate
1u



 
 . The acquisition of anti-

parasite immunity, and its dependence on the number of batches of hypnozoites, can be described by the following 

partial differential equations: 
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And similarly, the acquisition of clinical immunity can be described by the following system of partial differential 

equations:  
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Supplementary equations (10) and (11) describe the age and exposure dependent acquisition of immunity. Another 

key source of immunity in young children is through maternal acquisition. We assume that a new-born infant will 

acquire a fraction Pmat of their mother’s anti-parasite and clinical immunity. This immunity will then decay 

exponentially over time at rate 1/dmat. The levels of maternally-acquired immunity can therefore be described by the 

following equations: 
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The expressions  * ,20,PA t a   and  * ,20,CA t a  denote the level of immunity of a 20 year old woman – a 

representative age for women of child bearing age. * denotes that immunity levels have been averaged over the 

range of numbers of hypnozoite batches that it is possible for a woman to have: 
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Modelling the effects of immunity 

The equations above describe how the acquisition and waning of immune levels can be modelled. Next we need to 

model how these levels of immunity affect clinically and epidemiologically relevant outcomes such as the probability 

that an infection becomes detectable by light-microscopy ( LM ), the probability that an infection detectable by 

light-microscopy progresses to cause an episode of symptomatic malaria ( D ), and the duration of a blood-stage 

infection 1PCR PCRd r . This is done through the use of dose-response curves using flexible Hill functions: 
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1.6. Compartmental model of P. vivax transmission dynamics in humans 

The sections above describe the dynamics of blood-stage P. vivax infection in humans (1.1), age structure (1.2), 

heterogeneity in exposure (1.3), relapses (1.4), and the acquisition of immunity (1.5). In supplementary equation (15) 

all of these components are combined to produce a compartmental model of P. vivax transmission dynamics in 

humans: 
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1.7. Mosquito component of model 

Sections (1.1) to (1.6) describe P. vivax transmission dynamics in humans. Here we provide a mathematical 

description of Anopheles population dynamics, and P. vivax infection within mosquitoes. There are numerous 

important malaria vectors in Papua New Guinea. We consider the three most important species: An. farauti s. s., An. 

koliensis, and An. punctulatus12. The superscript v is used throughout to denote different vector species. The force of 

infection on mosquitoes of species v is obtained by integrating across the entire human population: 
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The dynamics of mosquito populations accounting for density-dependent competition in larval breeding sites are 

described in supplementary equation (17). 

If mosquitoes are born at a constant rate βv, the dynamics of P. vivax infection in mosquitoes can be described by the 

following equations:  
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v

MS denotes susceptible adult female mosquitoes without any P. vivax infection. 
v

ME denotes adult female 

mosquitoes who have been exposed to P. vivax following a blood-meal from an infectious human, and are thus 

oocyst positive but not yet infectious to humans. 
v

MI denotes mosquitoes who are sporozoite positive and can 

transmit P. vivax onwards to humans. mv denotes the total number of adult female mosquitoes of species v per 

human. Supplementary equation (17) implies that all mosquitoes die at constant rate
v

M  independently of P. vivax 

infection status. 
v

M  is the duration of sporogony: the time required after an infectious blood meal for oocysts to 

develop within a mosquito and allow mosquitoes to become sporozoite positive and infect humans. 

It is assumed that all adult female mosquitoes oviposit at rate
v  giving rise to early instar larvae  v

EL , which 

subsequently develop into late instar larvae  v

LL  and pupae  v

PL . The size of Anopheles populations is regulated by 

density-dependent competition of larvae in larval breeding site with carry capacity Kv 13. Larval carrying capacity Kv 

will depend on many factors, but the primary driver is typically rainfall13. Supplementary equation (18) describes 

how seasonal variation in carrying capacity can be modelled: 



  
 

 peak2

365

0 dry dry 1 1
2 2

1 cos

( ) 1
2,

v

vt t

v v v v

v
K t K c c

B









             
     

  

  (18) 

In supplementary equation (18) 0

vK  denotes the carrying capacity averaged over a season; dry

vc represents the 

carrying capacity in the dry season relative to the peak of the wet season; κv is a shape parameter describing the 

degree of seasonality; θv is an offset parameter for the difference in time between the peak and the start of the year; 

and B() is the Beta function which is utilised to ensure appropriate normalization.   

Finally, with an expression for the numbers of P. vivax infectious mosquitoes, we can write down an expression for 

the force of infection on humans:  

      0 , , v v

H M

v

t a X a b I t       (19) 

where b is the probability that a bite from a P. vivax infectious mosquito results in a blood-stage infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.8. Model likelihood and parameter estimation for human component 

It is not computationally feasible to simulate a continuous partial differential equation model of the complexity 

shown in supplementary equation (15). This difficulty can be overcome by discretising age and heterogeneity into 

sub compartments, thus reducing the partial differential equation model to an ordinary differential equation model. 

This model can then be solved at equilibrium using methods from linear algebra, conditional upon a fixed non-

seasonally varying entomological inoculation rate (EIR). A fixed EIR gives a fixed force of infection due to mosquito 

bites
0

H .  

Expressions for the equilibrium values of P. vivax blood-stage prevalence by PCR (PvPRPCR) and light-microscopy 

(PvPRLM), and the prevalence of clinical episodes can be obtained as follows:  
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  (20) 

Note that  denotes the equilibrium values from supplementary equation (15). PvPRD(a) denotes the expected 

proportion of individuals of age a currently undergoing a clinical episode of P. vivax. This does not precisely match 

the epidemiological definition for the recording of episodes of clinical malaria in cross-sectional surveys, which was 

based on whether an individual experienced an episode in the last 48 hours (2 days). To adjust for this we can use 

the following formula.  
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The likelihood that the model predicted prevalences in supplementary equations (20) and (21) fitted data from 

cross-sectional surveys was calculated using a Binomial likelihood. In particular, for a cross-sectional survey with N 

participants each with age na , let PCR

nJ denote PCR detectable infection ( PCR 1nJ  if infected, PCR 0nJ   otherwise), let

LM

nJ denote light-microscopy detectable infection, and let D

nJ denote the presence of a clinical episode in the last 48 

hours. The likelihood that the parameters described the model  θ fit the cross-sectional data  CSD  is given by 
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Supplementary equation (22) denotes the case for a cross-section where data is available on the presence of 

parasites detectable by PCR or light-microscopy and clinical cases of P. vivax. In some cross-sectional surveys, not all 

of these data types are present, in which case they don’t contribute to the likelihood. 

In order to fit to data on time to event from longitudinal studies, we must calculate expressions for the age and 

heterogeneity dependent force of infection at equilibrium. In the absence of relapses, we denote this to be

 0 , ,H a  . The contribution of relapses to the force of blood-stage infection at equilibrium can be accounted for 

by summing over the equilibrium distribution for the number of hypnozoite batches 
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For a longitudinal survey with N participants each with age
na , let PCR

nJ denote the presence of PCR detectable 

infection during follow-up ( PCR 1nJ  if infected, PCR 0nJ   otherwise), let LM

nJ denote light-microscopy detectable 

infection, and let D

nJ denote a clinical episode. Let PCR

nT denote the time of first PCR detectable infection during 

follow-up, or if there is no PCR detectable infection let PCR

nT denote the time for the end of follow-up (censoring 

time). Let LM

nT and D

nT be similarly defined. The likelihood that the parameters described the model  θ fit the 

longitudinal data  LD  can be calculated using methods from survival analysis as follows: 
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  (24) 

Note that individual-level heterogeneity in exposure to mosquito bites (which is assumed to follow a log-Normal 

distribution as described in supplementary equation (5)) has been integrated out. ACD 0.078  is a correction factor 

as defined by Battle et al.14 accounting for lower levels of incidence of clinical cases due to active case detection 

(ACD) every 14 – 28 days. Supplementary equation (24) denotes the case for a longitudinal study where data is 

available on the presence of parasites detectable by PCR or light-microscopy and clinical cases of P. vivax. In some 

longitudinal studies, not all of these data types are present, in which case they don’t contribute to the likelihood. 

In supplementary equation (24) relapses are assumed to contribute to the force of blood-stage infection. In one 

longitudinal study, half of the cohort was randomised to receive directly observed high doses of primaquine to 

prevent relapses15. In order to account for this, it is sufficient to replace  * , ,H a  in supplementary equation (24) 

with  0 , ,H a  . 

The model for the equilibrium prevalence and incidence of P. vivax was fitted to the data in Supplementary Table 1 

using the likelihood expressions in supplementary equations (22) and (24). The model was fitted in a Bayesian 

framework using Markov Chain Monte Carlo (MCMC) methods. Supplementary Table 2 describes the parameters 

that were estimated and the assumed prior distributions. The model was fitted twice and convergence of MCMC 

chains was tested by ensuring that Gelman-Rubin statistics took values < 1.01 16. The outputted MCMC chains were 

also tested to ensure that the effective sample size (ESS) for each estimated parameter was greater than 500. 

Posterior median parameter estimates with 95% credible intervals are provided in Supplementary Table 2. 

 

 

 

 

 

 

 

 



Supplementary Table 1: Data from cross-sectional and longitudinal studies used for model calibration. Age is presented as 
median with range. Samples were tested for parasitaemia by PCR or light microscopy, or for a clinical case of P. vivax if 
accompanied by fever in the last 48 hours. n/N denotes n positive out of N samples.  

location study period age (years) PCR LM clinical reference 

Cross-sectional data     
Ngella, Solomon Islands 2012 18 (0.5, 100) 468/3501 127/3501 15/3501 Waltmann

27
  

PNG; >1500 m 2000/02 16 (0.4, 77)  32/664 5/664 Senn
28

 
PNG; 1000 – 1500 m  17 (0.6, 95)  217/2835 35/2835 Senn

28
 

PNG; 500 – 1000 m  19 (0.0, 87)  446/9030 93/9030 Senn
28

 
PNG; 0 – 500m  22 (0.1, 99)  290/9943 109/9943 Senn

28
 

Wosera, East Sepik 1991/92, 
1998/99, 
2001/03 

17 (0.1, 80) 901/2527 368/2527 24/2527 Mueller
29

 

Wosera, East Sepik 1991/92 17.4 (0.1, 87)  1207/6782  Genton
30

 
Wosera, East Sepik 2001/03 17 (0.1, 99)  1639/15737  Kasehagen

31
 

Madang 2006 14.2 (0.0, 72)  204/1227 22/1227 Koepfli
32

 
Ilaita & Sunuhu 2006 1.7 (0.8, 3.2) 1433/2129 1092/2129 133/2129 Lin

33
 

Longitudinal data     
Mugil, Madang 2004 9.3 (4.8, 14.4) 192/204 139/204 10/204 Michon

34
 

Albinama, East Sepik 
(placebo arm) 

2008/09 7.6 (4.8, 10.4) 179/257 132/257 22/257 Robinson
15

 

Albinama, East Sepik 
(primaquine arm) 

2008/09 7.5 (4.9, 10.4) 69/247 45/247 9/247 Robinson
15

 

Wosera, East Sepik 1998/99 16 (0.1, 85)  686/1689  Kasehagen
35

 

 

 

 

 

 

Supplementary Table 2: Parameters for the human component of the model. Parameters where a prior is specified were 
estimated by fitting to the data in Supplementary Table 1 using Bayesian methods. Priors and posteriors are presented as 
medians with 95% credible intervals. Prior distributions for all parameters were log-Normally distributed, with the exception of 
those parameters representing proportions where a Beta distribution was assumed (†).  

description parameter prior posterior reference 

exposure to mosquito bites     

age-dependent biting parameter 
age   fixed 0.85 Carnevale

8
; Port

9
 

age-dependent biting parameter 
0a   

fixed 8 years Carnevale
8
; Port

9
 

variance of log of heterogeneity in biting 2  
 1.23 (0.51, 2.45) 1.53 (1.39, 

1.66) 
Smith

11
 

mosquito to human infection probability b   fixed 0.25  

human infection duration     

latent period (sporozoite development) 
Ed   fixed 10 days Herrera

36
 

maximum PCR-detectable infection (no 
immunity) 

,maxPCRd   70 (24.1, 139.9) 52.6 (32.4, 
84.0) 

Estimated 

minimum PCR-detectable infection (full 
immunity) 

,minPCRd   fixed 10 days  

LM-detectable infection 
LMd   

15 (2.2, 40.0) 16.0 (14.0, 
18.2) 

Estimated 

clinical disease (untreated) 1 Dr   fixed 5 days  

clinical disease (treated) 1 Tr   fixed 1 day Pukrittayakamee
37

 

treatment prophylaxis 1 Pr   drug dependent   



proportion of episodes treated 
T   variable   

anti-parasite immunity     

anti-parasite immune boosting refractory 
period 

paru   10 (6.5, 14.3) 42.4 (36.0, 
49.7) days 

estimated 

duration of anti-parasite immunity 
pard   fixed 10 years  

probability of LM-detectable infection 
with no immunity 

,maxLM   0.85 (0.61, 0.983)† 0.93 (0.83, 
0.99) 

estimated 

probability of LM-detectable infection 
with full immunity 

,minLM   0.1 (0.02, 0.22) † 0.011 (0.006, 
0.016) 

estimated 

anti-parasite immunity for 50% reduction 
in LM detectable infection 

,50%LMA   40 (4, 153) 18.8 (16.5, 
21.6) 

estimated 

shape parameter for LM-detectable 
infection 

LM   
2.0 (0.5, 4.4) 3.37 (2.94, 

3.94) 
estimated 

anti-parasite immunity for 50% reduction 
in duration of PCR-detectable infection 

,50%PCRA   40 (4, 153) 9.9 (6.4, 15.6) estimated 

shape parameter for duration of PCR-
detectable infection 

PCR   
2.0 (0.5, 4.4) 3.82 (2.56, 

6.24) 
estimated 

clinical immunity     

clinical immune boosting refractory 
period 

clinu   10 (6.5, 14.3) 4.33 (2.96, 
6.22) 

estimated 

duration of clinical immunity 
clind   

fixed 30 years  

probability of clinical episode with no 
immunity 

,minD   0.1 (0.02, 0.22) † 0.006 (0.002, 
0.015) 

estimated 

probability of clinical episode with full 
immunity 

,minD   0.85 (0.61, 0.983) † 0.96 (0.86, 
0.995) 

estimated 

clinical immunity for 50% reduction in 
clinical episode 

,50%DA   40 (4, 153) 24.5 (20.8, 
29.1) 

estimated 

shape parameter for clinical episode 
probability 

D   
2.0 (0.5, 4.4) 5.63 (3.75, 

8.34) 
estimated 

maternal immunity     

new-born immunity relative to mother’s 
matP   

0.5 (0.13, 0.87) † 0.31 (0.11, 
0.68)  

estimated 

duration of maternal immunity 
matd   

60 (27, 105) 49.9 (23.0, 
123.6) 

estimated 

     

infectiousness to mosquitoes     

during PCR-detectable infection 
PCRc   

fixed 0.035 Kiattibutr
38

 

during LM-detectable infection 
LMc   

fixed 0.1 Kiattibutr
38

 

during clinical disease 
Dc   

fixed 0.8 Kiattibutr
38

 

during treated clinical disease 
Tc   

fixed 0.4 Kiattibutr
38

 

relapse parameters     

relapse frequency f   fixed 1/41 days
-1 

White
15

 

liver-stage hypnozoite clearance rate 
L   

fixed 1/383 days
-1

 White
15

 

 

 

 

 



The mathematical model described above and the parameters presented in Supplementary Table 2 imply certain 

relationships between level of anti-parasite and clinical immunity, and the prevalence and incidence of P. vivax. 

Supplementary Figure 2 gives an overview of some of these relationship at a representative range of EIRS. 

 

 

Supplementary Figure 2: Association between prevalence, incidence and levels of acquired immunity at a range of 
entomological inoculation rates (EIR) predicted by the model using the parameters detailed in Supplementary Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.9. Parameters for the mosquito component of the model 

In order to parameterise the mosquito component of the model, we reviewed data on entomological parameters 

from a wide range of studies across Papua New Guinea and the Solomon Islands (Supplementary Table 3). 

Supplementary Table 3: Mosquito bionomics parameters for the three primary malaria vectors in Papua New Guinea: An. 
farauti s. s., An. punctulatus, and An. koliensis. The table below shows parameters extracted from the referenced publications 
for each of the three species. The values shown in the grey shaded region denote the values assumed in the model. 

description parameter mosquito species reference 

  An. farauti s. s. An. punctulatus An. koliensis  

mosquito life expectancy (days) 1 v

M   
6   Clements

39
 

  6 6 6  

duration of sporogony (days) v

M   
8.4 8.4 8.4 Gething

40
 

  8.4 8.4 8.4  

duration of gonotrophic cycle (days) v   
2.5   Bugoro

25
 

  2.2, 2.47   Charlwood
41

 
  2.1, 3 2.9, 2.4, 3.2 2.7, 3.7 Charlwood

42
 

  3 3 3  

time spent foraging (days) 
1

v   
0.68 0.68 0.68 Killeen

43
 

  0.68 0.68 0.68  

human blood index 
0

vQ   
77%, 47%, 50% 74%, 65%  Keven

44
 

  93%   Russell
45

 
   72%  Killeen

46 

  88% 90% 79% Hii
47

 
  11%, 25%, 8%, 

45% 
86%, 71%, 
100%, 60%, 
20%, 50%, 
50%75%, 26% 

29%, 76%, 
36%, 82%, 
85% 

Burkot
48

 

   84%, 46%, 96%, 
90% 

 Burkot
49

 

   86%, 98%  Burkot
50

 
  12% 55% 65% Burkot

51
 

  72%  83% Charlwood
52

 
  52%, 83%  58%, 95% Charlwood

42
 

  50% 77.5% 73%  

night-time biting  80%, 80%    
  24%   Russell

53
 

  18%   Russell
54

 
  62% 84% 85% Reimer

26
 

  35%   Bugoro
55

 
  50%   Bugoro

56
 

  50% 84% 85%  

indoor biting  16.5%   Thomsen
57

 
  28%   Russell

53
 

  35%   Russell
54

 
  36%   Bugoro

55
 

  55%   Bugoro
56

 
  57%, 37%   Bugoro

25
 

  72% 87% 95% Hii
47

 
   66%, 81% 56% Sama

58
 

  36.5% 81% 74.5%  

indoor resting   88%, 93%  Burkot
49

 

  90.5% 90.5% 90.5%  

 

 

 



A number of entomological studies presented data on the seasonally variation of captured adult female mosquitoes. 

The data are presented in Supplementary Figure 3. Although there was notable seasonal variation in capture rates 

between villages sampled at different times, there was a clear seasonal pattern with mosquito densities tending to 

peak around October. The seasonally varying functional form described in supplementary equation (17) was fitted to 

the data with the resulting parameters presented in Supplementary Table 4. 

 

Supplementary Figure 3: Data on seasonal abundance of three species of adult female Anophelines from villages in Papua New 
Guinea and the Solomon Islands. Data from Bilbil, Megiar, Utu and Garup are from Afifi et al

63
. Data from Bilimanu are from 

Samarawickrema et al
58

. Data from Guadalcanal are from Bugoro et al
55

. Data from Gilutae are from Kere et al
64

. Data from 
Haleta are from Russell et al

54
. The black line shows the fitted seasonal form described by supplementary equation (18) and the 

shaded grey region shows the 95% confidence interval.  

 

Supplementary Table 4: Mosquito seasonality parameters with 95% confidence intervals estimated from the data shown in 
Supplementary Figure 3. 

description parameter mosquito species 

  An. farauti s. s. An. punctulatus An. koliensis 

dry season proportion 
dry

vc   0.317 (0.18, 0.47) 0.347 (0.03, 0.56) 0.124 (0.06, 0.82) 

seasonality shape parameter v   14.6 (1.22, 19.9) 0.52 (0.26, 16.5) 0.98 (0.10, 14.7 

seasonal peak offset (days) 
peak

vt   306 (294, 335) 330 (0, 364) 360 (266, 365) 

 



The mosquito component of the model also describes the dynamics of larval populations (supplementary equation 

(17)), based on a previously published model of the dynamics of the African malaria vector An. gambiae13. The 

parameters for this model are presented in Supplementary Table 5. 

 

Supplementary Table 5: Parameters describing larval development and density-dependent competition from White et al
13

. The 
same parameter values are assumed for each of the three key Papua New Guinean mosquito species. 

description parameter value 

development time of early larval instars v

Ed   6.64 (days) 

development time of late larval instars v

Ld   3.72 (days) 

development time of pupae v

Pd  0.64 (days) 

per capita daily mortality rate of early instars (low density) 0,v

E   0.034 day-1 

per capita daily mortality rate of late instars (low density) 0,v

L  0.035 day-1 

per capita daily mortality rate of pupae v

P   0.25 day-1 

number of eggs laid per day per mosquito v   21.19 

effect of density dependence on late instars relative to early instars v   13.25 

 

 

1.10. Individual-based model 

Sections 1.1. to 1.9. describe a mathematical model of P. vivax transmission using the notation of compartmental 

differential equation models. Notable points of using compartmental models are: (i) they are deterministic and 

cannot produce stochastic variation; (ii) they are not well suited to modelling elimination events; and (iii) 

implementing combinations of interventions requires enormous increases in the numbers of modelled 

compartments. Any compartmental model of infectious disease transmission can also be implemented as an 

individual-based model17. Here we provide an overview of the implementation of this model as an individual-based 

model. 

Populations of size 100,000 are initialised, with each individual being assigned: 

 age drawn from the distribution in supplementary equation (2) 

 factor for heterogeneity in exposure to mosquito bites from the distribution in supplementary equation (5) 

 sex (50% male; 50% female) 

 pregnant (possible if female and between the ages 18 and 40 years) 

 G6PD status 

 CYP2D6 metabolizer phenotype 

 LLIN use 

 P. vivax infection status (susceptible S; infected with PCR-detectable blood-stage parasites IPCR; infected with 

LM-detectable blood-stage parasites ILM; clinical episode DD; under treatment T; under blood-stage 

prophylaxis P) 

 number of batches of hypnozoites 

 anti-parasite immunity AP (accounting for maternal immunity if age less than 1 year) 

 clinical immunity AC (accounting for maternal immunity if age less than 1 year)  

When individuals are initialised, the levels of P. vivax infection and naturally-acquired immunity in the population are 

set to match the equilibrium of the non-seasonal compartmental differential equation model in supplementary 

equation (15). 



All individuals in the simulated population are updated with a time step of 1 day. Most processes occur at a constant 

rate. If a process occurs at a constant rate r, then the probability of it occurring in time step Δt is 1 – e(-r* Δt). Some 

processes occur after a fixed period of time (e.g. development from sporozoites to merozoites in the liver). These are 

implemented using a timer. Modelled process that are not directly related to P. vivax transmission are: 

 ageing (increased by Δt every time step) 

 death 

 birth (scheduled so that a birth occurs after every death to ensure a balanced population) 

 pregnancy (occurs at a constant rate, ends after a fixed duration of 9 months) 

 loss of LLIN adherence 

The process related to P. vivax infection are exactly the same as those implemented in the compartmental model in 

supplementary equation (15). 

Mosquitoes are not modelled individually, and the compartmental differential equations are still used. In particular, 

the ODEs are solved using a 4 step Runge-Kutta algorithm with a time step of 0.1Δt. 

Heavily commented C++ code for implementing the individual-based model is available for download from GitHub 

@MWhite-InstitutPasteur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Supplementary methods: Intervention models 

2.1. Vector control: long lasting insecticidal nets (LLINs) 

We implement an existing model of the effects of LLINs on Anopheles vectors7,18. LLINs have a number of key effects 

on mosquitoes: (i) they increase mosquito death rates; (ii) they increase time spent searching for a blood meal thus 

increasing the duration of the gonotrophic cycle; (iii) they can reduce the mosquito population size as a consequence 

of reduced oviposition; (iv) they change the proportion of bites taken on protected versus unprotected people; (v) 

they change the proportion of bites taken on humans relative to animals (the Human Blood Index). Supplementary 

Figure 4 provides an overview of the interactions between mosquitoes, humans and LLINs.  

We denote χLLIN to be the coverage of LLINs. Although there are several metrics of LLIN coverage19, the metric most 

suitable for modelling is the proportion of individuals sleeping under a net. This is typically measured in surveys via 

answers to the question “Did you sleep under a bed net last night?”.   

 

Supplementary Figure 4: Flow chart of the mosquito life cycle and its interactions with long-lasting insecticidal nets (LLINS), 
adapted from a model by Le Menach et al

18
. 

A mosquito will feed on humans at a rate αv. This rate can be broken down into two terms, the average time to 

complete one feeding cycle 1/v vf  , and the proportion of bites taken on humans 0

vQ . 

 0

v v vf Q    (25) 

From the flow chart in Supplementary Figure 4, the probability that a surviving mosquito succeeds in feeding during 

a single attempt can be calculated to be 

 
0 0 LLIN 0 LLIN LLIN 0 LLIN LLIN LLIN

0 LLIN LLIN LLIN

1 (1 ) (1 )

1 (1 )

v v v v v v v v

v v v v

w Q Q Q Q s

w Q s

    

 

      

  
  (26) 



where χLLIN is the coverage of bed nets, LLIN

v is the proportion of people in bed when a mosquito attempts to bite, 

and
v

LLINs  is the probability of a mosquito feeding successfully on a person sleeping under a bed net. The probability 

of a mosquito resetting and beginning a new search is   

 0 LLIN LLIN LLIN

v v v vz Q r    (27) 

where LLIN

vr is the probability of a mosquito being repelled by a bed net. At zero LLIN coverage the length of a 

feeding cycle is given by  

 1 2

1
(0)v v

vf
     (28) 

where 1 (0)v is the time spent searching for a blood meal, and 2

v is the time spent resting. Increased LLIN coverage 

will cause the mosquito to spend a longer time foraging for a blood meal. And hence at coverage χLLIN 

 1
1 LLIN 1 1 LLIN

(0)
( ) (0) ( )

1

v
v v v v

v
z

z


      


  (29) 

And therefore the length of a feeding cycle at coverage χLLIN is 

 1
2

LLIN

(0)1

( ) 1

v
v

v vf z





 


  (30) 

Increased LLIN coverage will also reduce the probability of a mosquito surviving the foraging stage 1

vp . 

 1
1 LLIN 1 1 LLIN

1

(0)
( ) (0)[ ( )]

1 (0)

v v
v v v v v

v v

p w
p p w z p

z p
   


  (31) 

Thus the probability of a mosquito surviving one day is given by 

  
LLIN

LLIN

( )
( )

1 2
LLIN 1 LLIN 2

1
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v

v
f

v v v
f

v v v

v v

p w p
p p p

z p




 
 

   
 

  (32) 

where 2

vp is the probability of surviving resting. The mosquito mortality can then be calculated as  

 LLIN LLIN( ) log ( )v v

M p      (33) 

In addition to killing mosquitoes and altering their feeding behaviour, bed nets can reduce mosquito population by 

reducing the oviposition rate. It can be shown (White 2011) that if a female mosquito oviposits ηv eggs every δv = 1/fv 

days, then the mean daily oviposition rate is 

 
1

v v
M

v
v v M

f
e



 


  (34) 

LLINs increase the death rate and increase the time spent searching for a blood meal, resulting in a decreased 

oviposition rate as follows 

  
 

   LLIN LLIN

LLIN

LLIN

1
v v
M

v

Mv v

f
e
  

 
  


  (35) 

 



Changing coverage and insecticide decay 

The degree of protection conferred by LLINs reduces over time for two key reasons: (i) people stop using nets over 

the time as they age or get lost; (ii) the insecticidal activity of nets reduces over time.  

Based on data on data on the age distribution of bed nets collected in Papua New Guinea20, we assume that the 

average lifespan of a LLIN is TLLIN = 19.5 months (1.62 years), so that coverage at time t after initial distribution is 

 LLIN

LLIN LLIN( ) (0)e
t T

t  
   (36) 

We assume that both the killing and repellency effects of LLINs wane over time at the same rate γLLIN. Even after a 

net’s insecticidal repellency has fully waned, we assume there is residual repellency due to the barrier action of the 

net. At time t after distribution, the probabilities of a mosquito being repelled, dying or feeding successfully upon 

encounter with a net are given by 
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LLIN LLIN
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

  


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  (37) 

The effect of LLINs on mosquito populations depends on the parameters describing a mosquito’s behaviour when 

attempting to take a blood meal from a person sleeping under a net. In African settings, these parameters have been 

estimated through experimental hut trials21. Suitable parameter estimates are not available for Papua New Guinean 

malaria vectors, and thus we use values from African studies7 (Supplementary Table 6).  

 

Supplementary Table 6: Parameters describing mosquito behaviour upon encounter with an LLIN (Supplementary Figure 4). The 
same values are assumed for each of the three primary malaria vectors in Papua New Guinea. 

description parameter value 

half-life of LLINs 
LLINT   1.62 (years) 

half-life of pyrethroid insecticide 
LLIN   2.5 (years) 

probability mosquito repelled by LLIN (full insecticide activity) 
LLINr  0.6 

probability mosquito repelled by LLIN (just barrier activity) 
LLIN,0r   0.2 

probability mosquito killed by LLIN (full insecticide activity) 
LLINd  0.3 

probability mosquito feeds successfully (full insecticide activity) 
LLINs   0.1 

 

 

   

 

 

 

 

 

 

 



2.2. First-line treatment 

First-line treatment of symptomatic episodes of P. vivax provides clinical benefit to the individual being treated, and 

may also reduce population-level transmission by preventing onwards transmission to mosquitoes. A key variable for 

assessing the effectiveness of treatment strategies is the proportion of P. vivax clinical cases that receive effective 

treatment (χT).This value is very difficult and potentially impossible to measure directly, and will depend on the 

definition of what constitutes a clinical episode of P. vivax, the proportion of cases detected14, the proportion of 

individuals that seek treatment, and the proportion of health facilities that have sufficient stocks of drugs22. 

Conditional upon an individual with a symptomatic episode of P. vivax choosing to seek treatment, they will enter a 

treatment pathway which can be modelled. Supplementary Figure 5 shows a treatment pathway for individuals 

receiving primaquine. The parameters for this pathway are provided in Supplementary Table 7.  

 

 

Supplementary Figure 5: Overview of pathway for first-line treatment of symptomatic episodes of P. vivax incorporating 
primaquine treatment for the clearance of hypnozoites and the prevention of relapses. 

 

 

 

 

 

 

 

 



Supplementary Table 7 presents the parameters for the treatment pathway in Supplementary Figure 5. 

Supplementary Table 7 also presents estimates of the effectiveness of a drug regimen for clearing hypnozoites based 

on the treatment pathway in Supplementary Figure 5. These estimates are efficacy are conditional on drugs being in 

stock, and the availability of point-of-care G6PD diagnostics (not routinely available anywhere in Papua New Guinea 

at present). We assume the primaquine and tafenoquine cannot be given to children < 6 months age. Note that the 

age range for who can safely receive tafenoquine has not yet been defined. 

 

Supplementary Table 7: Parameters for treatment and diagnosis assumptions in the treatment pathway in Supplementary 
Figure 5. * Primaquine and tafenoquine lose effectiveness due to the inability to provide safe treatment to infants, pregnant 
women and G6PD deficient individuals. Primaquine further loses effectiveness in low CYP2D6 metabolizers, and in individuals 
who fail to adhere to the full treatment regimen.  

description parameter value reference 

human demographics    

average age of humans (years) 1/ µH 22.5 CIA factbook 
maximum age of humans (years) amax 80 assumption 
human death rate (year-1) µH 0.044  
proportion male  50% assumption 
proportion < 6 months of age   2.2% from equation (2) 
proportion of pregnant women  4.0% assumption 

genotype & phenotype prevalence    

G6PD deficiency prevalence (males) qG6PD 7.42% Howes59 
G6PD deficiency prevalence (homozygous females) qG6PD* qG6PD 0.55% Howes59 
G6PD deficiency prevalence (heterozygous females) 2*qG6PD*(1- qG6PD) 13.7% Howes59 
low CYP2D6 metabolizer phenotype  qCYP2D6 5.0% assumption 

treatment    

ACT blood-stage efficacy  100% Karunajeewa60 
ACT duration of prophylaxis (days)  14 Karunajeewa60 
primaquine (0.25 mg/kg 14 days) effectiveness  70% Assumption 
primaquine (0.25 mg/kg 14 days) prophylaxis (days)  14 John61 
tafenoquine (single dose) effectiveness  100% Llanos-Cuentas62 
tafenoquine (single dose) prophylaxis (days)  60 Llanos-Cuentas62 

effectiveness against hypnozoites    

ACT  0%  
primaquine*  55.3%  
tafenoquine*  83.2%  

 

 

2.3. Mass drug administration 

Mass drug administration (MDA) involves treating a large proportion of a population with drugs in a short period of 

time. In the model, MDA at coverage χMDA is implemented at a fixed time by having a proportion of individuals enter 

the treatment pathway in Supplementary Figure 5. Notably, we assume that an MDA campaign with primaquine or 

tafenoquine is implemented with testing for G6PD deficiency. 

 

 

 

 

 



3. Supplementary Methods: P. vivax transmission in Papua New Guinea 

We model P. vivax transmission in Papua New Guinea on the provincial level. The nationwide household prevalence 

surveys implemented by Hetzel et al were explicitly designed to take measurements of malaria transmission and bed 

net coverage from each province23,24.  Within each province we assume freely mixing populations of humans and 

mosquitoes. We assume that levels of malaria transmission and access to interventions are constant throughout 

each province. In particular, we do not account for spatial variation in transmission intensity within each province 

which is known to vary substantially. Ideally we would be able to model transmission at the lower levels of Districts 

or Local Level Government (LLG) area. However, there is not sufficient data to meaningfully model malaria 

transmission at any spatial scale lower than the province level. A further assumption is that we don’t model 

importation of people and parasites between provinces. 

It is assumed that LLIN coverage increases to the levels indicated in Supplementary Table 8 in the years 2009, 2011 

and 2014, and that nets have a life expectancy of TLLIN = 19.5 months such that coverage reduces over time according 

to supplementary equation (36). Furthermore, the metric of coverage utilised is based on use – the proportion of 

individuals sleeping under a net during the previous night. 

 

Supplementary Table 8: Provincial level data on P. vivax light microscopy prevalence and LLIN use. 

 P. vivax microscopy prevalence LLIN use 
 sentinel  

survey 
post-LLIN  
survey 

household surveys    

 2009 2009 2010 2014 2009 2011 2014 

Western (Fly) 0.3% 0.0% 0.3% 0.0% 40.4% 67.2% 59.9% 
Gulf  0.0% 0.0% 0.0% 40.4% 67.2% 59.9% 
Central  0.7% 0.3% 0.0% 40.4% 67.2% 59.9% 
Milne Bay  1.5% 4.3% 0.93% 40.4% 67.2% 59.9% 
Oro (Northern)  2.9% 0.4% 0.0% 40.4% 67.2% 59.9% 
Southern Highlands  1.3% 0.6% 0.0% 22.7% 39.6% 37.3% 
Enga  1.3% 0.0% 0.0% 22.7% 39.6% 37.3% 
Western Highlands 2.4% 1.5% 0.0% 0.53% 22.7% 39.6% 37.3% 
Chimbu   0.0% 0.0% 22.7% 39.6% 37.3% 
Eastern Highlands  0.9% 0.0% 0.0% 22.7% 39.6% 37.3% 
Morobe 3.0% 0.2% 1.2% 0.0% 47.0% 48.7% 68.2% 
Madang 3.4% 2.5% 1.0% 0.22% 47.0% 48.7% 68.2% 
East Sepik  0.6% 2.1% 0.43% 47.0% 48.7% 68.2% 
Sandaun (West Sepik) 9.2% 0.5% 4.5% 2.17% 47.0% 48.7% 68.2% 
Manus  2.7% 1.3% 0.55% 25.4% 39.9% 53.9% 
New Ireland  3.6% 7.1% 1.21% 25.4% 39.9% 53.9% 
East New Britain  3.2% 3.4% 2.69% 25.4% 39.9% 53.9% 
West New Britain  12.6% 4.9% 1.1% 25.4% 39.9% 37.3% 
Bougainville  3.8% 4.9% 0.0% 25.4% 39.9% 53.9% 

 

 

 

 

 

 

 

 



There are a large number of species of Anopheles known to be implicated in malaria transmission throughout Papua 

New Guinea. We account for three most common species: An. farauti sensu stricto (s. s.), An. punctulatus, and An. 

koliensis. An. farauti s. s. is found almost exclusively in coastal areas12, and is known to be an early evening biter, 

thus making it resilient to many vector control tools25. An. farauti s. s. is part of the wider species complex An. farauti 

sensu lato (s. l.). Although we do not attempt to model the wider species complex, we do note that An. farauti 4 is a 

potentially important vector for malaria transmission in inland regions. An. punctulatus and An. koliensis are found 

throughout Papua New Guinea, with a greater tendency to be reported in inland areas.  

There are many entomological studies where species identification was performed on captured Anophelines and the 

relative proportion of different species reported26. However, these studies are restricted to a small number of well 

characterised study sites. We based the relative proportions of the three primary malaria vectors on the results of a 

large survey of Anophelines in Papua New Guinea12. In this study, helicopters were used to sample hundreds of larval 

breeding sites over seven years from across mainland Papua New Guinea. These survey results for the presence or 

absence of mosquito species were used to inform the proportions in Supplementary Table 9.   

 

Supplementary Table 9: Estimates of the relative proportions of the three primary malaria vectors in Papua New Guinea: An. 
farauti, An. punctulatus, and An. koliensis. Estimates are based on observations by Cooper et al

12
. 

 An. farauti s. s. An. punctulatus An. koliensis 

Western (Fly) 50% 25% 25% 
Gulf 50% 25% 25% 
Central 50% 25% 25% 
Milne Bay 50% 50% 0% 
Oro (Northern) 25% 50% 25% 
Southern Highlands 50% 50% 0% 
Enga 0% 50% 50% 
Western Highlands 0% 50% 50% 
Chimbu 0% 50% 50% 
Eastern Highlands 0% 50% 50% 
Morobe 25% 50% 25% 
Madang 25% 50% 25% 
East Sepik 25% 25% 50% 
Sandaun (West Sepik) 25% 25% 50% 
Manus 50% 25% 25% 
New Ireland 50% 25% 25% 
East New Britain 50% 25% 25% 
West New Britain 50% 25% 25% 
Bougainville 50% 25% 25% 

 

 

 

 

 

 

 

 

 

 



4. Supplementary methods: P. vivax simulation model with inter-provincial 

travel 

The provincial-level simulations presented in the main manuscript do not account for the role of travel of individuals 

between provinces. Movement of individuals between provinces is likely to cause challenges for attempts to control 

and eliminate P. vivax transmission, particularly if a province has eliminated transmission, but a neighbouring 

province hasn’t. To investigate the potential impact of movement of people and parasites between provinces in 

Papua New Guinea, we estimated the number of inter-provincial journeys by air, land and sea. A map of Papua New 

Guinean roads is shown in Supplementary Figure 6. A pair of provinces are considered to be connected if they are 

linked by road. Neighbouring coastal provinces are considered to be connected by sea. We used local knowledge of 

boat routes to denote connectivity between island provinces. Using this land and sea connectivity matrix, we 

estimated numbers of journeys by assuming that, 20% of individuals in all provinces take one journey to another 

province. The numbers of journeys is therefore dependent on the population of each province (Supplementary Table 

10). The estimated number of daily journeys between provinces by land and sea is shown in Supplementary Figure 

7a. Maps were created using the maptools R package with shape files downloaded from 

http://otlet.sims.berkeley.edu/imls/world/PNG/. 

 

Supplementary Figure 6: Map of Papua New Guinean roads. 

 

 

 

 

 

 

 

 



Supplementary Table 10: Estimated population of each province from the 2011 Papua New Guinean census. 
https://www.nso.gov.pg/index.php/population-and-social/migration/24-population-and-social   

Province Population 

Southern Region  

Western 201,351 
Gulf 158,197 
Central (including National Capital District) 633,881 
Milne Bay 276,512 
Oro (Northern) 186,309 

Islands Region  

Manus 60,485 
New Ireland 194,067 
East New Britain 328,369 
West New Britain 264,264 
Bougainville 249,358 

Momase Region  

Morobe 674,810 
Madang 493,906 
East Sepik 450,530 
Sandaun (West Sepik) 248,411 

Highlands Region  

Southern Highlands (includes Hela) 759,694 
Enga 432,045 
Western Highlands (includes Jiwaka) 706,837 
Chimbu 376,473 
Eastern Highlands 579,825 

 

A high proportion of journeys in PNG are undertaken by air. We downloaded the weekly flight schedules for Air 

Niugini and PNG Air, the two airlines responsible for all non-private domestic flights. By accounting for the make of 

each aircraft, we were able to estimate the average daily number of seats between provinces. By assuming a seat 

occupancy rate of 70%, we were able to estimate the average daily number of air journeys between provinces. 

Jacksons Airport in Port Moresby, Central Province is the key airline hub in PNG. We therefore assumed the 33% of 

domestic travel through this airport was for connecting flights. A common example of this sort of travel is 

encountered by members of our study wishing to travel between the PNG Institute of Medical Research’s sites in 

Goroka (Eastern Highlands Province) and Yagaum (Madang Province). This is a journey of approximately 300km by 

road, but in occasions where the road is not passable, individual must travel by air, connecting through Port 

Moresby. A map of estimated daily journeys by air between provinces is shown in Supplementary Figure 7b.   

 

Supplementary Figure 7: Estimated daily inter-provincial journeys by (a) land and sea, and (b) air.  

https://www.nso.gov.pg/index.php/population-and-social/migration/24-population-and-social


It is assumed that when an individual travels from their home province to another province, they stay for an average 

of 14 days. In particular it is assumed that the duration of journeys is exponentially distributed so that individuals 

return home at a constant rate. 

A limitation to modelling inter-provincial travel in this manner is that we do not account for individuals who live 

close to the borders between two provinces and who may regularly travel back and forth between provinces. 

 

 

 

 

Supplementary Figure 8: Predicted PvPRLM in Papua New Guinean provinces using individual-based model with inter-provincial 
travel. Data are from household prevalence surveys in randomly selected villages, and surveys from a number of sentinel villages 
either before or after LLIN distribution. The black curves denote the model predicted scenario if LLINs are not replaced. In the 
LLIN campaigns, nets are assumed to be distributed every 3 years, with 50% of nets still in use after 19.5 months. Primaquine 
(PQ) or tafenoquine (TQ) with accompanying G6PD screening are assumed to be include in first line treatment regimens from 
2020, with 50% of individuals experiencing a clinical episode of P. vivax being tested and treated. 

 

 

 

 

 

 

 

 



5. Supplementary model simulations 

 

 

Supplementary Figure 9: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario where 
LLINs are replaced every 3 years at 50% coverage. In this sensitivity analysis, a reduced rate of loss of adherence is assumed such 
that 50% of LLINs are lost after 23 months. 50% of symptomatic clinical P. vivax cases are assumed to receive treatment with an 
ACT.  



 

Supplementary Figure 10: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 50% coverage. In this sensitivity analysis, a reduced rate of loss of adherence is 
assumed such that 50% of LLINs are lost after 36 months. 50% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT.  

 



 

Supplementary Figure 11: Counterfactual simulation where it was assumed that LLINs were not effective and not distributed, 
and reductions in PvPRLM are instead attributable to an introduction of routine primaquine treatment with screening for G6PD 
deficiency from 2011.  

 

 



 

Supplementary Figure 12: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are not replaced. 50% of symptomatic clinical P. vivax cases are assumed to receive treatment with an ACT. The 
green curve for ACT coverage shows the proportion of individuals receiving treatment in a year. The blue curve for LLIN coverage 
shows the proportion of individuals sleeping under a bed net. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 13: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario where 
LLINs are not replaced. The simulated population size has been reduced from 100,000 to 1,000 resulting in substantially greater 
stochasticity. 50% of symptomatic clinical P. vivax cases are assumed to receive treatment with an ACT. The green curve for ACT 
coverage shows the proportion of individuals receiving treatment in a year. The blue curve for LLIN coverage shows the 
proportion of individuals sleeping under a bed net. 

 

 



 

Supplementary Figure 14: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 50% coverage. 50% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT. The green curve for ACT coverage shows the proportion of individuals receiving treatment in a year. The 
blue curve for LLIN coverage shows the proportion of individuals sleeping under a bed net. 

 



 

Supplementary Figure 15: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 80% coverage. 50% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT. The green curve for ACT coverage shows the proportion of individuals receiving treatment in a year. The 
blue curve for LLIN coverage shows the proportion of individuals sleeping under a bed net. 



 

 

Supplementary Figure 16: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 80% coverage. 30% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT and tafenoquine with G6PD screening (introduced from 2020) according to the treatment pathway in 
Supplementary Figure 5. The green curve for ACT coverage and the pink curve for PQ/TQ coverage shows the proportion of 
individuals receiving treatment in a year. The blue curve for LLIN coverage shows the proportion of individuals sleeping under a 
bed net. 



 

Supplementary Figure 17: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 80% coverage. 50% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT and tafenoquine with G6PD screening (introduced from 2020) according to the treatment pathway in 
Supplementary Figure 5. The green curve for ACT coverage and the pink curve for PQ/TQ coverage shows the proportion of 
individuals receiving treatment in a year. The blue curve for LLIN coverage shows the proportion of individuals sleeping under a 
bed net. 

 

 

 



 

Supplementary Figure 18: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 80% coverage. 70% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT and tafenoquine with G6PD screening (introduced from 2020) according to the treatment pathway in 
Supplementary Figure 5. The green curve for ACT coverage and the pink curve for PQ/TQ coverage shows the proportion of 
individuals receiving treatment in a year. The blue curve for LLIN coverage shows the proportion of individuals sleeping under a 
bed net. 



 

Supplementary Figure 19: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 80% coverage. 50% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT. The green curve for ACT coverage shows the proportion of individuals receiving treatment in a year. The 
blue curve for LLIN coverage shows the proportion of individuals sleeping under a bed net. A round of mass drug administration 
(MDA) with tafenoquine and G6PD screening was implemented in 2020 at 80% coverage. 



 

 

Supplementary Figure 20: Individual-based model predictions of PvPRLM in Papua New Guinean provinces under a scenario 
where LLINs are replaced every 3 years at 80% coverage. 70% of symptomatic clinical P. vivax cases are assumed to receive 
treatment with an ACT and tafenoquine with G6PD screening (introduced from 2020) according to the treatment pathway in 
Supplementary Figure 5. The green curve for ACT coverage and the pink curve for PQ/TQ coverage shows the proportion of 
individuals receiving treatment in a year. The blue curve for LLIN coverage shows the proportion of individuals sleeping under a 
bed net. A round of mass drug administration (MDA) with tafenoquine and G6PD screening was implemented in 2020 at 80% 
coverage. 
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