
Reviewers' comments:  

Reviewer #1 (Remarks to the Author): 

The manuscript describes a high-throughput screening approach to define the cis-regulatory 
network regulating the alternative splicing (AS) of Ron exon 11.  
Ron encodes for a tyrosine kinase receptor involved in several biological processes such as cell 
dissociation, migration and invasion. Several Alternative Splicing (AS) isoforms of Ron were found 
expressed in cancers. Among these is RonD165, generated through skipping of exon 11, increased in 
human cancers and involved in EMT and invasive tumorigenesis. RonD165 is a model gene that has 
been used to understand how alteration in expression levels (or activity) of specific RNA-binding 
proteins (RBPs) could contribute to tumor progression.  
In this manuscript, the authors used systems approaches combined with mathematical modelling to 
investigate the complex regulation of Ron exon 11 AS and to relate Ron mutations to splicing 
outcomes in cancer patients.  

Specific points: 

1) Several RBPs were reported to regulate Ron exon 11 splicing. Here, the authors described hnRNP
H as a master regulator of RonD165 production that acts by binding multiple cis-regulatory elements
in a cooperative manner. Nevertheless, the notion that hnRNP H promotes skipping of Ron exon 11
is not novel (Lefave CV et al EMBO J. 2011). Cooperative hnRNP H binding to multiple Ron motifs was
tested by performing a hnRNP H knockdown titration in which MCF7 cells were transfected with
increasing amounts of hnRNP H-specific siRNA and splicing of the Ron exon 11 (from the minigene as
well as the endogenous Ron gene) was measured. It would be important to show opposite results by
hnRNP H gain of function by performing overexpression experiments with increasing amounts of
hnRNP H.

2) Related to the experiments shown in Figure S12 in some case there is no correlation between
down-regulation of hnRNP H and Ron exon 11 splicing. For example: in the second wester blotting of
the panel B (second lane) performed to determine the hnRNP H knockdown, the quantification of
hnRNP H expression levels is 114 (more that the value shown in the first lane that is the Ctr, non
targeting control siRNA). Despite there is no depletion of hnRNP H, the authors show that there is a
drastic inclusion of the endogenous Ron exon 11 (panel A on the left). The same for a number of
lanes of the third western blotting (the lower) in which changes in the expression levels of hnRNP H
do not always correlate to the endogenous Ron exon 11 splicing. The authors must address these
discrepancies.

3) The production of RonD165 was associated to activation of EMT, a process involved in tumor
progression and metastasis formation of human epithelial cancers. To address the functional
relevance of the regulation of Ron splicing by hnRNP H authors must evaluate if hnRNP H is able to
regulate EMT through the splicing of Ron. Do hnRNP H expression levels (by over-expression and
knockdown) affect EMT? Is the effect specifically mediated by the production of RonD165 isoform?
For example, over-expression of hnRNP H combined with RonD165 specific knockdown should be
performed to address this point.



 
4) In the TCGA dataset a significant negative correlation between hnRNP H expression levels and Ron 
exon 11 inclusion was observed. Is this also correlated with the metastatic potentials of the tumor 
samples. It would be important also to correlate the expression of hnRNP H and RonD165 with the 
survival of cancer patients.  
 
Minor points  
Page 3, line 62: the acronym RBPs must be introduced, whereas it is reported below (line 80).  
 
 
 
 
Reviewer #2 (Remarks to the Author):  
 
This manuscript by Braun and colleagues presents a well-designed and beautifully crafted approach 
to identify mutations that disrupt splicing regulation. It uses a variety of expertise including state of 
the art genomics, molecular biology, biochemistry, bioinformatics and mathematical modeling. The 
results are in general superbly controlled and the data is presented with useful illustrations. The 
approach is applied to dissect the alternative splicing unit of RON exon 11. Because on average 3.8 
mutations is produced per minigene, mathematical modeling is used to deconvolute these effects 
and attribute the impact of 1800 individual mutations. Sequence information is then used to predict 
the identity of trans-acting regulators whose recruitment may be affected by the mutations. One of 
the most important regulator identied by this approach turns out to be hnRNP H. hnRNP H is already 
known to be a potent regulator of RON splicing, and the most potent mutations in exon 11 that 
affect its splicing occur in a region that has already been linked to hnRNP H (LeFave et al. EMBO J. 
2011). The more original contribution here lies in building a case for cooperative binding for hnRNP 
H as the basis for regulation.  
 
I find the overall approach very interesting and of broad interest, and therefore worthy of reporting. 
However, novelty of contribution could be improved by the analysis of more mutations to better 
assess the cooperativity of hnRNP H binding to exon 11. Additional concerns should also be 
addressed as indicated below.  
 
1. Not all active mutations are expecetd to disrupt cis-acting elements that are bound by proteins. 
For example, a mutation can disrupt or create a secondary structure. Also, the authors have 
themselves identified mutations that create better binding sites for hnRNP H, and this could happen 
for dozens of RBPs. This caveat should be indicated somewhere. This point affects their conclusion 
that the RON alternative spliced region is densely packed with regulatory elements, something we 
already know for FAS exon 6, SMN exon 7, CFTR exon 12 but which requires systematically mutating 
each position.  
 
2. 778 mutations significantly alter RON alternative splicing with a ∆PSI >5%. Some discussion of the 
range of amplitudes would be warranted. The impact of most mutations appears to be minor 
(between 5-10%). How many mutations give ∆PSI larger than 10%, larger than 25%? Do the best 
shifting mutations tend to be neighbors? hnRNP H binding sites?  



3. I have some reservation with the epistasis analysis. The authors propose that if a mutation causes
a reduced response to hnRNP H knockdown (relative to wt), this should be taken as an indication
that hnRNP H is involved. However, take the following case: inclusion for the wt goes from 20% to
100% with the H knockdown (∆PSI of 80%), whereas a mutation that causes a 60% inclusion moves
to 100% with the H knockdown (here a ∆PSI of 40%, hence a shift smaller than wt). My point is that
another regulator could be affected by the mutation and because the mutation yields by itself a
higher PSI and that maximal inclusion is reached upon KD, the response to H depletion is reduced
but not necessarily because the mutation affects hnRNP H. The fact that 707 mutations (out of 1787)
show epistatic interactions with hnRNP H suggest that something is off and that the premise to
assume epistasis in all cases may be wrong. Nevertheless, I agree that some known hnRNP H binding
sites that have an impact on splicing when mutated in exon 11 seem to display epistatic
interactions.

4. Cooperative binding analysis is tantalizing but needs to be better documented by testing other
mutations that affect putative H binding sites. As binding of H to G348 does not appear to be
affected by G305A, testing G348C should also be tested, as well as other weaker hnRNP H sites and
sites that do not respond to KD in exon 11.

5. I could not find Supplementary Data 2.

Reviewer #3 (Remarks to the Author): 

Summary:  
In this work Braun et al perform extensive mutagenesis screen of RON exon 11 and build a linear 
model for the effect of the identified mutations on splicing outcome. They measure the accuracy of 
their model using train/test and comparing it to a strawman which is simply the median effect of a 
given single point mutation across all mutation combinations in which it was measured. They 
identify several SF which could be regulating exon 11 using several lines of previous evidence (SF KD, 
SF CLIP peaks), and correlate exon 11 inclusion to the expression of those in TCGA and GTEX. The 
most prominent regulator they identify and focus on is hnRNP H, which was previously reported and 
studies in this context (Ghigna, et al “Cell motility is controlled by SF2/ASF through alternative 
splicing of the Ron protooncogene”. Mol Cell 2005). They KD hnRNP-H and compare the effect of 
their library of mutations in WT and hnRNP-H KD. They show different hnRNP-H sites have 
antagonistic and non-linear effects, and its expression levels correlate with exon11 inclusion in 
TCGA/GTEX. Finally, they show their model predictions for mutation effect on splicing correlate with 
the changes observed in TCGA cancer patients who harbor these mutations.  

The authors should be congratulated for creating such an extensive work that spans many 
experiments, modeling, and large-scale genomic analysis all tied nicely together. The writing is clear, 
many of the figures are beautiful and smart. We really liked how the authors went to real data 
(TCGA/GTEX) to test their findings, compared the effect of the mutations in WT to hnRNP-H KD, and 



identify complex interactions for hnRNP-H sites. Of note, such analysis was not done in previous 
highly related work (which is also good) by Julien at al and Rosenberg et al. With that mind, we still 
found many issues which should be addressed in full.  
 
 
Major Comments:  
 
We struggled with some of the basic definitions and choices of the predictive model. Some of those 
were confusingly described, some seem like they might be misguided. Specifically:  
 
The authors repeatedly emphasize that they do not model PSI directly/linearly but use ratios instead 
and that this allows them to avoid issues with an otherwise linear model (paragraph from line 160). 
Instead, they explain in the supp that they model ratios from a baseline, which yields 5 *separate* 
regression models. But, as they acknowledge, this gives them a free parameter so they renormalize 
to get PSI values. So, after all the nice explanations of kinetics (which could serve as a motivation), 
the math as far as we can tell boils down to be equivalent to what you would get from a softmax 
regression. (eq. 10,11 in supp). Moreover, they use log PSI, so the natural derivation given what they 
are trying to model and what they eventually output is a (sparse) logistic regression model using a 
softmax, and optimizing the conditional log-likelihood, or equivalently the cross entropy. But the 
authors instead keep those as separate models, optimize each using an L2 distance, and then 
renormalize. This seems to get them into trouble with what they refer to as nonlinear effects (page 4 
bottom in supp) as the info between the separate optimizations is not shared. Running such 
multiclass (sparse) logistic regression with cross entropy, L1, or L2 should be a straightforward 
exercise using packages such as scikit-learn. The authors should definitely try those and if we missed 
something or these are inferior they should clearly explain/demonstrate this.  
 
 
The issue about what is linear or not and what they compare to affects their claims/statements in 
the discussion as well regarding what the model is doing (lines 428-433). It will also affect their 
discussion of linearity and related work in lines 434-445. Specifically when they state the “majority” 
is not linear (line 436) it’s not clear what is that “majority” and again, what is the definition of this 
linearity. If they took out the fraction of close proximity mutations done in Julien et al 2016 would 
their results agree, or is it also a result of how they defined “linearity”?? Also note that Rosenberg et 
al used a quite different model over k-mers, something not mentioned.  
 
* The authors exclude ~6% of the variants as they can not model those, even though they 
acknowledge these can have a significant effect and create many variants (line 141, page 5 top in 
supp). Since they are interested in modeling cancer-specific variations it might very well be that 
those 6% are particularly important/deleterious. What are the fractions of those unmodeled in the 
cancer data? Do they have a significant effect based on their metric even without a model and 
correlation to what happens in cancer (e.g. median over all variants including those?). Related to 
that, the model can not handle the 608 short insertions and deletions (line 684) which are ~3% of 
the variants they created, but this model limitation is not discussed in the main text.  
 
* The fact they don’t find increased conservation of regulatory elements in the introns (line 235) is 



not well explained/discussed. This is also in clear contrast to many other works that show highly 
conserved intronic regulatory elements for splicing. One possible explanation would be that the 
intronic positions they identified exhibit a smaller effect (do they? You could check!) and/or that the 
previous works focused more on highly conserved tissue-specific regulation while in this case there 
are just general (subtle?) effects on the base level of inclusion. Either way, authors should extend 
the discussion here.  

* The results on cooperative hnRNP H sites leading to a splicing switch are very nice. The authors
gloss over whether their mutation model is able to capture that or not, which should be noted. Also,
this result should be noted as inline with previous experimental results and splicing code predictions
made for CU/CUG elements around daam1 exon 16 (Barash et al Nat 2010).

* We found the use of the term “epistatic” interactions between hnRNP H KD and mutations to be
extremely confusing. In general, the term is commonly used for the non-additive effect of genetic
variations, but not here. Furthermore, the epistatic interaction here happens when a mutation in WT
behaves differently than under hnRNP H KD. So “normal” interaction i.e. when it’s a BS for hnRNP H,
are now denoted “epistatic”! Worst, the term is used differently in Julien et al for variant
combinations, which makes it all the more confusing. Why??

* The authors gloss over the fact that their results show “epistatic” effect for hnRNP-H for 468/550
positions (!!) in MCF7 cells. This is worth explaining/discussing.

Figure specific comments: 
=====================  

Fig2B: 
This figure you can't see much. Could plot it separately for each variant at least in the supp. They 
could also plot for each variant the max deviation in PSI so we see how good/bad are the variants 
prediction e.g. X% of them vary more than Y% PSI than the observed.  

Fig2C:  
This is a nice result and analysis. But it would be good to know (a) what is the distribution of 
#occurrences i.e. the PDF/CDF of mutation occurrences in the data (the x-axis here) (b) combining 
the above and their current graph, compare to a median (strawman) how many (CDF) the improve 
by more than X% in error compared to the strawman. This would give a sense of what is the overall 
gain in accuracy from the model compare to only using the experimental data.  

Fig3C:  
This result is somewhat disappointing, and its presentation both here and in the main text is 
misleading. In practice, the r correlation value hinges on two clear outliers which have a strong 
effect, G370T and G297A. They should report the correlation without these as well and discuss this. 
Also, G297A is a splice site one so not very interesting. The G370T is more interesting, but is it in an 
hnRNP H site? something else? it is not even shown in Fig B for some reason.  



To show the utility of their model they should compute and report the same correlation if they used 
just the median value for each of those mutations. This will show the relative gain of their model 
compared to using the experimental results directly.  
 
Fig3E:  
This is a nice connection but it is not fully explored. The pvalues on the right are somewhat 
misleading as they relate to the effect measured of KD in a completely different work. What would 
be much more informative would be to see the correspondence between their model prediction for 
taking away the sites of a SF and the KD experiment effect. Of course, a site could be shared, 
nonetheless, it would indicate how well they can perform such an analysis with their model.  
 
Minor Comments:  
=============================  
 
In various places, results/conclusions are overstated. For example:  
 
The title is somewhat misleading as it implies decoding of the entire RON gene, in practice only for 
exon 11.  
 
The abstract overstates the results, should be toned down. We don’t see the results, as presented, 
offering “insights on the functional impact in human disease”.  
 
Similarly, at the end of the intro, the authors state: “Our approach promises new insights into the 
molecular function of cancer-associated mutations and the mechanisms of alternative splicing 
regulation in general.” Again, this seems like an overstatement given what is actually delivered, 
which only applies (with limited capacity, as discussed above) to exon 11 in RON.  
 
In line 421 in the discussion, authors summarize that their model “can reliably predict the 421 
individual effects of almost 1,800 mutations”. This statement is misleading: The model is not able to 
predict the effect of *any* mutation it has never seen. It can infer the effect of a single mutation 
given several combinations in a manner which is more accurate than trying to simply guess by the 
mean/median.  
 
In lines 475-478 the authors claim their method can be extended further enable to reconstruct 
complete splicing code. Given the usage of tailored mini-gene per exon/gene and KD of each SF for 
each of those, it seems this claim for large-scale analysis should be toned down or removed.  
 
Line 480 states the study shows hnRNP-H is a “master” regulator. Why? “Key” or “important” seems 
more appropriate here.  
 
 
* References choices in the intro seem to reflect some knowledge of recent literature but are not 
aligned well with the statements and background. For example, Yang et al 2016 is relevant for 
showing the effect on protein-protein interaction, but this was shown well before that on a large 
scale in Ellis et al Mol Cell 2012. The observation that over 90% of human genes undergo AS should 



be attributed to the back to back papers Pan et al Nat Gen 2008 and Wang et al Nat 2008. Similarly, 
the term ‘splicing code’ is usually attributed to the Wang and Burge RNA 2008 review that defined 
what is such a code and specified it as a long-term goal, or to Barash et. al Nat 2010 which offered 
the first such code derivation.  

* Just as the references seem lacking, the authors do not draw connections to numerous previous
works. For example:

In line 214 they report that they were surprised to find the splice site of downstream exon12 affects 
the skipping of exon 11. The strength of the up/down sites were already included in the original 
splicing code as an informative feature (Barash et al, Nat 2010) and numerous other works identified 
binding SF around those as affecting ES (e.g. Llorian et al NSMB 2011) so the result should not be 
such a surprise.  
Line 486-489 again this conclusion is in line with numerous works, from classical SrcN1 works by 
Doug Black mapping it’s regulatory elements in a series of papers, to more computational works as 
in Barash et. al Nat 2010.  
By far the most relevant work is Julien et al. The authors do mention it several times, but given the 
strong connection it would help readers to more directly compare/contrast the various 
conclusions/results for each section. This should not be seen as taking away from the 
impact/relevant of this paper as there is a lot of unique results in this paper already (see opening 
statement) 
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We	would	like	to	thank	the	Reviewers	for	their	very	positive	feedback	and	their	constructive	
criticism.	We	addressed	all	comments	which	substantially	 improved	the	manuscript.	Please	
find	our	detailed	responses	below.	

Reviewers’	comments:	

Reviewer	#1	(Remarks	to	the	Author):	

The	manuscript	describes	a	high-throughput	screening	approach	to	define	the	cis-regulatory	
network	regulating	the	alternative	splicing	(AS)	of	Ron	exon	11.	

Ron	encodes	for	a	tyrosine	kinase	receptor	 involved	 in	several	biological	processes	such	as	
cell	 dissociation,	migration	 and	 invasion.	 Several	 Alternative	 Splicing	 (AS)	 isoforms	 of	 Ron	
were	found	expressed	in	cancers.	Among	these	 is	RonD165,	generated	through	skipping	of	
exon	 11,	 increased	 in	 human	 cancers	 and	 involved	 in	 EMT	 and	 invasive	 tumorigenesis.	
RonD165	 is	 a	model	 gene	 that	 has	been	used	 to	understand	how	alteration	 in	 expression	
levels	 (or	 activity)	 of	 specific	 RNA-binding	 proteins	 (RBPs)	 could	 contribute	 to	 tumor	
progression.	

In	 this	 manuscript,	 the	 authors	 used	 systems	 approaches	 combined	 with	 mathematical	
modelling	 to	 investigate	 the	 complex	 regulation	 of	 Ron	 exon	 11	 AS	 and	 to	 relate	 Ron	
mutations	to	splicing	outcomes	in	cancer	patients.	

Specific	points:	

1) Several	RBPs	were	reported	to	regulate	Ron	exon	11	splicing.	Here,	the	authors	described
hnRNP	 H	 as	 a	master	 regulator	 of	 RonD165	 production	 that	 acts	 by	 binding	multiple	 cis-
regulatory	 elements	 in	 a	 cooperative	 manner.	 Nevertheless,	 the	 notion	 that	 hnRNP	 H
promotes	skipping	of	Ron	exon	11	is	not	novel	(Lefave	CV	et	al	EMBO	J.	2011).	Cooperative
hnRNP	H	binding	 to	multiple	Ron	motifs	was	 tested	by	performing	a	hnRNP	H	knockdown
titration	in	which	MCF7	cells	were	transfected	with	increasing	amounts	of	hnRNP	H-specific
siRNA	and	splicing	of	 the	Ron	exon	11	 (from	the	minigene	as	well	as	 the	endogenous	Ron
gene)	was	measured.	 It	would	be	 important	 to	 show	opposite	 results	by	hnRNP	H	gain	of
function	by	performing	overexpression	experiments	with	increasing	amounts	of	hnRNP	H.

We	agree	with	the	Reviewer	that	overexpression	experiments	are	a	valuable	complement	to	
the	 gradual	HNRNPH	 knockdown	 shown	 in	 the	 original	 Fig.	 6b.	 We	 therefore	 performed	
additional	 experiments	 in	which	we	overexpressed	HNRNPH1	at	 increasing	 levels	 in	MCF7	
cells.	 Together	 with	 the	 endogenous	 protein,	 this	 resulted	 in	 a	 197%	 and	 218%	
overexpression.	Semi-quantitative	RT-PCR	showed	a	reduction	in	RON	exon	11	inclusion	for	
the	minigene	as	well	as	the	endogenous	RON	gene.	Fitting	the	Hill	equation	to	the	complete	
dose-response	 curves	 involving	 knockdown	 and	 overexpression	 data	 yielded	 high	 Hill	
coefficients	(nH	=	17.4,	confidence	interval	(CI)	[10.8,35.2]	for	endogenous	RON;	nH	=	13.8,	
CI	 [10.4,17.7]	 for	 RON	 minigene).	 Thus,	 the	 uncertainty	 in	 the	 Hill	 coefficients	 could	 be	
reduced	 by	 the	 additional	 overexpression	 experiments,	 further	 supporting	 the	 initial	
conclusions	concerning	cooperative	regulation	of	splicing	by	HNRNPH.	

The	new	data	are	now	shown	in	Figure	6b	and	Supplementary	Figure	15b,d.	

Response to Reviewers' Comments:
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2) Related	 to	 the	 experiments	 shown	 in	 Figure	 S12	 in	 some	 case	 there	 is	 no	 correlation
between	down-regulation	of	hnRNP	H	and	Ron	exon	11	splicing.	For	example:	in	the	second
wester	 blotting	 of	 the	 panel	 B	 (second	 lane)	 performed	 to	 determine	 the	 hnRNP	 H
knockdown,	 the	 quantification	 of	 hnRNP	 H	 expression	 levels	 is	 114	 (more	 that	 the	 value
shown	 in	 the	 first	 lane	 that	 is	 the	 Ctr,	 non	 targeting	 control	 siRNA).	 Despite	 there	 is	 no
depletion	of	hnRNP	H,	the	authors	show	that	there	is	a	drastic	inclusion	of	the	endogenous
Ron	 exon	 11	 (panel	 A	 on	 the	 left).	 The	 same	 for	 a	 number	 of	 lanes	 of	 the	 third	western
blotting	 (the	 lower)	 in	which	 changes	 in	 the	 expression	 levels	 of	 hnRNP	 H	 do	 not	 always
correlate	 to	 the	 endogenous	 Ron	 exon	 11	 splicing.	 The	 authors	 must	 address	 these
discrepancies.

We	believe	that	the	moderate	variation	in	the	protein	quantification	as	pointed	out	by	the	
Reviewer	 reflects	 the	 inherent	 variability	 in	 experimental	 measurements	 which	 always	
underlie	 a	 certain	 biological	 and	 experimental	 noise.	 As	 a	 result,	 the	 interpretation	 of	
individual	data	points	can	be	misleading.	By	using	replicates,	we	overcome	the	problem	to	
discern	true	differences	in	HNRNPH	levels	and	splicing	changes	from	random	variation.	For	
each	 data	 point,	 we	 had	 therefore	 performed	 three	 independent	 repetitions	 using	
independently	grown	cell	cultures.	We	would	like	to	emphasise	that	our	conclusions,	i.e.	that	
small	changes	in	HNRNPH	levels	induce	a	switch-like	splicing	response,	are	exclusively	drawn	
from	the	measured	averages.	

In	order	to	highlight	the	variability	between	replicates,	we	added	information	on	mean	and	
standard	 deviation	 for	 concentration	 levels	 in	 the	 gradual	 HNRNPH	 knockdown	 and	
overexpression	in	the	revised	Supplementary	Figure	15.	

3) The	production	of	 RonD165	was	 associated	 to	 activation	of	 EMT,	 a	 process	 involved	 in
tumor	 progression	 and	metastasis	 formation	 of	 human	 epithelial	 cancers.	 To	 address	 the
functional	relevance	of	the	regulation	of	Ron	splicing	by	hnRNP	H	authors	must	evaluate	 if
hnRNP	H	is	able	to	regulate	EMT	through	the	splicing	of	Ron.

Do	hnRNP	H	expression	levels	(by	over-expression	and	knockdown)	affect	EMT?	Is	the	effect	
specifically	mediated	by	the	production	of	RonD165	isoform?	For	example,	over-expression	
of	hnRNP	H	 combined	with	RonD165	 specific	 knockdown	 should	be	performed	 to	address	
this	point.	

This	question	had	already	been	addressed	in	a	previous	work	of	Lefave	et	al.,	EMBO	J,	2011.	

In	their	study,	the	authors	employed	a	‘splicing	switchback’	experiment	(presented	in	Figure	
6	of	their	paper):	First,	they	used	antisense	morpholinos	against	both	splice	sites	of	exon	4	in	
HNRNPH1	 to	 induce	 skipping	 of	 this	 internal	 exon.	 The	 resulting	 frameshift	 introduces	 a	
premature	 stop	 codon,	 which	 efficiently	 targets	 the	HNRNPH1	 transcripts	 into	 nonsense-
mediated	 decay,	 leading	 to	 a	 significant	HNRNPH	downregulation	 at	 the	 RNA	 and	 protein	
level.	In	a	second	step,	this	HNRNPH	depletion	was	combined	with	a	second	set	of	antisense	
morpholinos	(H4)	to	induce	skipping	of	RON	exon	11	(splicing	redirection).	RT-PCR	confirmed	
that	hnRNP	H	depletion	led	to	nearly	100%	inclusion	of	RON	exon	11,	which	was	reverted	to	
control	 levels	when	combined	with	H4	antisense	morpholinos	against	RON	exon	11	(Figure	
6C,	top).	A	matrigel	invasion	assay	showed	that	the	hnRNP	H	depletion	strongly	reduced	the	
invading	 capability	 (tested	 in	 T98G	 glioma	 cells	 and	 HeLa	 cells).	 Importantly,	 the	
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simultaneous	addition	of	the	H4	antisense	morpholinos	and	the	resulting	 induction	in	RON	
exon	 11	 skipping	 was	 sufficient	 to	 increase	 cell	 motility	 and	 thus	 partially	 rescue	 the	
phenotype,	 even	 in	 the	 absence	 of	 HNRNPH.	 The	 authors	 concluded	 that	 “hnRNPH	 levels	
contribute	to	the	invading	properties	of	glioblastoma	and	other	cancer	cells,	at	least	in	part	
through	modulation	of	RON	exon	11	splicing.”	

4) In	the	TCGA	dataset	a	significant	negative	correlation	between	hnRNP	H	expression	levels
and	 Ron	 exon	 11	 inclusion	 was	 observed.	 Is	 this	 also	 correlated	 with	 the	 metastatic
potentials	of	the	tumor	samples.	 It	would	be	 important	also	to	correlate	the	expression	of
hnRNP	H	and	RonD165	with	the	survival	of	cancer	patients.

We	agree	with	 the	Reviewer	 that	 the	metastatic	potential	of	 tumours	and	patient	survival	
are	 important	 parameters	 and	 therefore	 performed	 the	 suggested	 analyses	 for	 further	
investigation.	

Consistent	with	a	role	of	constitutively	active	RON∆165	in	cancer,	we	showed	in	the	original	
version	of	the	manuscript	that	RON	exon	11	inclusion	levels	are	commonly	reduced	in	TCGA	
tumours	(mean	PSI	67%)	compared	to	healthy	tissues	from	GTEx	(mean	PSI	76%,	P-value	<	
2.2e-16;	Mann-Whitney-Wilcoxon	test).	To	similarly	support	a	potential	role	of	HNRNPH,	we	
now	extend	this	analysis	to	show	that	HNRNPH2	consistently	shows	higher	expression	in	the	
tumours	compared	to	healthy	tissues	(mean	TPM	57.88	vs.	46.29;	P-value	<	2.2e-16;	Mann-
Whitney-Wilcoxon	 test).	 Even	 though	 the	observed	changes	 in	HNRNPH2	 are	 rather	 small,	
our	 experimental	 results	 suggest	 that	 this	 can	 have	 drastic	 impact	 on	 RON	 exon	 11	 (and	
potentially	 other	 target	 exons).	 These	 findings	 support	 the	notion	 that	HNRNPH-mediated	
repression	and	RON	exon	11	skipping	are	associated	with	human	cancer.		

We	report	these	results	in	the	revised	manuscript.	

Following	 the	 Reviewer’s	 suggestion,	 we	 tested	 the	 association	 between	 HNRNPH2	
expression	 or	 RON	 exon	 11	 inclusion	 levels	 and	 tumour	 stage	 IV	 (as	 a	 surrogate	 of	
association	with	metastatic	potential)	across	TCGA	cohorts	with	stage	IV	samples.	Requiring	
a	minimum	of	 10	 samples	 per	 cohort,	HNRNPH2	 expression	was	 tested	 in	 20	 cohorts	 and	
RON	exon	11	 inclusion	was	 tested	 in	12	cohorts.	However,	we	could	not	 find	evidence	 for	
either	HNRNPH2	or	RON	exon	11	being	differently	expressed/included	between	stage	IV	and	
any	of	 the	other	 stages	 (stages	 I-III)	 (see	Figure	 I	 e	below).	A	possible	explanation	 for	 this	
could	be	that	HNRNPH	expression	and	RON	splicing	are	not	the	only	determinants	of	cancer	
malignancy	but	contribute,	in	certain	tumours	and	patients,	to	tumour	progression.		

We	further	tested	the	prognostic	value	of	HNRNPH2	expression	and	RON	exon	11	inclusion	
on	 the	 survival	 of	 cancer	 patients	 across	 TCGA	 tumour	 cohorts.	 Using	 the	 R	 package	
survivALL	 (Pearce	 et	 al.,	 bioRxiv,	 doi:	 https://doi.org/10.1101/208660;	 default	 parameters)	
to	 stratify	 TCGA	patients	based	on	an	optimal	Kaplan-Meier	 cutoff,	we	 could	not	detect	 a	
significant	 association	 of	 either	 measure	 with	 patient	 survival	 across	 TCGA	 cohorts	 (see	
Figure	 I	 c,d	 below).	 The	 exceptions	 were	 two	 cohorts,	 in	 which	 lower	 expression	 of	
HNRNPH2	was	significantly	associated	with	worse	prognosis	(Adrenocortical	Carcinoma	and	
Lower	 Grade	 Glioma;	 Figure	 I	 a,b	 below).	 However,	 both	 cohorts	 showed	 hardly	 any	
expression	of	RON	(mean	TPM	0.40	and	0.66	for	Adrenocortical	Carcinoma	and	Lower	Grade	
Glioma,	respectively),	suggesting	that	other	HRNNPH-regulated	events	rather	than	RON	exon	
11	skipping	must	be	involved	in	the	observed	effect.	Since	our	manuscript	studies	HNRNPH-
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mediated	regulation	in	the	context	of	RON	splicing,	we	decided	not	to	include	these	results	
into	the	revised	version.	

Figure	I.	Analysis	of	tumour	stage	and	patient	survival.	

Minor	points	
Page	3,	 line	62:	 the	acronym	RBPs	must	be	 introduced,	whereas	 it	 is	 reported	below	 (line	
80).	

We	corrected	this	mistake.	
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Reviewer	#2	(Remarks	to	the	Author):	

This	manuscript	 by	 Braun	 and	 colleagues	 presents	 a	well-designed	 and	 beautifully	 crafted	
approach	to	identify	mutations	that	disrupt	splicing	regulation.	It	uses	a	variety	of	expertise	
including	 state	 of	 the	 art	 genomics,	 molecular	 biology,	 biochemistry,	 bioinformatics	 and	
mathematical	 modeling.	 The	 results	 are	 in	 general	 superbly	 controlled	 and	 the	 data	 is	
presented	with	useful	illustrations.	The	approach	is	applied	to	dissect	the	alternative	splicing	
unit	 of	 RON	 exon	 11.	 Because	 on	 average	 3.8	 mutations	 is	 produced	 per	 minigene,	
mathematical	 modeling	 is	 used	 to	 deconvolute	 these	 effects	 and	 attribute	 the	 impact	 of	
1800	 individual	 mutations.	 Sequence	 information	 is	 then	 used	 to	 predict	 the	 identity	 of	
trans-acting	 regulators	whose	 recruitment	may	 be	 affected	 by	 the	mutations.	 One	 of	 the	
most	 important	regulator	 identified	by	this	approach	turns	out	to	be	hnRNP	H.	hnRNP	H	is	
already	known	to	be	a	potent	regulator	of	RON	splicing,	and	the	most	potent	mutations	in	
exon	11	 that	 affect	 its	 splicing	occur	 in	 a	 region	 that	has	 already	been	 linked	 to	hnRNP	H	
(LeFave	et	al.	EMBO	J.	2011).	The	more	original	contribution	here	lies	in	building	a	case	for	
cooperative	binding	for	hnRNP	H	as	the	basis	for	regulation.	

I	 find	the	overall	approach	very	 interesting	and	of	broad	 interest,	and	therefore	worthy	of	
reporting.	 However,	 novelty	 of	 contribution	 could	 be	 improved	 by	 the	 analysis	 of	 more	
mutations	 to	 better	 assess	 the	 cooperativity	 of	 hnRNP	 H	 binding	 to	 exon	 11.	 Additional	
concerns	should	also	be	addressed	as	indicated	below.	

1. Not	 all	 active	mutations	 are	 expected	 to	 disrupt	 cis-acting	 elements	 that	 are	 bound	by
proteins.	 For	 example,	 a	 mutation	 can	 disrupt	 or	 create	 a	 secondary	 structure.	 Also,	 the
authors	have	themselves	identified	mutations	that	create	better	binding	sites	for	hnRNP	H,
and	this	could	happen	for	dozens	of	RBPs.	This	caveat	should	be	indicated	somewhere.	This
point	affects	their	conclusion	that	the	RON	alternative	spliced	region	is	densely	packed	with
regulatory	elements,	something	we	already	know	for	FAS	exon	6,	SMN	exon	7,	CFTR	exon	12
but	which	requires	systematically	mutating	each	position.

The	 Reviewer	 is	 correct	 that	 not	 all	 splicing-effective	 mutations	 necessarily	 mark	 an	 RBP	
binding	site.	The	introduced	mutations	may	indeed	affect	RNA	secondary	structure	elements	
that	are	involved	in	splicing	regulation	and	could	thus	be	considered	as	cis-acting	elements.	
Such	structures	can	directly	 impact	on	splicing	e.g.	by	modulating	the	accessibility	of	splice	
sites	and	other	regulatory	sites	or	via	RBP	recruitment.	In	fact,	several	RBPs	were	previously	
shown	to	interact	with	specific	RNA	secondary	structures	to	regulate	alternative	pre-mRNA	
splicing.	Consistently,	we	speculated	in	the	discussion	that	RNA	secondary	structures	might	
contribute	to	the	cooperative	regulation	of	HNRNPH.	

We	also	agree	with	the	Reviewer	that	splicing-effective	mutations	can	not	only	disrupt	but	
also	 introduce	 new	 cis-regulatory	 elements,	 thereby	 further	 increasing	 the	 complexity	 of	
RON	splicing	regulation.	However,	we	think	that	most	of	these	mutations	will	not	generate	a	
completely	 new	 site.	 Instead,	 it	 appears	 more	 likely	 that	 they	 will	 reinforce	 a	 previously	
existing	but	weak	cis-regulatory	element,	e.g.	by	shifting	a	binding	site	towards	a	higher	RBP	
binding	affinity.	Moreover,	even	 though	 these	mutation-generated	cis-regulatory	elements	
may	 not	 have	 a	major	 impact	 under	 normal	 conditions,	 they	 can	 gain	 pathophysiological	
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relevance	in	cancer	when	mutations	accumulate.	We	therefore	think	that	it	is	important	to	
include	such	mutations	in	our	analysis.	

Following	the	Reviewer’s	request,	we	now	point	to	these	considerations	at	several	positions	
in	the	revised	manuscript.	To	emphasise	a	possible	involvement	of	RNA	secondary	structures	
in	splicing	regulation,	we	added	to	the	 introduction	that	both	primary	sequence	as	well	as	
secondary	 structure	 can	 form	 cis-regulatory	 elements	 important	 for	 splicing	 regulation.	 In	
addition,	 we	 mention	 the	 impact	 of	 mutation-generated	 cis-regulatory	 elements	 in	 the	
Results	section	and	later	when	discussing	the	dense	regulatory	landscape	of	RON	exon	11.		
	
2.	 778	 mutations	 significantly	 alter	 RON	 alternative	 splicing	 with	 a	 ∆PSI	 >5%.	 Some	
discussion	of	 the	 range	of	amplitudes	would	be	warranted.	The	 impact	of	most	mutations	
appears	 to	 be	 minor	 (between	 5-10%).	 How	 many	 mutations	 give	 ∆PSI	 larger	 than	 10%,	
larger	 than	 25%?	 Do	 the	 best	 shifting	mutations	 tend	 to	 be	 neighbors?	 hnRNP	H	 binding	
sites?	
	
Indeed,	we	find	that	mutations	can	strongly	differ	in	their	effect	sizes,	with	many	displaying	
between	 5-10%	 change.	 Importantly,	 however,	 47%	 (HEK293T)	 and	 51%	 (MCF7)	 of	 the	
splicing-effective	mutations	trigger	changes	of	>10%	in	at	least	one	splice	isoform	(363	out	of	
778	in	HEK293T,	and	521	out	of	1022	in	MCF7),	and	1/5	of	them	exceed	20%	(136	and	189,	
respectively).	We	thus	detect	a	large	number	of	potent	mutations	that	substantially	change	
the	splicing	outcome	for	RON	exon	11.		

In	 order	 to	 visualise	 the	 occurrence	 and	 spatial	 distribution	 of	weak	 and	 strong	mutation	
effects,	 we	 modified	 the	 landscapes	 of	 splicing-effective	 mutations	 in	 the	 revised	
Supplementary	 Fig.	 8	 (previously	 Figure	 S6).	 The	 plots	 now	 overlay	 the	 three	 different	
thresholds.	Additionally,	we	extended	Supplementary	Table	4a,b	 to	specify	the	number	of	
splicing-effective	mutations	and	positions	in	different	transcript	regions	based	on	the	three	
thresholds	(>5%,	>10%	and	>20%).	

Overall,	 these	 analyses	 show	 that	 the	 strongest	 mutations	 cluster	 in	 and	 around	 the	
alternative	exon	(see	Supplementary	Fig.	8).	As	expected,	hotspots	include	the	splice	sites,	
but	 also	 numerous	 other	 locations	 including	 the	 HNRNPH	 SRBS	 in	 the	 alternative	 exon.	
Furthermore,	we	investigated	the	spacing	of	significant	mutations	with	>5%,	>10%	and	>20%	
effects	 on	 any	 isoform	 frequency.	 We	 find	 that	 the	 stronger	 mutations	 tend	 to	 be	
neighbours,	 supporting	the	notion	that	 they	point	 to	cis-regulatory	elements	 (see	Figure	 II	
below).	 Due	 to	 space	 restrictions,	 we	 decided	 to	 not	 include	 the	 distance	 analysis	 in	 the	
revised	manuscript.		
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Figure	II:	Distance	to	nearest	splicing-effective	mutation	for	different	isoforms	and	cutoffs.	

3. I	have	some	reservation	with	the	epistasis	analysis.	The	authors	propose	that	if	a	mutation
causes	a	reduced	response	to	hnRNP	H	knockdown	(relative	to	wt),	this	should	be	taken	as
an	 indication	that	hnRNP	H	is	 involved.	However,	take	the	following	case:	 inclusion	for	the
wt	goes	from	20%	to	100%	with	the	H	knockdown	(∆PSI	of	80%),	whereas	a	mutation	that
causes	a	60%	inclusion	moves	to	100%	with	the	H	knockdown	(here	a	∆PSI	of	40%,	hence	a
shift	smaller	than	wt).	My	point	is	that	another	regulator	could	be	affected	by	the	mutation
and	because	the	mutation	yields	by	itself	a	higher	PSI	and	that	maximal	inclusion	is	reached
upon	KD,	the	response	to	H	depletion	is	reduced	but	not	necessarily	because	the	mutation
affects	hnRNP	H.

In	response	to	the	Reviewer’s	concern	and	major	comment	6	of	Reviewer	#3	(see	below),	we	
now	 refer	 to	 the	 epistatic	 effects	 as	 ‘synergistic	 interactions’.	 Please	 note	 that	 this	
terminology	is	already	used	throughout	the	following	paragraph.	

We	agree	with	the	Reviewer	that	the	analysis	of	synergy	at	the	level	of	‘percent	spliced-in’	
(or	 related	metrics)	 is	 problematic,	 as	 PSI	 is	 by	 definition	 bounded	 between	 0	 and	 100%,	
thereby	potentially	giving	 rise	 to	apparent	 synergy	of	unrelated	perturbations.	 In	 fact,	our	
data	 suggests	 that	perturbation-induced	changes	 in	PSI	 show	a	 strong	dependence	on	 the	
starting	PSI	value,	even	when	far	away	from	these	extreme	boundaries	(see	below).	Thus,	PSI	
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values	 are	 not	 appropriate	 for	 synergy	 analysis	 (and	 also	 for	 linear	 regression	 –	 see	 our	
responses	to	major	point	2	of	Reviewer	#3).	

To	circumvent	this	issue,	we	performed	the	synergy	analysis	using	our	mathematical	model	
which	is	formulated	based	on	splice	isoform	ratios.	These	ratios	are	not	bounded	and	show	
the	 same	 perturbation-induced	 fold-change	 in	 the	 splicing	 outcome	 irrespective	 of	 the	
starting	 PSI	 value	 (i.e.,	 the	 nature	 of	 other	mutations	 present,	 see	 below).	 Hence,	 in	 log-
space	the	perturbations	add	up,	and	deviations	from	additive	behaviour	between	mutations	
and	knockdown	can	be	quantified	using	a	synergy	score	(Figure	5b).	

How	do	we	know	that	isoform	ratios	show	additive	behaviour	of	perturbations	in	log-space?	
As	detailed	in	the	response	to	major	point	2	of	Reviewer	#3,	we	showed	this	by	analysing	a	
system	 with	 competing	 splicing	 reactions	 using	 kinetic	 modelling	 (new	 Supplementary	
Figure	7e;	Eqs.	1a	and	1b	in	the	Supplementary	Material).	We	validated	this	prediction	by	a	
careful	 comparison	 of	 single	 vs.	 double/triple	 mutation	 minigenes	 (Supplementary	
Figure	4a)	 and	 by	 the	 successful	 description	 of	 the	 complete	mutagenesis	 dataset	 using	 a	
regression	model	 that	 is	 based	on	 splice	 isoform	 ratios	 (see	 response	 to	major	 point	 2	 of	
Reviewer	#3).	

In	 terms	 of	 knockdown-mutation	 synergy,	we	 confirm	 that	 –	 on	 a	 global	 level	 –	HNRNPH	
knockdown	induces	a	very	similar	fold-change	in	the	AE	skipping-to-inclusion	ratio	across	the	
majority	 of	 the	minigene	 library	 (Figure	 5b,	 right).	 This	 again	 corresponds	 to	 additivity	 of	
mutations	and	knockdown	 in	 log-space.	 In	contrast,	when	analysed	at	 the	 level	of	PSI,	 the	
knockdown	effect	depends	in	a	non-linear	manner	on	the	starting	PSI	values	(Figure	5a).	

We	 acknowledge	 that	 mutations	 which	 shift	 the	 inclusion	 frequency	 close	 to	 0%	 can	 be	
problematic	also	 in	our	framework.	This	 is	due	to	the	fact	that	the	measurements	become	
less	accurate	at	such	low	levels,	i.e.,	the	error	in	synergy	calculations	increases.	We	show	this	
in	the	new	Supplementary	Figure	7g,	in	which	we	plot	the	uncertainty	of	the	synergy	z-score	
(standard	deviation	between	 replicates)	as	a	 function	of	 the	 (inferred)	 inclusion	 frequency	
with	a	 single	mutation.	 In	 line	with	 instability	of	 results,	we	 find	 that	 the	z-score	standard	
deviation	increases	near	0%	inclusion.	To	account	for	these	boundary	effects,	we	now	apply	
an	 additional	 filter	 to	 exclude	 mutations	 from	 the	 synergy	 analysis	 that	 on	 their	 own	
completely	abolish	splicing,	and	thereby	prevent	the	KD	from	having	additional	measurable	
effects.		

Altogether,	we	conclude	 that	our	model	 that	 is	based	on	 splice	 isoform	ratios	provides	us	
with	a	tool	to	analyse	synergy	without	strong	biases	arising	from	boundary	effects.	

The	fact	that	707	mutations	(out	of	1787)	show	epistatic	interactions	with	hnRNP	H	suggest	
that	 something	 is	off	and	 that	 the	premise	 to	assume	epistasis	 in	all	 cases	may	be	wrong.	
Nevertheless,	 I	 agree	 that	 some	 known	 hnRNP	 H	 binding	 sites	 that	 have	 an	 impact	 on	
splicing	when	mutated	in	exon	11	seem	to	display	epistatic	interactions.	

First	 of	 all,	 we	 have	 to	 apologise	 for	 accidently	 reporting	 a	 wrong	 number	 of	 synergistic	
interactions	which	led	to	an	overestimation	of	synergy	effects	in	the	original	version	of	the	
manuscript.	With	 the	 cutoff	 at	 |z-score|	 >	 2	 that	we	 initially	 used,	we	 find	 a	 total	 of	 354	
mutations	 in	 278	positions	 that	 significantly	 alter	 the	KD	 response	of	 at	 least	 one	 splicing	
isoform	(instead	of	707	as	erroneously	reported	in	the	original	manuscript).	
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In	 order	 to	 reliably	 detect	 synergistic	 interactions	 between	 single	mutations	 and	HNRNPH	
KD,	we	applied	stringent	thresholds	as	shown	in	the	original	manuscript.	Detection	required	
significant	 P-values	 after	multiple	 testing	 correction,	 a	mean	 synergy	 |z-score|	 >	 2	 and	 a	
consistent	 direction	 of	 synergy	 in	 all	 replicates.	 As	 mentioned	 above,	 we	 obtain	 354	
mutations	 in	 278	 positions	 with	 significant	 synergistic	 interactions	 using	 these	 original	
criteria.	We	believe	that	 it	 is	well	possible	that	a	 few	hundred	sites	could	show	synergistic	
interactions	 with	 the	 HNRNPH	 knockdown,	 e.g.,	 due	 to	 perturbation	 of	 higher-order	
complexes	 that	 contain	 HNRNPH.	 This	 is	 also	 consistent	 with	 the	 broad	 HNRNPH	 binding	
pattern	that	we	observe	in	the	iCLIP	experiments.	

In	order	to	highlight	the	most	important	synergistic	interactions,	we	now	applied	additional,	
more	 stringent	 cutoffs.	We	 required	 the	mean	 synergy	 score	 to	 be	 |z-score|	 >	 3	 or	 >	 5,	
identifying	 222	 and	 66	 mutations	 in	 184	 and	 58	 positions,	 respectively.	 Notably,	 with	
increasing	 thresholds,	 the	 significant	 synergistic	 interactions	 strongly	 focus	 within	 the	
HNRNPH	 SRBS	 of	 cluster	 3	 in	 the	 alternative	 exon,	 which	 capture	 42%	 of	 the	 strongest	
synergistic	 interactions	 that	 affect	 AE	 skipping	 (|z-score|>5).	 Thus,	 by	 applying	 stringent	
cutoffs,	our	synergy	analysis	pinpoints	the	most	relevant	HNRNPH-sequence	interactions.	

In	the	revised	version,	we	now	visualise	these	results	by	comparing	the	three	applied	cutoffs	
in	 the	 revised	 Figure	 5c	 and	 Supplementary	 Figure	 12c.	 In	 addition,	 we	 corrected	 and	
extended	 Supplementary	 Table	 4c.	 which	 now	 provides	 details	 on	 significant	 interactions	
(positions	and	mutations)	at	the	three	different	cutoffs	(|z-score|	>2,	>3	and	>5).	

4. Cooperative	binding	analysis	is	tantalizing	but	needs	to	be	better	documented	by	testing
other	 mutations	 that	 affect	 putative	 H	 binding	 sites.	 As	 binding	 of	 H	 to	 G348	 does	 not
appear	 to	 be	 affected	 by	 G305A,	 testing	 G348C	 should	 also	 be	 tested,	 as	 well	 as	 other
weaker	hnRNP	H	sites	and	sites	that	do	not	respond	to	KD	in	exon	11.

We	 agree	with	 the	 Reviewer	 that	 further	mutations	 should	 be	 tested	 to	 substantiate	 this	
result.	We	therefore	performed	the	iCLIP	experiments	including	two	additional	mutations	in	
other	SRBS	within	cluster	3	(G348C	and	G331C).	We	also	repeated	the	experiments	for	the	
original	mutation	G305A	and	 the	wt	RON	minigene,	performing	 two	replicate	experiments	
for	all	constructs.	

Consistent	with	our	initial	observation,	each	of	the	mutations	triggered	a	strong	reduction	of	
HNRNPH	crosslinking	not	only	at	the	mutated	site	itself,	but	also	at	neighbouring	SRBS	within	
cluster	 3.	 This	 interdependent	 crosslinking	 pattern	 strongly	 supports	 our	 hypothesis	 that	
HNRNPH	cooperatively	binds	at	multiple	SRBS	within	cluster	3.	 In	 the	 interest	of	 time	and	
resources,	we	refrained	from	testing	further	mutations	in	other	SRBS.	

The	new	iCLIP	experiments	are	shown	in	Figure	6a.	

5. I	could	not	find	Supplementary	Data	2.

We	apologise	 for	 the	 inconvenience.	An	updated	version	 is	now	provided	with	 the	revised	
version	our	manuscript.	
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Reviewer	#3	(Remarks	to	the	Author):	

Summary:	
In	this	work	Braun	et	al	perform	extensive	mutagenesis	screen	of	RON	exon	11	and	build	a	
linear	model	 for	 the	effect	of	 the	 identified	mutations	on	splicing	outcome.	They	measure	
the	accuracy	of	their	model	using	train/test	and	comparing	it	to	a	strawman	which	is	simply	
the	median	effect	of	a	given	single	point	mutation	across	all	mutation	combinations	in	which	
it	was	measured.	They	 identify	 several	SF	which	could	be	 regulating	exon	11	using	several	
lines	 of	 previous	 evidence	 (SF	 KD,	 SF	 CLIP	 peaks),	 and	 correlate	 exon	 11	 inclusion	 to	 the	
expression	of	those	in	TCGA	and	GTEX.	The	most	prominent	regulator	they	identify	and	focus	
on	is	hnRNP	H,	which	was	previously	reported	and	studies	in	this	context	(Ghigna,	et	al	“Cell	
motility	 is	 controlled	 by	 SF2/ASF	 through	 alternative	 splicing	 of	 the	 Ron	 protooncogene”.	
Mol	Cell	2005).	They	KD	hnRNP-H	and	compare	the	effect	of	their	library	of	mutations	in	WT	
and	 hnRNP-H	 KD.	 They	 show	 different	 hnRNP-H	 sites	 have	 antagonistic	 and	 non-linear	
effects,	and	its	expression	levels	correlate	with	exon11	inclusion	in	TCGA/GTEX.	Finally,	they	
show	 their	 model	 predictions	 for	 mutation	 effect	 on	 splicing	 correlate	 with	 the	 changes	
observed	in	TCGA	cancer	patients	who	harbor	these	mutations.	

The	authors	should	be	congratulated	for	creating	such	an	extensive	work	that	spans	many	
experiments,	modeling,	and	large-scale	genomic	analysis	all	tied	nicely	together.	The	writing	
is	clear,	many	of	the	figures	are	beautiful	and	smart.	We	really	liked	how	the	authors	went	to	
real	data	(TCGA/GTEX)	to	test	their	findings,	compared	the	effect	of	the	mutations	in	WT	to	
hnRNP-H	KD,	and	identify	complex	interactions	for	hnRNP-H	sites.	Of	note,	such	analysis	was	
not	done	in	previous	highly	related	work	(which	is	also	good)	by	Julien	at	al	and	Rosenberg	et	
al.	With	that	mind,	we	still	found	many	issues	which	should	be	addressed	in	full.	

Major	Comments:	

We	struggled	with	some	of	the	basic	definitions	and	choices	of	the	predictive	model.	Some	
of	those	were	confusingly	described,	some	seem	like	they	might	be	misguided.	Specifically:	

1. The	 authors	 repeatedly	 emphasize	 that	 they	 do	 not	model	 PSI	 directly/linearly	 but	 use
ratios	 instead	 and	 that	 this	 allows	 them	 to	 avoid	 issues	 with	 an	 otherwise	 linear	 model
(paragraph	from	 line	160).	 Instead,	 they	explain	 in	 the	supp	that	 they	model	 ratios	 from	a
baseline,	which	yields	5	*separate*	regression	models.	But,	as	they	acknowledge,	this	gives
them	 a	 free	 parameter	 so	 they	 renormalize	 to	 get	 PSI	 values.	 So,	 after	 all	 the	 nice
explanations	of	kinetics	(which	could	serve	as	a	motivation),	the	math	as	far	as	we	can	tell
boils	down	to	be	equivalent	to	what	you	would	get	from	a	softmax	regression.	(eq.	10,11	in
supp).	Moreover,	 they	use	 log	PSI,	 so	 the	natural	derivation	given	what	 they	are	 trying	 to
model	 and	 what	 they	 eventually	 output	 is	 a	 (sparse)	 logistic	 regression	 model	 using	 a
softmax,	and	optimizing	the	conditional	log-likelihood,	or	equivalently	the	cross	entropy.	But
the	authors	instead	keep	those	as	separate	models,	optimize	each	using	an	L2	distance,	and
then	renormalize.	This	seems	to	get	them	into	trouble	with	what	they	refer	to	as	nonlinear
effects	 (page	 4	 bottom	 in	 supp)	 as	 the	 info	 between	 the	 separate	 optimizations	 is	 not
shared.	 Running	 such	 multiclass	 (sparse)	 logistic	 regression	 with	 cross	 entropy,	 L1,	 or	 L2
should	be	a	straightforward	exercise	using	packages	such	as	scikit-learn.	The	authors	should
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definitely	 try	 those	 and	 if	 we	missed	 something	 or	 these	 are	 inferior	 they	 should	 clearly	
explain/demonstrate	this.		

As	stated	by	the	Reviewers,	we	perform	our	regression	analysis	using	isoform	ratios	(Eq.	7	in	
the	 Supplementary	 Material)	 and	 then	 use	 our	 modelling	 results	 (i.e.,	 inferred	 single	
mutation	effects	on	isoform	ratios)	to	calculate	the	more	intuitive	single	mutation	effects	on	
splice	isoform	frequencies	(related	to	PSI)	by	renormalisation	(Eqs.	10	and	11).	Conceptually,	
we	do	not	see	an	advantage	of	fitting	isoform	frequencies	instead	of	isoform	ratios:	as	stated	
in	the	Supplementary	Material,	not	all	six	splicing	parameters	Ki	can	be	determined	based	on	
our	 data,	 but	 only	 five	 ratios	 of	 these	 parameters	 (Eq.	 4).	 This	 non-identifiability	 of	 one	
parameter	 is	not	due	 to	our	modelling	approach,	but	 lies	 in	 the	nature	of	our	data	which	
consists	of	six	 isoform	frequencies	that	sum	up	to	100%,	thus	giving	only	five	 independent	
values	per	minigene.	Therefore,	a	free	parameter	remains	even	if	the	model	is	fitted	directly	
to	the	measured	isoform	frequencies.	In	return,	all	six	isoform	frequencies	can	be	calculated	
based	 on	 the	 single	 mutation	 effects	 on	 five	 isoform	 ratios	 with	 respect	 to	 a	 reference	
isoform,	like	we	show	in	Eqs.	10	and	11	in	the	Supplementary	Material.	

The	 Reviewers	 propose	 to	 employ	 a	 (sparse)	 logistic	 regression	 using	 a	 softmax	 for	 our	
analysis.	 Previously,	 softmax	 models	 were	 used	 to	 infer	 whether	 sequence	 features	 near	
alternative	 exons	 reduce	 or	 enhance	 splicing	 in	 certain	 tissues	 relative	 to	 the	 average	
splicing	 across	 all	 tissues	 (Barash	 et	 al.,	 Nature	 2010).	 In	 these	 published	 models,	 the	
response	in	the	training	dataset	was	categorical	(enhancement,	reduction	and	no	change	in	
PSI),	and	the	model	could	be	used	to	predict	 the	probabilities	of	 these	categorical	outputs	
for	new	inputs.	In	our	case,	the	output	in	the	training	dataset	is	continuous	and	includes	six	
quantified	splice	isoforms	frequencies	for	each	minigene.	Nevertheless,	a	softmax	regression	
can	be	performed	by	categorising	our	data	(i.e.,	using	a	single	splice	isoform	as	output)	and	
using	 the	 measured	 isoform	 frequencies	 as	 sample	 weights:	 specifically,	 six	 categorical	
measurements	(splice	isoform	outcomes)	were	assigned	to	each	minigene	and	weighted	by	
the	measured	 isoform	 frequencies.	We	 have	 implemented	 such	 a	 regression	model	 using	
cross-entropy	 loss	 and	 L2	 regularisation	 as	 optimisation	 functions	with	 the	 package	 scikit-
learn,	as	suggested	by	the	Reviewers.	We	find,	however,	that	the	results	are	slightly	inferior	
compared	to	our	original	method:	While	the	softmax	shows	comparable	efficiency	in	fitting	
the	 data,	 it	 performs	 less	 well	 than	 our	 ratio-based	 approach	when	 predicting	minigenes	
that	 had	 not	 been	 part	 of	 the	 training	 dataset	 in	 a	 10-fold	 cross-validation	 (new	
Supplementary	Figure	7a).	

From	the	Reviewers’	comment	 (and	also	point	3	of	Reviewer	#2),	 it	became	clear	 that	 the	
usefulness	of	regression	based	on	splice	isoform	ratios	as	opposed	to	PSI	(or	related	metrics)	
did	 not	 become	 entirely	 clear.	 To	 clarify	 this	 issue,	 we	 also	 performed	 an	 alternative	
regression	 in	 which	 we	 assume	 additivity	 of	 mutation	 effects	 at	 the	 level	 of	 isoform	
frequencies,	and	then	use	these	 isoform	frequency	equations	directly	 for	regression	(while	
constraining	the	sum	of	frequencies	for	each	single	mutation	to	one).	Using	this	approach,	
we	find	that	the	fit	quality	and	especially	the	predictions	in	the	10-fold	cross-validation	were	
also	worse	compared	to	our	ratio-based	approach,	as	mentioned	in	the	revised	manuscript	
and	shown	in	the	new	Supplemental	Figure	7b.	

The	Reviewers	comment	 that	 the	use	of	 isoform	ratios	gets	us	 into	 trouble	with	nonlinear	
effects.	In	fact,	we	think	that	the	use	of	isoform	ratios	is	essential	to	avoid	nonlinearity	issues	
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(see	also	a	detailed	description	of	our	definition	of	linearity	in	our	response	to	major	point	
2):	 In	 short,	 a	 mutation	 only	 elicits	 the	 same	 fold-change,	 irrespective	 of	 the	 mutational	
background,	 at	 the	 level	 of	 isoform	 ratios,	 whereas	 this	 is	 not	 true	 for	 the	 bounded	 PSI	
metric	for	which	the	same	mutation	induces	different	fold-changes	near	0%	or	100%	(Eq.	4	
in	 Supplementary	 Material	 and	 Supplementary	 Figures	 3a	 and	 7e).	 Hence,	 in	 log-space,	
mutation	 effects	 add	 up	 in	 terms	 of	 isoform	 ratios,	 but	 not	 in	 terms	 of	 the	 bounded	 PSI	
metric,	implying	that	only	the	former	are	suitable	for	linear	regression.	

In	 the	 Supplementary	 Material,	 we	 stated	 that	 minigenes	 which	 simultaneously	 contain	
mutations	at	two	splice	sites	had	to	be	left	out	due	to	nonlinearity.	We	would	like	to	point	
out	 that	 this	 is	 not	 a	 problem	 specific	 to	 our	model:	 The	maximally	 possible	 reduction	 of	
inclusion	is	already	reached	by	a	single	splice	site	mutation,	since	minigenes	which	harbour	
an	additional	mutation	 in	a	second	splice	site,	 show	a	very	similar	distribution	of	 inclusion	
frequencies	 (new	 Supplementary	 Figure	 7f).	 Alternative	 regression	 models	 will	 also	 not	
capture	that	splice	site	mutation	effects	cancel	out,	implying	that	this	problem	is	not	specific	
to	our	approach.	We	clarify	this	issue	in	the	revised	version	of	the	Supplementary	Material.	

Taken	 together,	 we	 continue	 to	 believe	 that	 our	 isoform-ratio	 modelling	 approach	 is	
superior	compared	to	alternatives	based	on	PSI	or	similar	metrics,	as	we	explicitly	take	into	
account	competition	effects	in	splicing	and	boundary	effects	due	to	normalisation.				

2. The	 issue	 about	 what	 is	 linear	 or	 not	 and	 what	 they	 compare	 to	 affects	 their
claims/statements	 in	 the	 discussion	 as	well	 regarding	what	 the	model	 is	 doing	 (lines	 428-
433).	 It	 will	 also	 affect	 their	 discussion	 of	 linearity	 and	 related	 work	 in	 lines	 434-445.
Specifically	when	they	state	the	“majority”	is	not	linear	(line	436)	it’s	not	clear	what	is	that
“majority”	and	again,	what	is	the	definition	of	this	linearity.	If	they	took	out	the	fraction	of
close	proximity	mutations	done	in	Julien	et	al	2016	would	their	results	agree,	or	is	it	also	a
result	of	how	they	defined	“linearity”??	Also	note	that	Rosenberg	et	al	used	a	quite	different
model	over	k-mers,	something	not	mentioned.

We	 define	 linearity	 based	 on	 the	 way	 the	 mutational	 effects	 cumulate	 in	 minigenes	
exhibiting	several	mutations.	Specifically,	we	termed	a	mutation	effect	 linear	 if	a	mutation	
induces	 the	 same	 fold-change	 in	 a	 splicing	 outcome	 irrespective	 of	 the	 mutational	
background	 (i.e.,	 the	 nature	 of	 other	 mutations	 present).	 If	 such	 linearity	 is	 fulfilled	 the	
mutation	effects	add	up	in	log-space	and	a	linear	regression	can	be	performed	to	infer	single	
mutation	 effects	 from	 the	 measured	 combined	 mutations.	 We	 added	 a	 more	 precise	
definition	of	linearity	to	the	revised	manuscript	and	explain	under	which	circumstances	such	
linearity	can	be	assumed	in	the	following	paragraph.	

Using	kinetic	modelling,	we	had	analysed	a	system	with	competing	splicing	reactions	in	silico	
in	 the	original	manuscript	 (Eqs.	1a	and	1b	 in	 the	Supplementary	Material)	and	 found	that	
splice	isoform	ratios	show	proportional	(in	our	sense	linear)	changes	to	mutations	affecting	
splicing	 kinetics,	 irrespective	 of	 the	 presence	 of	 other	 mutations	 (new	 Supplementary	
Figure	7e).	 In	 contrast,	 mutation-induced	 fold-changes	 depend	 on	 the	 mutational	
background	at	 level	of	 splice	 isoform	 frequencies	 (and	are	 thus	nonlinear	 in	our	notation)	
(new	 Supplementary	 Figure	 7e).	 To	 test	 for	 such	 linearity	 in	 our	 data,	 we	 had	 analysed	
mutations	 that	are	present	as	single	mutation	minigenes	 in	our	 library	and	simultaneously	
occur	 in	combinations	as	double/triple	mutation	minigenes	 (Supplementary	 Figure	 4a).	At	
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the	 level	 of	 splice	 isoform	 ratios,	 we	 found	 that	 the	 log	 fold-change	 in	 double/triple-
mutation	minigenes	corresponds	 to	 the	sum	of	 the	corresponding	single	mutation	 log-fold	
changes,	 as	 predicted	 by	 the	 kinetic	 model.	 To	 more	 generally	 confirm	 the	 linearity	 of	
mutations	 in	 log-space,	we	 fitted	a	 linear	 regression	model	 that	 is	 based	 in	 splice	 isoform	
ratios	 to	 the	 complete	 dataset	 in	 the	 original	 manuscript	 (Figure	 2b	 and	 Supplementary	
Figure	5b).	We	find	that	94%	of	the	splice	isoform	frequencies	are	fitted	within	5%	deviation	
from	 the	 measured	 value.	 Thus,	 the	 vast	 majority	 of	 combined	 mutation	 effects	 in	 the	
dataset	 can	 be	 described	 based	 on	 the	 assumption	 of	 additive	 (linear)	 single	 mutation	
effects.		

To	support	our	initial	statement	of	predominantly	linear	interactions	between	cis-regulatory	
elements	 (which	 was	 questioned	 by	 the	 Reviewers),	 we	 turned	 to	 the	 subset	 of	 142	
minigenes	 that	 contain	 two	 or	 more	 simultaneous	 mutations	 in	 splice-regulatory	 binding	
sites	 (SRBS)	 of	 HNRNPH.	 As	 a	 measure	 of	 linear	 mutation	 interactions,	 we	 analysed	 the	
goodness-of-fit	 of	 our	 regression	 model	 and	 found	 that	 the	 minigenes	 containing	 two	
simultaneous	HNRNPH	SRBS	mutations	had	 a	 goodness-of-fit	 comparable	 to	 the	 complete	
minigene	population.	 Specifically,	 93%	of	 the	 splice	 isoform	 frequencies	 in	 this	 set	 can	be	
explained	 within	 5%	 deviation	 from	 the	 measured	 value.	 Thus,	 cooperative	 (nonlinear)	
interactions	rarely	occur	if	a	minigene	harbours	effective	mutations	within	two	cis-regulatory	
elements	 (new	Supplementary	 Figure	 15e).	However,	among	 the	18	minigenes	containing	
simultaneous	mutations	in	two	HNRNPH	sites	within	the	alternative	exon	(cluster	3),	several	
were	fitted	worse	than	the	remainder	of	the	minigene	population	(see	comment	5	below	for	
more	details),	suggesting	that	a	deviation	of	our	model	from	the	data	can	be	indicative	for	
exceptional	 cases	 of	 cooperative	mutation	 interactions	 (new	 Supplementary	 Figure	 15e).	
We	mention	these	findings	in	the	revised	Discussion.	

To	 address	 the	 Reviewers’	 comment	 that	 nonlinearity	 (cooperativity)	 between	 mutations	
may	 specifically	 arise	 for	 close-proximity	mutations,	we	 related	 the	 goodness-of-fit	 of	 our	
linear	 regression	model	 to	 the	 nearest	 distance	 between	 two	 effective	mutations	 in	 each	
minigene.	To	this	end,	we	calculated	the	fitting	error	by	summing	up	the	residuals	over	all	
splice	 isoforms,	 and	defined	 significant	mutation	 effects	 as	 described	 in	Methods	 (in	 total	
778/1022	mutations	with	significant	effects	in	at	least	one	isoform	for	HEK293T/MCF7	cells,	
respectively).	We	 found	 no	 clear	 effect	 of	 the	mutation	 proximity	 on	 the	 fitting	 error,	 as	
judged	by	the	median	fitting	error	over	all	minigenes	harbouring	the	same	mutation	distance	
(new	 Supplementary	 Figure	 7c).	 Notably,	 1682	 (HEK293T)/2344	 (MCF7)	minigenes	 in	 our	
screen	 contained	 at	 least	 two	 splicing-effective	 mutations	 but	 only	 84	 (HEK293T)/139	
(MCF7)	 of	 them	had	 a	 nearest	 effective	mutation	 distance	 of	 less	 than	 seven	 nucleotides	
(used	 here	 as	 an	 arbitrary	 cutoff	 for	 close	 proximity;	 new	 Supplementary	 Figure	 7d).	 For	
both	 cell	 lines,	 we	 herewith	 cover	 only	 1.3%	 of	 all	 theoretically	 close-proximity	 double	
mutations	possible	 in	our	minigene	 (each	single	mutation	being	effective	on	 its	own).	This	
indicates	 that	 our	 dataset	 does	 not	 exhibit	 enough	 coverage	 to	 detect	 cooperative	
interactions	of	nearby	mutations.	

We	added	the	information	contained	in	the	last	two	paragraphs	to	the	revised	manuscript.	

*	
3. The	authors	exclude	~6%	of	the	variants	as	they	can	not	model	those,	even	though	they
acknowledge	these	can	have	a	significant	effect	and	create	many	variants	(line	141,	page	5
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top	 in	 supp).	 Since	 they	are	 interested	 in	modeling	 cancer-specific	 variations	 it	might	very	
well	be	that	those	6%	are	particularly	important/deleterious.	What	are	the	fractions	of	those	
unmodeled	in	the	cancer	data?	Do	they	have	a	significant	effect	based	on	their	metric	even	
without	 a	model	 and	 correlation	 to	what	happens	 in	 cancer	 (e.g.	median	over	 all	 variants	
including	those?).	

We	 agree	 with	 the	 Reviewers	 that	 mutations	 excluded	 from	 the	 model	 might	 include	
particularly	deleterious	instances.	However,	comparison	to	tumour	data	(COSMIC	and	TCGA)	
showed	that	none	of	these	mutations	has	been	reported	in	cancer.	Nevertheless,	they	might	
have	 pronounced	 effects	 on	 splicing	 in	 our	 screen.	We	 therefore	 analysed	 them	 in	more	
detail,	 and	 provide	 their	 effects	 (as	 judged	 by	 the	median-based	metric)	 in	 Supplemental	
Table	3.		

As	 detailed	 in	 the	 Supplementary	Material	 (page	5f),	we	 excluded	 certain	minigenes	 from	
the	 linear	 regression	 model.	 These	 harboured	 either	 (i)	 combinations	 of	 two	 splice	 site	
mutations	 or	 (ii)	 showed	 a	 strong	 activation	 of	 cryptic	 splice	 sites	 (new	 splicing	 products	
(‘other’)	behave	very	heterogeneously).	 In	MCF7	cells,	we	exclude	on	average	of	5%	of	the	
minigene	 variants	 per	 replicate	 (Supplementary	 Table	 2).	 In	 total,	 this	 results	 in	 97	
mutations	that	are	removed	in	all	three	replicates,	including	11	splice	site	mutations	and	86	
mutations	in	other	78	positions	in	the	minigene.	

Moreover,	while	 the	 information	about	 these	mutations	 is	 lost	using	our	model,	we	could	
infer	 the	 effect	 of	 other	 types	 of	 mutations	 at	 the	 same	 positions.	 This	 means	 that	 the	
corresponding	 positions	 are	 not	 lost	 entirely,	 and	 still	 considered	 for	 the	 identification	 of	
splicing-effective	 cis-regulatory	 elements	 (SRBS).	 Specifically,	 in	 MCF7	 cells,	 63	 of	 the	 78	
positions	with	excluded	mutations	are	backed	by	other	mutations	with	a	significant	splicing	
change	 (>5%	 change	 in	 any	 isoform).	 Importantly,	 these	 include	 all	 positions	 in	 HNRNPH	
SRBS	for	which	we	had	to	exclude	certain	mutations.		

Taken	 together,	 we	 conclude	 that	 the	 loss	 of	 information	 due	 to	 exclusion	 of	 certain	
mutations	 is	 moderate	 for	 the	 RON	 minigene.	 This	 may,	 however,	 not	 be	 true	 in	 future	
random	mutagenesis	 screens	 of	 other	minigenes.	 For	 such	 cases,	mutations	 giving	 rise	 to	
non-canonical	 splice	 isoforms	need	 to	be	described	 in	more	detail	 in	 the	 linear	 regression	
analysis,	e.g.,	by	treating	each	'other'	variant	as	a	separate	variable	in	the	model.			

Related	to	that,	the	model	can	not	handle	the	608	short	insertions	and	deletions	(line	684)	
which	are	~3%	of	the	variants	they	created,	but	this	model	limitation	is	not	discussed	in	the	
main	text.	

We	are	sorry	for	this	misunderstanding.	As	stated	in	the	Methods	section,	the	608	insertions	
and	deletions	in	our	mutated	minigene	library	were	taken	into	account	during	the	modelling	
step.	 They	 were	 treated	 as	 independent	 mutations	 in	 addition	 to	 the	 canonical	 single	
nucleotide	variants,	and	hence	their	information	was	exploited	for	inferring	single	mutation	
effects	from	the	library.	

Insertions	and	deletions	are	conceptually	different	from	single	nucleotide	variants	 in	terms	
of	their	functional	analysis	and	interpretation.	Moreover,	the	error-prone	PCR	used	for	the	
random	mutagenesis	is	optimised	towards	single	nucleotide	variants.	As	a	consequence,	the	
few	present	insertions/deletions	are	repeated	in	only	very	few	plasmids,	making	conclusions	
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on	their	potential	splicing	effects	 less	accurate	and	reliable.	 In	 the	present	manuscript,	we	
therefore	decided	to	focus	on	the	single	nucleotide	variants	for	in-depth	analysis.	

In	order	to	make	the	information	on	insertions/deletions	available	for	further	analyses,	we	
now	 include	the	model-inferred	splicing	effects	of	all	measured	 insertions	and	deletions	 in	
the	revised	Supplementary	Table	3.	An	additional	column	indicates	the	type	of	mutation	to	
facilitate	 the	 extraction	 of	 insertions/deletions.	 In	 addition,	 we	 rephrased	 the	 misleading	
sentence	in	the	Methods	section.	

*	
4. The	fact	they	don’t	find	increased	conservation	of	regulatory	elements	in	the	introns	(line
235) is	not	well	explained/discussed.	This	is	also	in	clear	contrast	to	many	other	works	that
show	highly	 conserved	 intronic	 regulatory	 elements	 for	 splicing.	One	 possible	 explanation
would	be	 that	 the	 intronic	 positions	 they	 identified	 exhibit	 a	 smaller	 effect	 (do	 they?	 You
could	 check!)	 and/or	 that	 the	 previous	 works	 focused	 more	 on	 highly	 conserved	 tissue-
specific	regulation	while	in	this	case	there	are	just	general	(subtle?)	effects	on	the	base	level
of	inclusion.	Either	way,	authors	should	extend	the	discussion	here.

Following	 the	 Reviewers’	 comment,	 we	 re-evaluated	 the	 phylogenetic	 conservation	 and	
realised	that	a	mix-up	had	occurred	in	the	initial	analysis.	We	apologise	for	this	mistake.	The	
corrected	plot	is	shown	in	the	revised	Supplementary	Figure	9c.	

In	 the	 corrected	 analysis,	 we	 find	 that	 splicing-regulatory	 positions	 within	 introns	 show	
significantly	higher	conservation	than	splicing-neutral	positions	 in	the	same	regions.	As	the	
Reviewers	 mentioned,	 this	 is	 in	 line	 with	 several	 previous	 works,	 and	 we	 now	 discuss	 it	
accordingly.	 In	 the	 exons,	 the	 situation	 is	 different,	 most	 likely	 since	 phylogenetic	
conservation	is	generally	much	higher	in	these	regions.	

As	suggested	by	the	Reviewers,	we	compared	effect	sizes	across	the	different	regions	in	our	
minigene.	Consistent	with	previous	work,	the	strongest	effect	sizes	are	clearly	found	in	the	
alternative	exon	and	the	flanking	introns,	and	decrease	towards	the	constitutive	exons.	This	
can	 also	 be	 nicely	 seen	 in	 the	 full	 profiles	 in	 Supplementary	Data	 2	&	 3.	 Nevertheless,	 as	
detailed	 in	the	response	to	comment	2	of	Reviewer	#2,	we	detect	a	substantial	number	of	
very	strong	mutations	in	all	regions	of	the	minigene.	

In	the	revised	version	of	our	manuscript,	the	effect	sizes	per	transcript	region	are	shown	in	
the	new	Supplementary	Figure	9d.	We	additionally	stratified	mutations	by	their	effect	size	
in	 the	 comparison	 of	 phylogenetic	 conservation	 scores	 in	 Supplementary	 Figure	 9c.	
Moreover,	as	detailed	above,	we	now	report	and	visualise	the	splicing-effective	mutations	at	
different	cutoffs	(Supplementary	Figure	8	and	Supplementary	Table	4).	

*	
5. The	results	on	cooperative	hnRNP	H	sites	 leading	 to	a	splicing	switch	are	very	nice.	The
authors	gloss	over	whether	their	mutation	model	is	able	to	capture	that	or	not,	which	should
be	noted.	Also,	this	result	should	be	noted	as	in	line	with	previous	experimental	results	and
splicing	code	predictions	made	 for	CU/CUG	elements	around	daam1	exon	16	 (Barash	et	al
Nat	2010).
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Our	 linear	 regression	model	does	not	capture	cooperativity	between	mutations	or	binding	
sites.	As	stated	in	our	response	to	major	point	2	above,	we	show	that	–	on	a	global	scale	–	
such	cooperativity	can	be	neglected	as	 judged	by	the	good	model	 fit	 to	the	data.	To	more	
specifically	address	the	Reviewers’	comment,	we	checked	the	set	of	co-occurring	mutations	
in	our	screen	and	found	that	we	have	18	minigenes	exhibiting	two	simultaneous	mutations	
within	cooperative	HNRNPH	binding	sites	(303-312,	327-333	and	347-351)	in	the	alternative	
exon.	On	average,	 these	minigenes	 are	 fitted	worse	 than	expected:	 7	 (39%)	have	a	 fitting	
error	 >	 0.2,	 compared	 to	 9%	 in	 the	 set	 of	 all	 fitted	minigenes	with	 at	 least	 two	 effective	
mutations	 (new	 Supplementary	 Figure	 15e).	 This	 supports	 the	 existence	 of	 cooperative	
behaviour	between	HNRNPH	sites	 in	 the	alternative	exon	and	suggests	 that	a	deviation	of	
our	 non-cooperative	 model	 from	 the	 data	 can	 be	 indicative	 for	 cooperative	 interactions	
between	mutations.	We	mention	this	in	the	revised	Discussion.	Furthermore,	we	cite	Barash	
et	al.	in	the	context	of	cooperative	interactions	between	cis-regulatory	elements	controlling	
splicing	(see	revised	Discussion).	

*	
6. We	found	the	use	of	the	term	“epistatic”	interactions	between	hnRNP	H	KD	and	mutations
to	be	extremely	confusing.	In	general,	the	term	is	commonly	used	for	the	non-additive	effect
of	 genetic	 variations,	 but	 not	 here.	 Furthermore,	 the	 epistatic	 interaction	 here	 happens
when	a	mutation	in	WT	behaves	differently	than	under	hnRNP	H	KD.	So	“normal”	interaction
i.e.	 when	 it’s	 a	 BS	 for	 hnRNP	 H,	 are	 now	 denoted	 “epistatic”!	 Worst,	 the	 term	 is	 used
differently	 in	 Julien	et	 al	 for	 variant	 combinations,	which	makes	 it	 all	 the	more	 confusing.
Why??

As	 stated	 by	 the	 Reviewers,	 we	 use	 the	 term	 epistatic	 “when	 a	mutation	 in	WT	 behaves	
differently	 than	 under	 hnRNP	 H	 KD”.	 Thus,	 we	 refer	 to	 a	 non-additive	 effect	 of	 two	
perturbations,	KD	and	mutation,	in	similarity	to	the	use	in	the	literature.	However,	we	agree	
that	the	term	may	be	confusing	given	that	it	was	used	differently	in	Julien	et	al.,	and	mostly	
refers	to	combined	mutations	in	other	studies.				

In	 response	 to	 the	Reviewer’s	 concern,	we	 therefore	now	 refer	 to	 the	 epistasis	 effects	 as	
‘synergistic	interactions’.	Synergy	can	be	defined	as	a	nonlinear	relationship	between	two	or	
more	elements	whereby	they	generate	a	combined	outcome	that	 is	more	or	 less	 than	the	
sum	of	their	parts	taken	separately,	due	to	their	capacity	to	work	together	or	against	each	
other.	 ("Synergy	 Types,"	 Complexity	 Labs,	 http://complexitylabs.io/positive-negative-
synergies/).	

In	 the	 context	 of	 our	 analysis,	 a	 negative	 synergistic	 interaction	 (z-score	 <	 0)	 of	 a	 given	
mutation	 would	 be	 a	 reduced	 response	 to	 HNRNPH	 knockdown	 compared	 to	 ctrl,	 i.e.	 a	
mutation	 that	 weakens	 an	 HNRNPH	 binding	 site.	 In	 contrast,	 a	 positive	 synergistic	
interaction	(z-score	>	0)	points	to	a	mutation	that	strengthens	or	generates	a	new	HNRNPH	
binding	site.	

*	
7. The	authors	gloss	over	the	fact	that	their	results	show	“epistatic”	effect	for	hnRNP-H	for
468/550	positions	(!!)	in	MCF7	cells.	This	is	worth	explaining/discussing.
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Please	 note	 that	 the	 following	 explanation	 already	 uses	 the	 term	 ‘synergistic	 interactions’	
(see	above).	

As	 mentioned	 in	 response	 to	 comment	 3	 of	 Reviewer	 #2	 above,	 the	 high	 number	 of	
synergistic	 interactions	was	a	mistake	in	the	original	manuscript.	We	apologise	for	this	and	
corrected	the	manuscript	accordingly.	

For	the	original	cutoff	at	an	absolute	synergy	score	of	|z-score|	>	2,	the	correct	number	are	
354	mutations	in	278	positions	which	display	significant	synergistic	interactions.	In	addition,	
we	applied	more	stringent	 thresholds	 to	 support	 that	our	 synergy	analysis	 reliably	detects	
HNRNPH-RNA	sequence	interactions	and	to	detect	the	most	relevant	HNRNPH	SRBS.	In	brief,	
using	 a	 cutoff	 of	 |z-score|	 >	 5,	 we	 find	 that	 42%	 of	 the	 synergistic	 interactions	 for	 AE	
skipping	(22	out	52	mutations)	fall	into	the	SRBS	cluster	3	in	the	alternative	exon.	

Figure	specific	comments:	
=====================	

1. Fig2B:
This	figure	you	can't	see	much.	Could	plot	it	separately	for	each	variant	at	least	in	the	supp.
They	could	also	plot	for	each	variant	the	max	deviation	in	PSI	so	we	see	how	good/bad	are
the	variants	prediction	e.g.	X%	of	them	vary	more	than	Y%	PSI	than	the	observed.

In	addition	to	the	plot	in	Fig.	2b,	we	now	provide	separate	plots	in	the	new	Supplementary	
Figure	5a.	We	also	state	in	the	revised	Discussion	that	94%	of	the	fitted	isoform	frequencies	
are	within	5%	deviation	from	the	measured	value.	We	use	this	quantitative	 information	as	
an	argument	for	our	conclusion	that	most	mutations	interact	linearly	(non-cooperatively)	in	
the	 RON	 minigene	 (see	 response	 to	 major	 comment	 2	 above).	 Following	 the	 Reviewers’	
suggestion,	we	also	added	the	new	Supplementary	Fig.	5b,	in	which	we	show	the	fraction	of	
minigenes	 fitted	 within	 a	 certain	 deviation	 between	 model	 and	 data	 as	 a	 cumulative	
histogram,	separately	for	each	splice	isoform.	

2. Fig2C:
This	is	a	nice	result	and	analysis.	But	it	would	be	good	to	know	(a)	what	is	the	distribution	of
#occurrences	 i.e.	 the	 PDF/CDF	 of	 mutation	 occurrences	 in	 the	 data	 (the	 x-axis	 here)	 (b)
combining	the	above	and	their	current	graph,	compare	to	a	median	(strawman)	how	many
(CDF)	the	improve	by	more	than	X%	in	error	compared	to	the	strawman.	This	would	give	a
sense	 of	 what	 is	 the	 overall	 gain	 in	 accuracy	 from	 the	model	 compare	 to	 only	 using	 the
experimental	data.

Following	 the	Reviewers’	 comment,	we	now	provide	 three	additional	plots	 to	 support	 this	
analysis:	 (i)	Supplementary	 Fig.	 2e	 shows	 the	 distribution	 of	mutation	 occurrences	 in	 the	
data,	 showing	 that	 more	 than	 50%	 of	 the	 mutations	 in	 the	 library	 occur	 in	 at	 least	 four	
different	 minigene	 variants.	 (ii)	 Supplementary	 Fig.	 5c	 shows	 the	 number	 of	 mutation	
occurrences	in	the	leave-one-‘single-mutation-minigene’-out	cross-validation	procedure	as	a	
histogram.	This	analysis	demonstrates	that	a	high	number	of	tests	(>100)	were	available	for	
mutation	occurrences	<20,	thus	supporting	that	our	cross-validation	results	are	robust	and	
reliable.	(iii)	As	suggested	by	the	Reviewers,	we	visualised	the	overall	gain	in	accuracy	from	
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the	 model	 (Supplementary	 Fig.	 5d).	 To	 this	 end,	 we	 generated	 a	 cumulative	 histogram,	
which	 shows	how	AE	 inclusion	absolute	errors	 (%)	differ	between	 the	model	 and	median-
based	estimation	(x-axis)	 for	the	 leave-one-“single-mutation-minigene”-out	cross-validation	
tests	(y-axis).	In	65%	of	the	tests,	the	model	captures	the	measured	single-mutation	effects	
better	 than	 the	 median-based	 prediction.	 The	 model	 is	 also	 more	 accurate	 in	 absolute	
terms:	 When	 the	 median	 outperforms	 the	 model	 (35%),	 it	 only	 leads	 to	 a	 minor	
improvement	 in	 accuracy.	 In	 contrast,	 the	 gain-of-accuracy	 by	 the	 model	 is	 more	
pronounced,	and	can	improve	the	AE	inclusion	inference	by	as	much	as	50%,	especially	when	
a	mutation	is	rare	in	the	dataset	(low	mutation	occurrences).	

3. Fig3C:
This	result	is	somewhat	disappointing,	and	its	presentation	both	here	and	in	the	main	text	is
misleading.	 In	 practice,	 the	 r	 correlation	 value	 hinges	 on	 two	 clear	 outliers	 which	 have	 a
strong	effect,	G370T	and	G297A.	They	should	 report	 the	correlation	without	 these	as	well
and	discuss	this.	Also,	G297A	is	a	splice	site	one	so	not	very	interesting.	The	G370T	is	more
interesting,	but	 is	 it	 in	an	hnRNP	H	site?	something	else?	 it	 is	not	even	shown	 in	Fig	B	 for
some	reason.

We	agree	with	the	Reviewers	that	the	correlation	in	Figure	3c	is	driven	by	the	two	strongest	
mutations,	i.e.	G297A	and	G370T.	As	suggested,	we	now	additionally	report	the	correlation	
without	 these	 two	 data	 points	 which	 is	 reduced	 and	 no	 longer	 significant	 (Pearson	
correlation	coefficient	r	=	0.27,	P-value	=	0.12).	One	explanation	for	this	loss	in	correlation	is	
that	the	TCGA	data	display	a	high	 level	of	 inherent	variability.	We	find	that	control	patient	
samples	without	 a	 given	mutation	 display	 an	 average	 standard	 deviation	 in	RON	 exon	 11	
skipping	of	14%.	This	 is	also	apparent	 in	Figure	3d	 in	which	 the	samples	without	mutation	
cover	 a	wide	 range	of	 splicing	 levels.	 Taken	 together,	most	mutations	 in	 Figure	3c	display	
small	 effects	 in	 the	 range	 of	 one	 control	 standard	 deviation,	 which	 makes	 quantitative	
comparisons	 with	 our	 screen	 difficult.	 Notably,	 however,	 the	 two	 mutations	 with	 strong	
effects	(G297A	and	G370T)	show	an	excellent	quantitative	agreement	with	our	screen.	This	
observation	supports	the	notion	that	our	high-throughput	screen	recapitulates	strong	in	vivo	
splicing	changes	in	human	cancers.	

In	order	to	visualise	the	inherent	variability	in	the	TCGA	splicing	measurements,	we	included	
the	standard	deviation	of	unmutated	samples	in	the	revised	version	of	Figure	3c.	

We	agree	with	the	Reviewers	that	mutation	G370T	is	an	interesting	example.	The	mutation	
does	 not	 fall	 into	 an	 HNRNPH	 binding	 site.	 It	 overlaps	 with	 predicted	 splice-regulatory	
binding	sites	of	QKI	and	HNRNPL	(Supplementary	Figure	10),	but	expression	of	neither	of	the	
two	proteins	correlates	with	RON	exon	11	splicing	in	TCGA	or	GTEx	(Supplementary	Table	6).	
Given	that	the	same	mutation	also	introduces	a	premature	stop	codon	at	the	protein	level,	
the	 newly	 gained	 information	 about	 its	 splicing-regulatory	 role	 offers	 a	 completely	 new	
interpretation	of	its	molecular	consequences.	This	observation	nicely	illustrates	the	power	of	
our	 screen	 to	detect	 splicing	changes	of	potential	 relevance	 in	cancer.	Our	screen	 thereby	
adds	 to	 the	 increasing	 evidence	 that	 synonymous	 and	 non-synonymous	 mutations	 can	
significantly	alter	alternative	splicing	and	thereby	have	deleterious	impact	in	cancer	(Gartner	
et	al.,	2013;	Supek	et	al.,	2014;	Gotea	et	al.,	2015;	Jung	et	al.,	2015).	
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Please	note	that	Figure	3b	shows	mutational	information	that	was	retrieved	from	a	different	
database	(COSMIC).	Mutations	that	are	identified	in	TCGA	tumour	cohorts	should	eventually	
be	submitted	to	COSMIC,	but	may	appear	with	a	certain	delay	as	data	need	to	pass	curation	
before	being	added.	For	the	revised	version,	we	confirmed	that	mutation	G370T	is	currently	
not	yet	present	in	the	COSMIC	database.	

4. To	show	the	utility	of	their	model	they	should	compute	and	report	the	same	correlation	if
they	used	just	the	median	value	for	each	of	those	mutations.	This	will	show	the	relative	gain
of	their	model	compared	to	using	the	experimental	results	directly.

As	 suggested	 by	 the	 Reviewers,	we	 utilised	 the	 TCGA	 analysis	 (Figure	 3c)	 to	 compare	 the	
performance	 of	 our	 model-inferred	 mutation	 effects	 to	 the	 simpler	 estimation	 based	 on	
median	effects	of	all	minigenes	with	a	given	mutation.	As	shown	below	(Figure	 III	a,b),	the	
correlation	against	TCGA	data	 is	 virtually	 identical	 for	 the	model-inferred	and	 the	median-
based	single	mutation	effects.	Consistently,	the	values	inferred	for	these	mutations	by	both	
methods	are	highly	correlated	(Figure	III	c).	One	reason	why	there	is	no	visible	improvement	
with	 the	 model-inferred	 values	 might	 be	 that	 most	 of	 these	 mutations	 have	 very	 good	
plasmid	 support	 in	 our	 minigene	 library,	 thereby	 strengthening	 the	 median-based	
estimation.	Moreover,	most	mutations	in	this	analysis	show	only	minor	splicing	changes	and	
are	hence	more	susceptible	to	the	inherent	noise	in	the	TCGA	data	and	our	screen	(see	also	
comment	figure-specific	comment	3	above).	

Figure	III:	Analysis	as	in	Fig.	3c,	assessing	the	performance	of	model-inferred	
mutation	effects	(a)	versus	median-based	estimates	(b).	

Given	 that	 we	 show	 earlier	 in	 the	 manuscript	 that	 the	 model	 outperforms	 the	 median	
(Figure	 2c	 and	 also	 in	 the	 new	 Supplementary	 Figure	 5d),	 especially	 at	 low	 mutation	
occurrences,	we	decided	to	not	return	to	a	comparison	of	both	methods	 in	 the	context	of	
the	TCGA	patient	data	in	the	revised	manuscript.	

5. Fig3E:
This	is	a	nice	connection	but	it	is	not	fully	explored.	The	pvalues	on	the	right	are	somewhat
misleading	as	they	relate	to	the	effect	measured	of	KD	in	a	completely	different	work.	What
would	be	much	more	informative	would	be	to	see	the	correspondence	between	their	model
prediction	for	taking	away	the	sites	of	a	SF	and	the	KD	experiment	effect.	Of	course,	a	site
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could	be	shared,	nonetheless,	it	would	indicate	how	well	they	can	perform	such	an	analysis	
with	their	model.	

We	agree	with	the	Reviewers	that	it	would	be	informative	to	directly	connect	the	mutation	
effects	in	our	screen	with	the	RBP	KD	effects	in	Papasaikas	et	al,	2015.	However,	this	is	not	
trivial,	 not	 only	 because	 a	 binding	 site	 could	 be	 shared,	 but	 also	 because	many	 RBPs	 are	
predicted	 to	 bind	 at	 multiple	 binding	 sites.	 As	 these	 binding	 sites	 often	 lie	 in	 different	
transcript	 regions	and	are	hence	not	unlikely	 to	differently	 impact	on	splicing,	 it	 is	unclear	
how	their	individual	effects	will	integrate	into	a	unified	splicing	response.	

The	 complex	 regulatory	 integration	 of	 multiple	 binding	 sites	 is	 exemplified	 by	 our	 prime	
regulator	 HNRNPH	which	 shows	 a	 total	 of	 22	 SRBS	 across	 the	RON	 minigene	 region.	 The	
majority	 of	 these	 sites	 are	 indeed	 bound	 by	 HNRNPH	 (iCLIP	 data,	 Figure	 4a)	 and	 show	
opposing	 effects	 on	 RON	 exon	 11	 inclusion	 (mutation	 analysis,	 Figure	 4c).	 For	 instance,	
binding	 at	 intronic	 SRBS	 cluster	 2	 promotes	 AE	 inclusion,	 whereas	 cooperative	 binding	 a	
multiple	SRBS	in	the	alternative	exon	leads	to	strong	AE	skipping.	Although	certain	positional	
rules	 have	 been	 previously	 established	 for	 splicing	 regulation,	 we	 believe	 that	 a	 detailed	
analysis	of	this	is	beyond	the	scope	of	this	manuscript.		

In	 order	 to	 address	 the	 Reviewers’	 concern,	 we	 revised	 Figure	 3e:	 To	 visualise	 which	
mutations	are	 in	 line	with	 the	published	KD	effect,	we	colour-coded	 the	predicted	binding	
sites	according	to	whether	the	majority	of	mutation	effects	within	a	binding	site	agree	with	
the	direction	of	the	published	RBP	KD	effect.	This	highlights	the	most	relevant	SRBS	for	each	
RBP,	 and	 therefore	 provides	 a	 resource	 for	 follow-up	 studies	 investigating	 RBP	 effects	 on	
RON	exon	11	splicing.	

Minor	Comments:	
=============================	

In	various	places,	results/conclusions	are	overstated.	For	example:	

The	title	 is	somewhat	misleading	as	it	 implies	decoding	of	the	entire	RON	gene,	 in	practice	
only	for	exon	11.	

In	 line	with	 the	Reviewers'	comment,	we	changed	the	title	 to	“Decoding	a	cancer-relevant	
splicing	decision	in	the	RON	proto-oncogene	using	high-throughput	mutagenesis”.	

The	 abstract	 overstates	 the	 results,	 should	 be	 toned	 down.	We	 don’t	 see	 the	 results,	 as	
presented,	offering	“insights	on	the	functional	impact	in	human	disease”.		

We	agree	with	the	Reviewers	and	changed	the	sentence	to:	"Our	results	thereby	offer	new	
insights	 into	 splicing	 regulation	 and	 the	 impact	 of	 mutations	 on	 alternative	 splicing	 in	
cancer."	

Similarly,	 at	 the	end	of	 the	 intro,	 the	authors	 state:	 “Our	approach	promises	new	 insights	
into	 the	 molecular	 function	 of	 cancer-associated	 mutations	 and	 the	 mechanisms	 of	
alternative	 splicing	 regulation	 in	 general.”	 Again,	 this	 seems	 like	 an	 overstatement	 given	
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what	is	actually	delivered,	which	only	applies	(with	limited	capacity,	as	discussed	above)	to	
exon	11	in	RON.	

We	 refer	 here	 to	 the	 mutagenesis	 screening	 approach	 in	 general	 and	 not	 to	 our	 RON	
exon	11-specific	data.	We	changed	 the	sentence	 to:	 "Our	mutagenesis	 screening	approach	
promises	new	insights	into	the	splicing	effects	of	mutations	in	humans	and	the	mechanisms	
of	alternative	splicing	regulation	in	general."	

In	 line	421	 in	 the	discussion,	authors	summarize	 that	 their	model	“can	reliably	predict	 the	
421	individual	effects	of	almost	1,800	mutations”.	This	statement	is	misleading:	The	model	is	
not	able	to	predict	the	effect	of	*any*	mutation	it	has	never	seen.	It	can	infer	the	effect	of	a	
single	mutation	given	several	combinations	in	a	manner	which	is	more	accurate	than	trying	
to	simply	guess	by	the	mean/median.	

We	agree	that	the	term	‘predict’	was	misleading	and	revised	the	complete	main	text,	figures	
and	supplementary	material	accordingly.	As	suggested	by	 the	Reviewer	we	now	use	 'infer'	
instead	of	predict.	

In	 lines	 475-478	 the	 authors	 claim	 their	 method	 can	 be	 extended	 further	 enable	 to	
reconstruct	 complete	 splicing	 code.	 Given	 the	 usage	 of	 tailored	mini-gene	 per	 exon/gene	
and	KD	of	each	SF	 for	each	of	 those,	 it	 seems	 this	 claim	 for	 large-scale	analysis	 should	be	
toned	down	or	removed.	

We	toned	down	the	statement	which	now	reads:	

“In	 the	 future,	 this	 approach	 can	 be	 used	 to	 incorporate	 further	 RBPs	 to	 dissect	 the	
regulatory	network	of	selected	splicing	decisions.”	

Line	 480	 states	 the	 study	 shows	 hnRNP-H	 is	 a	 “master”	 regulator.	 Why?	 “Key”	 or	
“important”	seems	more	appropriate	here.		

We	rephrased	the	sentence	accordingly,	now	using	the	term	key.	

*	
References	choices	in	the	intro	seem	to	reflect	some	knowledge	of	recent	literature	but	are	
not	 aligned	 well	 with	 the	 statements	 and	 background.	 For	 example,	 Yang	 et	 al	 2016	 is	
relevant	 for	 showing	 the	 effect	 on	 protein-protein	 interaction,	 but	 this	 was	 shown	 well	
before	 that	on	a	 large	 scale	 in	Ellis	 et	 al	Mol	Cell	 2012.	 The	observation	 that	over	90%	of	
human	genes	undergo	AS	should	be	attributed	to	the	back	to	back	papers	Pan	et	al	Nat	Gen	
2008	and	Wang	et	al	Nat	2008.	Similarly,	the	term	‘splicing	code’	is	usually	attributed	to	the	
Wang	and	Burge	RNA	2008	review	that	defined	what	is	such	a	code	and	specified	it	as	a	long-
term	goal,	or	to	Barash	et.	al	Nat	2010	which	offered	the	first	such	code	derivation.	

We	included	the	suggested	references.	

*
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Just	 as	 the	 references	 seem	 lacking,	 the	 authors	 do	 not	 draw	 connections	 to	 numerous	
previous	works.	For	example:	

In	line	214	they	report	that	they	were	surprised	to	find	the	splice	site	of	downstream	exon12	
affects	the	skipping	of	exon	11.	The	strength	of	the	up/down	sites	were	already	included	in	
the	original	splicing	code	as	an	 informative	feature	(Barash	et	al,	Nat	2010)	and	numerous	
other	works	identified	binding	SF	around	those	as	affecting	ES	(e.g.	Llorian	et	al	NSMB	2011)	
so	the	result	should	not	be	such	a	surprise.	

We	 agree	 that	 exon	 definition	 had	 been	 described	 before	 and	 therefore	 changed	 the	
sentence	to:	"Consistent	with	an	exon	definition	model	of	splicing	we	find	that...".	We	also	
refer	to	the	suggested	publications.	

Line	486-489	again	this	conclusion	is	in	line	with	numerous	works,	from	classical	SrcN1	works	
by	Doug	Black	mapping	it’s	regulatory	elements	in	a	series	of	papers,	to	more	computational	
works	as	in	Barash	et.	al	Nat	2010.	

We	 agree	 with	 the	 Reviewers	 that	 several	 of	 our	 observations	 regarding	 RON	 exon	 11	
splicing	have	been	made	in	the	context	of	other	splicing	events.	However,	due	to	the	limit	in	
the	number	of	 references	 in	Nature	Communications	we	decided	not	 to	 include	additional	
citations	to	this	conclusion.	

By	 far	 the	most	 relevant	work	 is	 Julien	et	al.	The	authors	do	mention	 it	 several	 times,	but	
given	 the	 strong	 connection	 it	would	 help	 readers	 to	more	 directly	 compare/contrast	 the	
various	conclusions/results	for	each	section.	This	should	not	be	seen	as	taking	away	from	the	
impact/relevant	of	 this	 paper	 as	 there	 is	 a	 lot	 of	 unique	 results	 in	 this	 paper	 already	 (see	
opening	statement).	

We	 fully	 agree	with	 the	 Reviewers	 that	 the	 very	 nice	work	 of	 Julien	 et	 al.	 is	 of	 particular	
interest	to	our	study.	As	pointed	out	by	the	Reviewers,	we	already	cite	Julien	et	al.	several	
times.	In	particular,	we	already	discuss	the	most	relevant	findings	of	this	work	(in	particular	
the	dense	mutational	 landscape	and	extensive	epistasis	between	mutations)	 in	the	context	
of	our	data.	Therefore,	due	to	the	limit	in	space	we	decided	not	to	extend	these	aspects.	



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

In their revised manuscript, the authors have adequately addressed all reviewer 
comments with new experimental data 

Therefore, I have no additional reservation. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed to my satisfaction most of the criticisms and comments. I 
am enthusiastically recommend it to be accepted for publication 

Reviewer #3 (Remarks to the Author): 

The authors did a comprehensive job addressing many of the reviewers' comments. I 
enjoyed reading the other reviewers thoughtful comments and suggestions as well as 
the responses to those. Overall, the authors added experiments (overexpression, iCLIP 
with mutations); additional analysis such as the softmax regression and relation to 
tumor stage; adequately clarified aspects of previous work (linear vs. non-linear effects, 
differences from Julian et al results, epistasis etc.). Authors also noted a few mistakes 
that were fixed. 

Overall, the revised manuscript is clearer, more precise, and easy to follow. I find this to 
be excellent work and look forward to seeing it in print. 

The only completely minor comment I have is that the term epistasis is still used in supp 
Table S3. 
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