Supplementary materials

DpdtC chelates iron and forms a complex at 1:1 molar ratio

Fig. S1 UV-visible spectra of DpdtC iron complex and relation between absorbance and molar ratio. (A) structure of DpdtC; (B) Spectra of DpdtC and in the presence of varied concentration of Fe^{2+} ; (C) Spectra of DpdtC and in the presence of varied concentration of Fe^{3+} ; the molar ratio as indicated in the figure. (D) Plot of the absorbance of copper complex at 404 nm vs. molar ratio of $Fe^{3+}/DpdtC$.

DpdtC induced growth inhibition against normal human hepatic cell

Fig. S2 DpdtC induced growth inhibition against normal human hepatic cell LO2.

Fig. S3 DpdtC induced ROS after 48 h incubation. (A) H_2O ; (B) 0.75 μ M DpdtC; (C) 1.5 μ M DpdtC.

DpdtC induced change in autophagic vacuoles

Fig. S4 The microcopic analysis of formation of autophagic vacuoles. (A) H₂O control; (B) 1.5 mM 3-MA; (C) 1.5 mM NAC; (D) 2 μ M DpdtC; (E) 2 μ M DpdtC + 1.5 mM 3-MA; (F) 2 μ M DpdtC + 1.5 mM NAC.

Fig. S5 The effect of DpdtC on lysosomal membrane permeability. The quantification analysis was performed by ImageJ. The results were obtained from three experiments. ***p < 0.01; **p < 0.05.