Eur. J. Org. Chem. • ISSN 1099-0690

https://doi.org/10.1002/ejoc.201800618

SUPPORTING INFORMATION

<u>*Title:*</u> Stereocontrolled Synthesis of 2-Fluorinated *C*-Glycosides <u>*Author(s):*</u> Anna Sadurní, Ryan Gilmour*

Table	of	Contents
Lanc	UL.	Contents

I. General Information	S4
II. Experimental Section	S 5
II.1 Synthesis of lactones	S 5
Compound L5	S 5
Compound L6	S7
II.2 General Procedure A: C-glycosylations with MeLi, n-BuLi, sec-BuLi.	S9
Compound Table 1 Entry 1	S 9
Compound Table 1 Entry 2	S12
Compound Table 1 Entry 3	S14
Compound Table 1 Entry 4	S16
Compound Table 1 Entry 5	S18
Compound Table 1 Entry 6	S20
II.3 General Procedure B: C-glycosylations with p-bromo tert-Butylbenzene.	S22
Compound Table 2 Entry 1	S22
Compound Table 2 Entry 4	S24
Compound Table 2 Entry 7	S27
Compound Table 2 Entry 10	S29
Compound Table 2 Entry 13	S31
II. 4 General Procedure C: C-glycosylations with enolates.	S34
Compound Table 2 Entry 2	S34
Compound Table 2 Entry 5	S36
Compound Table 2 Entry 8	S38
Compound Table 2 Entry 11	S40
Compound Table 2 Entry 14	S42
II.5 General Procedure D: C-glycosylations with allyl magnesium bromide.	S45
Compound Table 2 Entry 3	S45
Compound Table 2 Entry 6	
Compound Table 2 Entry 9	S49
Compound Table 2 Entry 12	S52

Compound Table 2 Entry 15	S54
II.6 C-glycosylations (Applications).	S57
Compound 6	S 57
Compound S8	S60
Compound 8	S62
Compound 9	S64
Compound S10	S67
Compound 10	S67
Compound 11	S70
Compound 14	S72
Compound 15	S75

I. General Information

All chemicals were reagent grade and used without further purification. Dry solvents were dried by a Grubbs purification system including columns packed with molecular sieves and aluminium oxide. Solvents for extractions and chromatography were technical grade and distilled prior to use. Extracts were dried over technical grade MgSO₄. Analytical thin layer chromatography (TLC) was performed on aluminium foil precoated with SiO₂-60 F254 (Merck) and visualised with a UV-lamp (254 nm) and CAM solution. Flash column chromatography was carried out on SiO₂-60 (230-400 mesh ASTM; Fluka). Concentration in vacuo was performed at ~10 mbar and 45 °C, drying at ~10-2 mbar and room temperature. ¹H NMR, 1⁹F NMR and ¹³C NMR spectra were recorded by the NMR service of the Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster on a Bruker AV300, Agilent DD2 500 or an Agilent DD2 600 spectrometer at room temperature. The multiplicities are reported as: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, sept. = septet and m = multiplet. The assignment of the resonances of the new compounds was supported by additional 1D and 2D NMR experiments (e.g., 1H{19F}, DEPT, COSY, HMBC, HSQC and NOESY). Melting points were measured on a Büchi B-545 melting-point apparatus in open capillaries. IR spectra were recorded on a Perkin-Elmer 100 FT-IR (ATR) spectrometer, selected adsorption bands are reported in wavenumbers (cm-1) and intensities are reported as: w = weak, m =medium, s =strong and br = broad. High-resolution mass spectra (HR ESI) were measured by the MS service of the Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster. The optical rotations were measured on a JASCO P2000 polarimeter.

Starting materials for the preparation of lactones L-X were prepared according to the following:

- C. Bucher, R. Gilmour, Angew. Chem. Int. Ed. 2010, 49, 8724-8728.
- E. Durantie, C. Bucher, R. Gilmour, Chem. Eur. J. 2012, 18, 8208-8215.

The lactones were prepared according to:

- L1, L2, L3 were prepared as described by A. Sadurní, G. Kehr, M. Ahlqvist, H. Peilot Sjögren, C. Kankkonen, L. Knerr, R. Gilmour, *Chem. Eur. J.* 2018, *24*, 2832-2836.
- L4 was prepared as described by D. Waschke, Y. Leshch, J. Thimm, U. Himmelreich, J. Thiem, *Eur. J. Org. Chem.* 2012, 948-959.

Compound **S10** was prepared according to A. P. Kale, G. G. Pawar, M. Kapur, *Org. Lett.* **2012**, *14*, 1808-1811.

Determination of α : β ratios was achieved by coupling constant analysis and nOesy experiments.

Abbreviations: *tert*-BPPTS (*tert*-butylpyridinium *p*-toluensulfonate); CSA (Camphorsulfonic acid)

II. Experimental Section

II.1 Synthesis of lactones

Compound L5:

Ac₂O (5.4 mL) was added to a solution of *tri*-benzylated-2-deoxy-galactose (1.0 g, 2.3 mmol, 1.0 eq.) in DMSO (14.0 mL). The reaction mixture was stirred overnight at room temperature. The reaction mixture was then diluted with CH_2Cl_2 (15.0 mL) and H_2O (15.0 mL), the phases were separated, and the water phase was extracted with CH_2Cl_2 (3 x 10.0 mL). The combined organic layers were washed with H_2O (3 x 10.0 mL) and brine (1 x 10.0 mL). The solution was then dried over MgSO₄, filtered and dried *in vacuo*. The residue obtained was purified by flash column chromatography (SiO₂, CyH: EtOAc 3:1) to give compound L5 (400 mg, 40%) as a colourless oil.

Rf 0.26 (SiO2, CyH:EtOAc 3:1);

m/z (ESI) found: 455.1828 (M + Na)⁺, C₂₇H₂₈O₅Na⁺ calculated 455.1829;

 $[\alpha]_D^{25}$ +7.6 (*c* 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3676w, 2972m, 2901m, 1734s, 1497m, 1454m, 1362m, 1329w, 1227s, 1162m, 1136m, 1090s, 1058s, 1027s, 912m, 816m, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.39 – 7.26 (m, 15H, H-Ph), 4.94 (d, J = 11.3 Hz, 1H, H-C<u>H</u>₂Ph), 4.64 (d, J = 11.3 Hz, 1H, H-C<u>H</u>₂Ph), 4.64 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.59 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.54 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.48 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.35 (ddd, J = 7.5, 5.9, 1.7 Hz, 1H, H-C5), 4.18 (t, J = 1.8 Hz, 1H, H-C4), 3.92 (ddd, J = 9.9, 8.1, 2.0 Hz, 1H, H-C3), 3.77 – 3.66 (m, 2H, H-C6), 2.91 – 2.88 (m, 2H, H-C2);

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 169.2 (C1), 138.8 (*i*-Ph), 138.4 (*i*-Ph), 138.3 (*i*-Ph), 129.1 (*o*,*m*,*p*-Ph), 129.0 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 78.7 (C5), 75.2 (C3), 74.9 (<u>C</u>H₂Ph), 74.1 (<u>C</u>H₂Ph), 71.4 (<u>C</u>H₂Ph), 71.3 (C4), 68.9 (C6), 33.7 (C2).

Compound L6:

Ac₂O (5.4 mL) was added to a solution of *tri*-benzylated-2-deoxy-2-fluoro-galactose (900 mg, 1.6 mmol, 1.0 eq.) in DMSO (9.0 mL). The reaction mixture was stirred overnight at room temperature. The reaction mixture was diluted with CH_2Cl_2 (27.0 mL) and H_2O (27.0 mL), the phases were separated, and the water phase was extracted with CH_2Cl_2 (3 x 18.0 mL). The combined organic layers were washed with H_2O (3 x 18.0 mL) and brine (1 x 18.0 mL). The subsequent solution was dried over MgSO₄, filtered and dried *in vacuo*. The residue obtained was purified by flash column chromatography (SiO₂, CyH: EtOAc 3:1) to give compound **L6** (630 mg, 70%) as a white solid.

R_f 0.40 (SiO₂, CyH:EtOAc 3:1);

Mp 84 – 88 °C;

m/z (ESI) found: 473.1734 (M + Na)⁺, C₂₇H₂₇O₅FNa⁺ calculated 473.1735;

 $[\alpha]_D^{25}$ +35.3 (*c* 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3676w, 2969m, 2918m, 2877m, 1750s, 1498w, 1456m, 1394w, 1369m, 1346w, 1301w, 1252m, 1204s, 1144s, 1090s, 1056s, 1026s, 1003m, 990m, 973m, 94m3, 921m, 868m, 826w, 793m, 763s, 742s, 710m, 697s, 670m;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.40 – 7.26 (m, 15H, H-Ph), 5.31 (dd, $J_{FH} = 48.4$, $J_{FH} = 9.9$ Hz, 1H, H-C2), 4.95 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.79 (d, J = 11.8, 1H, H-C<u>H</u>₂Ph), 4.73 (d, J = 11.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.64 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.53 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.48 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.41 (td, J = 6.8, 1.6 Hz, 1H, H-C5), 4.25 (m, 1H, H-C4), 4.04 (ddd, $J_{FH} = 13.5$, J = 9.9, 2.3 Hz, 1H, H-C3), 3.69 (d, J = 6.8 Hz, 2H, H-C6);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 166.5 (d, $J_{FC} = 19.9$ Hz, C1), 138.2 (*i*-Ph), 138.0 (*i*-Ph), 129.1 (*o*,*m*,*p*-Ph), 129.0 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 89.0 (d, $J_{FC} = 188.9$ Hz, C2), 79.3 (d, $J_{FC} = 17.4$ Hz, H-C3), 78.6 (C5), 75.7 (<u>C</u>H₂Ph), 74.2 (<u>C</u>H₂Ph), 73.9 (d, $J_{FC} = 9.6$ Hz, C4), 73.24 (d, $J_{FC} = 1.7$ Hz, <u>C</u>H₂Ph), 68.2 (C6);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -203.96 (ddd, J = 48.4, 13.5, 3.5 Hz).

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50

General Procedure A: C-glycosylations with MeLi, n-BuLi, s-BuLi.

The lithium reagent (MeLi: 1.6 M in Et₂O, 0.07 mL, 0.1 mmol, 1.1 eq. / *n*-BuLi: 2.5 M in Hexanes, 45 μ L, 0.1 mmol, 1.1 eq. / *s*-BuLi: 1.4 M in CyH, 0.08 mL, 0.1 mmol, 1.1 eq.) was added slowly to a solution of the corresponding lactone (0.1 mmol, 1.0 eq.) in dry THF (0.58 mL, 0.17 M) at -78 °C. The reaction mixture was stirred for 30 min and quenched by addition of MeOH (5.0 mL). H₂O (5.0 mL) and EtOAc (5.0 mL) were then added. The aqueous layer was extracted with EtOAc (3 x 3 mL) and the combined organic layers were washed with H₂O (2 x 7.0 mL) and brine (1 x 7.0 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuo*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, specified combination of CyH: EtOAc).

Compound Table 1 Entry 1:

Prepared according to the general procedure A. Starting with L1 (46 mg, 0.1 mmol) compound Table 1 Entry 1 was obtained (30 mg, 59%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.50 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 531.2520 (M + Na)⁺, C₃₁H₃₇O₅FNa⁺ calculated 531.2517;

v_{max} (neat)/cm⁻¹ 3443w, 3064w, 3031w, 2964m, 2928m, 2875m, 1954w, 1726w, 1497m, 1454m, 1367m, 1265m, 1207m, 1072s, 1026s, 909m, 820m, 732s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.26 (m, 27H, H-Ph), 7.25 – 7.23 (m, 3H, H-Ph), 4.85 (d, J = 11.2 Hz, 2H, H-CH₂Ph), 4.84 (d, J = 10.9 Hz, 2H, H-CH₂Ph), 4.77 (d, J = 11.2 Hz, 2H, H-CH₂Ph), 4.59 (d, J = 10.7 Hz, 2H, H-CH₂Ph), 4.58 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.57 (d, J = 12.3 Hz, 1H, H-CH₂Ph), 4.53 (m, 1H, H-C2), 4.52 (m, 1H, H-C2), 4.52 (d, J = 12.2 Hz, 1H, H-CH₂Ph), 4.51 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.05 (m, 2H, H-C3), 3.95 (m, 2H, H-C5), 3.69 (m, 4H, H-C6), 3.58 – 3.54 (m, 2H, H-C4), 2.58 (d, J = 1.2 Hz, 1H, H-OH), 2.53 (d, J = 1.1 Hz, 1H, H-OH), 1.79 – 1.69 (m, 4H, H-C1[′] + H-C2[′]),

1.30 – 1.17 (m, 2H, H-C2´), 1.05 – 1.02 (m, 6H, H-C4´), 0.98 (t, *J* = 7.2 Hz, 3H, H-C3´), 0.95 (t, *J* = 7.2 Hz, 3H, H-C3´);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.3 (*i*-Ph), 139.2 (*i*-Ph), 139.2 (*i*-Ph), 139.1 (*i*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 98.8 (d, $J_{FC} = 6.8$ Hz, C1), 98.6 (d, $J_{FC} = 6.6$ Hz, C1), 92.9 (d, $J_{FC} = 190.3$ Hz, C2), 92.6 (d, $J_{FC} = 190.5$ Hz, C2), 82.3 (d, $J_{FC} = 14.5$ Hz, C3), 82.2 (d, $J_{FC} = 14.4$ Hz, C3), 78.0 (d, $J_{FC} = 1.9$ Hz, C4), 78.0 (d, $J_{FC} = 1.9$ Hz, C4), 75.5 (<u>CH</u>₂Ph), 75.5 (<u>CH</u>₂Ph), 75.4 (<u>C</u>H₂Ph), 73.8 (<u>CH</u>₂Ph), 72.0 (d, $J_{FC} = 1.4$ Hz, C5), 71.9 (d, $J_{FC} = 1.3$ Hz, C5), 69.6 (C6), 43.2 (d, $J_{FC} = 2.0$ Hz, C4[']), 12.8 (C3[']), 12.6 (C3[']), 12.4 (d, $J_{FC} = 1.8$ Hz, C4[']);

¹⁹F NMR (564 MHz, Dichloromethane- d_2) δ -195.4 (dd, J = 49.9, 13.6 Hz), -196.3 (dd, J = 50.0, 13.5 Hz).

-194.5 - 195.0 - 195.5 - 196.0 - 196.5 - 197.0 - 197.5 - 198.0 - 198.5 - 199.0 - 199.5 - 200.0 - 200.5 - 201.0 - 201.5 - 202.0

Compound Table 1 Entry 2:

Prepared according to the general procedure A. Starting with L1 (46 mg, 0.1 mmol) compound Table 1 Entry 2 was obtained (35 mg, 69%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

Rf 0.54 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 531.2539 (M + Na)⁺, C₃₁H₃₇O₅FNa⁺ calculated 531.2517;

 $[\alpha]_D^{25}$ +31.2 (*c* 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3444w, 3090w, 3064w, 3030w, 2956m, 2928m, 2870m, 1497m, 1454m, 1406w, 1366m, 1309w, 1261w, 1210w, 1100s, 1067s, 1026s, 947m, 908m, 883w, 837m, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.25 (m, 13H, H-Ph), 7.24 – 7.21 (m, 2H, H-Ph), 4.86 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.85 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.77 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.58 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.56 (d, J = 12.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.51 (d, J = 12.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.32 (dd, $J_{\text{FH}} = 50.0$, J = 9.0 Hz, 1H, H-C2), 4.04 (dt, $J_{\text{FH}} = 13.0$, J = 9.0 Hz, 1H, H-C3), 3.97 (ddd, J = 10.1, 4.5, 2.0 Hz, 1H, H-C5), 3.71 (dd, J = 10.9, 4.5 Hz, 1H, H-C6), 3.66 (dd, J = 10.9, 2.0 Hz, 1H, H-C4), 2.53 (s, 1H, H-OH), 1.78 (m, 2H, H-C1⁻), 1.50 – 1.41 (m, 2H, H-C2⁻), 1.41 – 1.34 (m, 2H, H-C3⁻), 0.94 (t, J = 7.2 Hz, 3H, H-C4⁻);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.3 (*i*-Ph), 139.1 (*i*-Ph), 139.1 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 97.2 (d, $J_{FC} = 19.4$ Hz, C1), 94.2 (d, $J_{FC} = 191.0$ Hz, C2), 81.8 (d, $J_{FC} = 16.3$ Hz, C3), 78.0 (d, $J_{FC} = 8.2$ Hz, C4), 75.4 (CH₂Ph), 75.4 (CH₂Ph), 73.8 (CH₂Ph), 71.9 (d, $J_{FC} = 1.4$ Hz, C5), 69.6 (C6), 38.6 (d, $J_{FC} = 0.7$ Hz, C1'), 25.1 (C2'), 23.4 (C3'), 14.4 (C4');

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.7 (dd, J = 50.0, 13.0 Hz).

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K)

Compound Table 1 Entry 3:

Prepared according to the general procedure A. Starting with L1 (46 mg, 0.1 mmol) compound Table 1 Entry 3 was obtained (45 mg, 95%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.30 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 489.2074 (M + Na)⁺, C₂₈H₃₁O₅FNa⁺ calculated 489.2048;

 $[\alpha]_D^{25}$ +38.4 (c 0.5 in DCM);

 v_{max} (neat)/cm⁻¹ 3657w, 3406m, 3088w, 3064w, 3031w, 2924m, 2869m, 2317w, 2203w, 2165w, 2155w, 2054w, 2010w, 1970w, 1884w, 1813w, 1606w, 1587w, 1497m, 1454m, 1367m, 1315w, 1264w, 1207m, 1148m, 1121m, 1066s, 1026s, 986m, 910m, 871m, 836m, 734s, 695s, 655w;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.37 – 7.25 (m, 13H, H-Ph), 7.22 – 7.19 (m, 2H, H-Ph), 4.85 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.84 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.76 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.55 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.55 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.54 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.48 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.24 (ddd, $J_{\text{FH}} = 50.0$, J = 9.1, 1.3 Hz, 1H, H-C2), 4.03 – 3.96 (m, 2H, H-C3 + H-C5), 3.70 (dd, J = 10.8, 4.4, 1H, H-C6), 3.65 (dd, J = 10.8, 2.1 Hz, 1H, H-C6), 3.58 (t, J = 9.6, 1H, H-C4), 2.49 (br, 1H, OH), 1.52 (d, J = 1.2 Hz, 3H, H-C1[°]);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.3 (*i*-Ph), 139.0 (*i*-Ph), 138.9 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 96.1 (d, $J_{FC} = 19.7$ Hz, C1), 95.4 (d, $J_{FC} = 191.6$ Hz, C2), 81.6 (d, $J_{FC} = 16.2$ Hz, C3), 78.1 (d, $J_{FC} = 8.2$ Hz, C4), 75.5 (CH₂Ph), 75.4 (d, $J_{FC} = 2.7$ Hz, CH₂Ph), 73.9 (CH₂Ph), 71.9 (d, $J_{FC} = 1.5$ Hz, C5), 69.6 (C6), 26.24 (C1[°]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.1 (dd, J = 49.9, 12.8 Hz).

 19 F NMR (564 MHz, Dichloromethane- d_2 , 299 K)

Prepared according to the general procedure A. Starting with L2 (55 mg, 0.1 mmol) compound Table 1 Entry 4 was obtained (52 mg, 85%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.50 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 619.3033 (M + Na)⁺, C₃₈H₄₄O₆Na⁺ calculated 619.3030;

 v_{max} (neat)/cm⁻¹ 3559w, 3064w, 3031w, 2965m, 2932m, 2873w, 1955w, 1756m, 1605m, 1497m, 1454m, 1362m, 1265m, 1209m, 1084s, 1027s, 908m, 811m, 732s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.39 – 7.24 (m, 40H, H-Ph), 4.94 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.93 (d, J = 11.0 Hz, 2H, H-C<u>H</u>₂Ph), 4.86 (d, J = 11.4 Hz, 2H, H-C<u>H</u>₂Ph), 4.85 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.83 (d, J = 11.1 Hz, 2H, H-C<u>H</u>₂Ph), 4.71 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.67 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.66 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.65 – 4.60 (m, 3H, H-C<u>H</u>₂Ph), 4.55 (d, J = 12.4 Hz, 1H, H-C<u>H</u>₂Ph), 4.55 (d, J = 12.1 Hz, 1H, H-C<u>H</u>₂Ph), 3.98 (m, 2H, H-C3), 3.95 – 3.91 (m, 2H, H-C5), 3.79 (m, 2H, H-C6), 3.71 (m, 1H, H-C2), 3.68 (m, 1H, H-C2), 3.70 – 3.68 (m, 1H, H-C6), 3.68 – 3.66 (m, 1H, H-C6), 3.62 (m, 2H, H-C4), 2.74 (s, 1H, H-OH), 2.71 (s, 1H, H-OH), 1.85 – 1.78 (m, 1H, H-C2'), 1.78 – 1.70 (m, 2H, H-C1'), 1.63 – 1.58 (m, 1H, H-C2'), 1.27 – 1.18 (m, 2H, H-C2'), 1.02 (d, J = 6.8 Hz, 3H, H-C4'), 0.95 (t, J = 7.5 Hz, 3H, H-C3'), 0.90 (t, J = 7.5 Hz, 3H, H-C3');

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 139.5 (*i*-Ph), 139.5 (*i*-Ph), 139.5 (*i*-Ph), 139.5 (*i*-Ph), 139.2 (*i*-Ph), 138.9 (*i*-Ph), 129.0 (*o*,*m*,*p*-Ph), 129.0 (*o*,*m*,*p*-Ph), 129.0 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 127.9 (*o*,*m*,*p*-Ph), 100.4 (C1), 100.3 (C1), 84.9 (C3), 84.8 (C3), 80.3 (C2),

79.9 (C2), 79.1 (C4), 79.0 (C4), 75.9 (<u>CH</u>₂Ph), 75.9 (<u>CH</u>₂Ph), 75.6 (<u>C</u>H₂Ph), 75.5 (<u>C</u>H₂Ph), 75.2 (<u>C</u>H₂Ph), 73.8 (<u>C</u>H₂Ph), 72.4 (C5), 72.3 (C5), 69.7 (C6), 41.8 (C1[']), 41.8 (C1[']), 24.4 (C2[']), 22.4 (C2[']), 14.0 (C4[']), 12.9 (C3[']), 12.8 (C3[']), 11.7 (C4[']).

Compound Table 1 Entry 5:^[1]

Prepared according to the general procedure A. Starting with L2 (55 mg, 0.1 mmol) compound Table 1 Entry 5 was obtained (56 mg, 92%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.45 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 619.3044 (M + Na)⁺, C₃₈H₄₄O₆Na⁺ calculated 619.3030;

 $[\alpha]_D^{25}$ +30.3 (c 0.4 in DCM);

 v_{max} (neat)/cm⁻¹ 3428w, 3064w, 3031w, 2955m, 2928m, 2865m, 2328w, 1948w, 1875w, 1755w, 1606w, 1497m, 1454m, 1361m, 1265w, 1209w, 1070s, 1027s, 999s, 954w, 907w, 848w, 820w, 732s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.25 (m, 18H, H-Ph), 7.23 (m, 2H, H-Ph), 4.91 (d, J = 10.9 Hz, 1H, H-CH₂Ph), 4.90 (d, J = 11.4 Hz, 1H, H-CH₂Ph), 4.85 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.82 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.67 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.62 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.59 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.52 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 3.96 – 3.91 (m, 2H, H-C3 + H-C5), 3.75 (dd, J = 10.9, 4.2 Hz, 1H, H-C6), 3.66 (dd, J = 11.0, 1.8 Hz, 1H, H-C6), 3.61 (t, J = 9.6 Hz, 1H, H-C4), 3.42 (d, J = 9.2 Hz, 1H, H-C2), 2.58 (d, J = 2.2 Hz, 1H, H-OH), 1.73 – 1.65 (m, 2H, H-C1'), 1.47 – 1.22 (m, 4H, H-C2' + H-C3'), 0.94 – 0.84 (m, 3H, H-C4');

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 139.5 (*i*-Ph), 139.2 (*i*-Ph), 139.2 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.0 (*c*), 39.0 (C1), 84.3 (C3), 82.4 (C2), 79.1 (C4), 75.9 (CH₂Ph), 75.9 (CH₂Ph), 75.2 (CH₂Ph), 73.8 (CH₂Ph), 72.2 (C5), 69.7 (C6), 39.0 (C1²), 25.3 (C2²), 23.5 (C3²), 14.4 (C4²).

^[1] Y. Oda, T. Yamanoi, Synthesis 2007, 19, 3021-3031.

Compound Table 1 Entry 6:^[2]

Prepared according to the general procedure A. Starting with L2 (55 mg, 0.1 mmol) compound Table 1 Entry 6 was obtained (53 mg, 94%) as a white solid after purification by column chromatography (SiO₂, CyH: EtOAC 3:1).

Rf 0.30 (SiO2, CyH:EtOAc 3:1);

Mp 96 − 97 °C;

m/z (ESI) found: 577.2569 (M + Na)⁺, C₃₅H₃₈O₆Na⁺ calculated 577.2561;

 $[\alpha]_D^{25}$ +32.5 (*c* 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3677w, 3441m, 3089w, 3063w, 3030w, 2920m, 2866m, 2180w, 2037w, 1952w, 1876w, 1811w, 1606w, 1586w, 1497m, 1454m, 1361m, 1265w, 1209m, 1149w, 1068s, 1027s, 958w, 908w, 871m, 845w, 820w, 732s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.37 – 7.25 (m, 18H, H-Ph), 7.21 (dd, J = 7.7, 1.8 Hz, 2H, H-Ph), 4.91 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.89 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.86 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.83 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.69 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.59 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.57 (d, J = 12.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.50 (d, J = 12.2 Hz, 1H, H-C<u>H</u>₂Ph), 3.95 (ddd, J = 10.1, 4.2, 2.0 Hz, 1H, H-C5), 3.90 (t, J = 9.2 Hz, 1H, H-C3), 3.73 (dd, J = 10.7, 4.2 Hz, 1H, H-C6), 3.66 (dd, J = 10.7, 2.0 Hz, 1H, H-C6), 3.62 (dd, J = 10.1, 9.1 Hz, 1H, H-C4), 3.36 (d, J = 9.1 Hz, 1H, H-C2), 2.64 (s, 1H, H-OH), 1.42 (s, 3H, H-C1⁷);

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 139.5 (*i*-Ph), 139.2 (*i*-Ph), 139.0 (*i*-Ph), 138.8 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 97.9 (C1), 84.1 (C2), 84.1 (C3), 79.0 (C4), 76.2 (CH₂Ph), 75.9 (CH₂Ph), 75.3 (CH₂Ph), 73.9 (CH₂Ph), 72.1 (C5), 69.7 (C6), 27.0 (C1²).

^[2] L. Lay, F. Nicotra, L. Panza, G. Russo, and E. Caneva, *JOC* **1992**, *57*, 1304-1306.

S21

General Procedure B for C-glycosylations with p-bromo-4-tert-Butylbenzene.

n-BuLi (20 μ L, 2.5 M in hexanes, 0.1 mmol, 1.1 eq.) was added to a solution of *p*-bromo-4-*tert*-butylbenzene (45 μ L, 0.1 mmol, 1.1 eq.) in a mixture of toluene:THF (2:1; 0.15 mL:75 μ L, 0.5 M), the mixture was stirred under argon at -78 °C for 30 min. This mixture was transferred slowly to a solution of the corresponding lactone (0.1 mmol, 1.0 eq.) in dry THF (0.35 mL, 0.3 M) at -78 °C under an argon atmosphere. After stirring for 30 min the reaction was quenched by addition of MeOH (5 mL). H₂O (5 mL) and EtOAc (5 mL) were added and the water phase was extracted with EtOAc (3 x 3 mL). The combined organic layers were washed H₂O (2 x 7 mL) and brine (1 x 7 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuum*. The residue was purified by column chromatography CyH: EtOAc (SiO₂, specified combination of CyH: EtOAc).

Compound Table 2 Entry 1 (mixture of the desired product P and the double addition product d.a.)

Prepared according to the general procedure B. Starting with L3 (44 mg, 0.1 mmol) an inseparable mixture of **Table 2 Entry 1** and **d.a** was obtained (40mg, 69% as an inseparable mixture of $\mathbf{P}\alpha + \mathbf{P}\beta + \mathbf{d.a.}$ (1:1:3) after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.6 and 0.59 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 589.2974 (M + Na)⁺ and 723.4049 (double addition), C₃₇H₄₂O₅Na⁺ calculated 589.2924;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) [key resonances] δ 3.03 (d, J = 3.6 Hz, 1H, H-OH), 2.84 (dd, J = 14.8, 3.0 Hz, 1H, H-C2), 2.60 (d, J = 2.6 Hz, 1H, H-OH), 2.58 – 2.48 (m, 2H, H-C2), 1.71 – 1.64 (m, 1H, H-C2);

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) [key resonances - d.a.] δ 3.40 (dd, J = 16.8, 7.3 Hz, 3H, H-C5), 3.26 (dd, J = 16.8, 5.0 Hz, 3H, H-C5), 3.08 (d, J = 4.9 Hz, 3H, H-OH).

Compound Table 2 Entry 4:

Prepared according to the general procedure B. Starting with L1 (46 mg, 0.1 mmol) compound Table 2 Entry 4 was obtained (58 mg, 97%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.54 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 607.2847 (M + Na)⁺, C₃₇H₄₁O₅FNa⁺ requires 607.2830;

 $[\alpha]_D^{25}$ +16.8 (*c* 2.29 in DCM);

 v_{max} (neat)/cm⁻¹ 3385m, 3063w, 3031w, 2961m, 2867w, 2038w, 1948w, 1808w, 1608w, 1514w, 1497m, 1454m, 1404m, 1365m, 1311w, 1268m, 1241w, 1208m, 1130s, 1086s, 1054s, 1026s, 910w, 838m, 815m, 733s, 715m, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.56 – 7.52 (m, 2H, H-C2[']), 7.46 – 7.43 (m, 2H, H-C3[']), 7.37 – 7.23 (m, 15H, H-Ph), 4.88 (d, J = 10.8 Hz, 1H, H-CH₂Ph), 4.87 (d, J = 10.8 Hz, 1H, H-CH₂Ph), 4.78 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.63 (d, J = 10.5 Hz, 1H, H-CH₂Ph), 4.78 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.63 (d, J = 10.5 Hz, 1H, H-CH₂Ph), 4.78 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.63 (d, J = 10.5 Hz, 1H, H-CH₂Ph), 4.78 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.54 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.37 (ddd, $J_{FH} = 48.7$, J = 8.9, 1.6 Hz, 1H, H-C2), 4.20 – 4.13 (m, 2H, H-C3 + H-C5), 3.82 (dd, J = 11.0, 4.6 Hz, 1H, H-C6), 3.76 – 3.72 (m, 2H, H-C6 + H-C4), 2.91 (d, J = 1.0 Hz, 1H, H-OH), 1.33 (s, 9H, H-C6[']);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 152.7 (C4[']), 139.3 (*i*-Ph), 139.1 (*i*-Ph), 139.1 (*i*-Ph), 138.77 (d, $J_{FC} = 1.4$ Hz, C1[']), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 126.0 (d, $J_{FC} = 1.3$ Hz, C2[']), 125.8 (C3[']), 96.9 (d, $J_{FC} = 18.7$ Hz, C1), 96.0 (d, $J_{FC} = 194.4$ Hz, C2), 82.0 (d, $J_{FC} = 16.7$ Hz, C3), 78.1 (d, $J_{FC} = 8.3$ Hz, C4), 75.5 (<u>CH</u>₂Ph), 75.5 (d, $J_{FC} = 2.9$ Hz, <u>CH</u>₂Ph), 73.9 (<u>C</u>H₂Ph), 72.3 (d, $J_{FC} = 1.4$ Hz, C5), 69.7 (C6), 35.1 (C5[']), 31.6 (C6[']);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.3 (dd, J = 48.9, 12.3 Hz).

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K)

-195.7 -195.9 -196.1 -196.3 -196.5 -196.7 -196.9 -197.1 -197.3 -197.5 -197.7 -197.9 -198.1 -198.3 -198.

Compound Table 2 Entry 7:

Prepared according to the general procedure B. Starting with L4 (46 mg, 0.1 mmol) compound Table 2 Entry 7 was obtained (59 mg, 99%) as a white solid after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.58 (SiO₂, CyH:EtOAc 3:1);

Mp 120 – 125 °C;

m/z (ESI) found: 607.2843 (M + Na)⁺, C₃₇H₄₁O₅FNa⁺ calculated 607.2830;

 $[\alpha]_D^{25}$ +17.3 (*c* 0.5 in DCM);

 v_{max} (neat)/cm⁻¹ 3256m, 2966m, 2880m, 1613w, 1516w, 1497w, 1455m, 1393m, 1366m, 1295m, 1267m, 1250m, 1207m, 1147m, 1128m, 1086s, 1064s, 1013s, 995s, 974s, 946m, 907m, 894m, 861m, 848m, 833s, 733s, 694s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.55 (d, J = 8.4 Hz, 2H, H-C2[^]), 7.44 (d, J = 8.3 Hz, 2H, H-C3[^]), 7.41 – 7.25 (m, 15H, H-Ph), 4.91 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.80 (dd, $J_{FC} = 49.4$, J = 2.3 Hz, 1H, H-C<u>2</u>), 4.77 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.72 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.66 (d, J = 12.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.62 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.59 (d, J = 12.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.17 (ddd, $J_{FC} = 29.2$, J = 9.6, 2.0 Hz, 1H, H-C3), 4.13 (dd, J = 9.9, 1.6 Hz, 1H, H-C5), 3.91 (t, J = 9.8 Hz, 1H, H-C4), 3.85 (dd, J = 10.9, 5.1 Hz, 1H, H-C6), 3.79 (dd, J = 10.9, 1.5 Hz, 2H, H-C6), 2.98 (d, J = 4.2 Hz, 1H, H-OH), 1.34 (s, 9H, H-C6[^]);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 152.6 (C4⁻), 139.2 (*i*-Ph), 138.8 (*i*-Ph), 138.5 (C1⁻), 129.0 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 126.4 (d, $J_{FC} = 1.2$ Hz, C2⁻), 125.7 (C3⁻), 97.4 (d, $J_{FC} = 24.6$ Hz, C1), 89.9 (d, $J_{FC} = 179.5$ Hz, C2), 79.7 (d, $J_{FC} = 17.6$ Hz, C3), 75.7 (CH₂Ph), 74.8 (d, $J_{FC} = 1.7$ Hz, C4), 73.9 (CH₂Ph), 73.1 (C5), 72.6 (CH₂Ph), 70.0 (C6), 35.1 (C5⁻), 31.6 (C6⁻);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -204.0 (ddd, J = 49.4, 29.3, 4.2 Hz).

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K)

Compound Table 2 Entry 10:

Prepared according to the general procedure B. Starting with L5 (44 mg, 0.1 mmol) compound Table 2 Entry 10 was obtained (14 mg, 20%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.61 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 723.4035 (M + Na)⁺, C₄₇H₅₆O₅Na⁺ calculated 723,4025;

 $[\alpha]_D^{25}$ +1.2 (*c* 0.25 in DCM);

 v_{max} (neat)/cm⁻¹ 3455m, 3030w, 2962m, 2903w, 2867w, 2038w, 1946w, 1676w, 1605w, 1508m, 1497m, 1454m, 1404m, 1362m, 1265m, 1205w, 1176w, 1090s, 1027s, 912w, 824m, 734s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.41 – 7.24 (m, 21H, H-Ph), 7.19 (dd, J = 7.7, 1.9 Hz, 2H, H-Ar), 4.81 (d, J = 11.3 Hz, 1H, H-C<u>H</u>₂Ph3⁻), 4.70 (s, 1H, H-OH (tertiary)), 4.53 (d, J = 11.3 Hz, 1H, H-C<u>H</u>₂Ph3⁻), 4.45 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph2⁻), 4.41 (m, 2H, H-C<u>H</u>₂Ph1⁻), 3.98 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph2⁻), 3.84 – 3.75 (m, 3H, H-C2+H-C3+H-C4), 3.45 (dd, J = 9.8, 5.2 Hz, 1H, H-C1), 3.34 (dd, J = 9.8, 4.9 Hz, 1H, H-C1), 2.74 (dd, J = 15.2, 2.7 Hz, 1H, H-C5), 2.70 (d, J = 4.8 Hz, 1H, H-OH (secondary)), 2.60 (dd, J = 15.2, 9.5 Hz, 1H, H-C5), 1.32 (s, 9H, H-C12 or H-C18), 1.27 (s, 9H, H-C12 or H-C18);

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 149.4 (C10/C16), 149.3 (C10/C16), 145.1 (C6 or C13), 144.2 1 (C6 or C13), 138.2 (*i*-Ph3⁻), 138.1 (*i*-Ph1⁻), 137.4 (*i*-Ph2⁻), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 127.9 (*o*,*m*,*p*-Ph), 127.9 (*o*,*m*,*p*-Ph), 127.8 (*o*,*m*,*p*-Ph), 127.7 (*o*,*m*,*p*-Ph), 125.6 (C8/C9/C14/C15), 125.2 (C8/C9/C14/C15), 125.1 (C8/C9/C14/C15), 124.8 (C8/C9/C14/C15), 79.7 (C3), 79.2 (C4), 77.2 (C6), 74.1 (CH₂Ph3⁻), 73.3 (CH₂Ph1⁻), 71.9 (CH₂Ph2⁻), 71.1 (C1), 70.3 (C2), 41.3 (C5), 34.3 (C11 or C17), 34.2 (C11 or C17), 31.1 (C12 or C18), 31.0 (C12 or C18).

 $^{13}C{^{1}H}$ NMR (151 MHz, Dichloromethane- d_2 , 299 K)

Prepared according to the general procedure B. Starting with L6 (46 mg, 0.1 mmol) compound Table 2 Entry 13 was obtained (53 mg, 89%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.60 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 607.2818 (M + Na)⁺, C₃₇H₄₁O₅FNa⁺ calculated 607.2830;

 $[\alpha]_D^{25}$ +17.5 (*c* 2.0 in DCM);

 v_{max} (neat)/cm⁻¹ 3410w, 3032w, 2962m, 2868m, 2163w, 1607w, 1497m, 1454m, 1402m, 1366m, 1270m, 1234w, 1208m, 1148m, 1099s, 1067s, 1025s, 914w, 838m, 811m, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.56 – 7.52 (m, 2H, H-C2[']), 7.43 – 7.41 (m, 2H, H-C3[']), 7.40 (m, 2H, H-Ph), 7.38 – 7.26 (m, 13H, H-Ph), 4.96 (d, J = 11.3 Hz, 1H, H-CH₂Ph), 4.81 (ddd, $J_{\text{FH}} = 49.6, J = 9.6, 1.5$ Hz, 1H, H-C2), 4.80 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.75 (d, J = 12.0 Hz, 1H, H-CH₂Ph), 4.60 (d, J = 11.3 Hz, 1H, H-CH₂Ph), 4.49 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.44 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.32 (td, J = 6.5, 1.3 Hz, 1H, H-C5), 4.14 – 4.07 (m, 2H, H-C3 + H-C4), 3.69 – 3.62 (m, 2H, H-C6), 3.12 (dd, J = 1.5, 0.5 Hz, 1H, H-OH), 1.32 (s, 9H, H-C6[']);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 152.5 (C4[']), 139.5 (*i*-Ph), 139.2 (*i*-Ph), 139.1 (d, $J_{FC} = 1.5$ Hz, C1[']), 138.8 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 126.2 (d, $J_{FC} = 1.2$ Hz, C2[']), 125.7 (C3[']), 97.4 (d, $J_{FC} = 18.7$ Hz, C1), 94.0 (d, $J_{FC} = 190.1$ Hz, C2), 78.8 (d, $J_{FC} = 16.6$ Hz, H-C3), 76.8 (d, $J_{FC} = 8.4$ Hz, H-C4), 75.4 (CH₂Ph), 73.9 (CH₂Ph), 73.4 (d, $J_{FC} = 2.1$ Hz, CH₂Ph), 71.3 (C5), 69.6 (C6), 35.0 (C5[']), 31.6 (C6[']);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -207.24 (ddd, J = 49.6, 10.6, 3.8 Hz).

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K)

General Procedure C for C-glycosylations with enolates.

LiHMDS (27 mg, 0.2 mmol, 1.6 eq.) was added to a solution of *tert*-butyl acetate (22 μ L, 0.2 mmol, 1.6 eq.) in toluene:THF (2:1, 0.15:75 μ L, 0.5 M) under an argon atmosphere and at -78 °C. The mixture was stirred for 30 min. The organolithium reagent was then transferred slowly to a solution of the corresponding lactone (0.1 mmol, 1.0 eq.) in dry THF (0.35 mL, 0.3 M) under argon and at -78 °C. The reaction mixture was stirred for 30 min and then quenched by addition of MeOH (5.0 mL). H₂O (5.0 mL) and EtOAc (5.0 mL) were added and the water phase was extracted with EtOAc (3 x 3 mL). The combined organic layers were washed with H₂O (2 x 7 mL) and brine (1 x 7 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuo*. The residue obtained was purified by filtration through celite (EtOAc).

Compound Table 2 Entry 2:

Prepared according to the general procedure C. Starting with L3 (44 mg, 0.1 mmol) compound Table 2 Entry 2 was obtained (55 mg, 99%) as a white solid after filtration through celite (EtOAc).

R_f 0.58 (SiO₂, CyH:EtOAc(3:1));

Mp 78 – 81 °C;

m/z (ESI) found: 571.2706 (M + Na)⁺, C₃₃H₃₉O₇FNa⁺ calculated 571.2666;

 $[\alpha]_D^{25}$ +20.9 (c 0.25 in DCM);

 v_{max} (neat)/cm⁻¹ 3427m, 3064w, 3031w, 2977w, 2928m, 2864m, 2168w, 2030w, 2009w, 1994w, 1951w, 1701m, 1607w, 1497w, 1454m, 1394w, 1367m, 1341w, 1246m, 1223m, 1152s, 1074s, 1027m, 1005s, 960w, 893w, 870w, 838w, 819w, 733s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.35 – 7.24 (m, 15H, H-Ph), 5.14 (d, J = 2.4 Hz, 1H, H-OH), 4.89 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.66 (d, J = 11.6 Hz, 1H, H-CH₂Ph), 4.62 (d, J = 11.7 Hz, 1H, H-CH₂Ph), 4.60 (d, J = 11.1 Hz, 1H, H-CH₂Ph), 4.55 (d, J = 12.0 Hz, 1H, H-CH₂Ph), 4.50 (d, J = 12.0 Hz, 1H, H-CH₂Ph), 4.00 (ddd, J = 11.3, 8.9, 5.0 Hz, 1H, H-C3), 3.93 (ddd, J = 9.9, 4.3, 1.9 Hz, 1H, H-C5), 3.75 (dd, J = 10.9, 4.2 Hz, 1H, H-C6), 3.62 (dd, J = 10.9, 1.9 Hz, 1H, H-C6), 3.52 (dd, J = 9.9, 8.9 Hz, 1H, H-C4), 2.60 – 2.52 (m, 2H, H-C1'), 2.30 (dd, J = 12.5, 5.0 Hz, 1H, H-C2), 1.52 – 1.47 (m, 1H, H-C2), 1.46 (d, J = 0.6 Hz, 9H, H-C4');

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 172.0 (C2[´]), 139.6 (*i*-Ph), 139.6 (*i*-Ph), 139.2 (*i*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.0 (C1), 82.7 (C3[´]), 79.0 (C4), 78.2 (C3), 75.2 (<u>C</u>H₂Ph), 73.9 (<u>C</u>H₂Ph), 72.6 (C5), 72.2 (<u>C</u>H₂Ph), 70.0 (C6), 45.6 (C1[´]), 40.8 (C2), 28.4 (C4[´]).

Compound Table 2 Entry 5:

Prepared according to the general procedure C. Starting with L1 (46 mg, 0.1 mmol) compound Table 2 Entry 5 was obtained (52 mg, 90%) as a colourless oil after filtration through celite (EtOAc).

R_f 0.55 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 589.2585 (M + Na)⁺, C₃₃H₃₉O₇FNa⁺ calculated 589.2572;

 $[\alpha]_D^{25}$ +11.3 (*c* 0.42 in DCM);

 v_{max} (neat)/cm⁻¹ 3413w, 3032w, 2983w, 1696m/s, 1497m, 1454m, 1395m/s, 1366m, 1251m, 1225m, 1204m, 1152s, 1091s, 1051s, 1026s, 977m, 897w, 838m, 731s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.24 (m, 13H, H-Ph), 7.24 – 7.21 (m, 2H, H-Ph), 5.75 (d, J = 1.6 Hz, 1H, H-OH), 4.85 (dd, J = 11.1, 2.4 Hz, 2H, H-CH₂Ph), 4.76 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.58 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.54 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.48 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.15 (ddd, $J_{FH} = 50.1$, J = 9.1, 1.7 Hz, 1H, H-C2), 4.07 (dt, $J_{FH} = 12.7$, J = 9.0 Hz, 1H, H-C3), 4.00 (ddd, J = 10.1, 4.0, 1.9 Hz, 1H, H-C5), 3.73 (dd, J = 11.0, 4.0 Hz, 1H, H-C6), 3.63 (dd, J = 10.6, 4.2 Hz, 1H, H-C6), 3.63 (t, J = 10.8 Hz, 1H, H-C4), 2.85 (dd, J = 15.6, 1.7 Hz, 1H, H-C1[°]), 2.52 (d, J = 15.6 Hz, 1H, H-C1[°]), 1.48 (s, 9H, H-C4[°]);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 172.2 (C2[^]), 139.3 (*i*-Ph), 139.1 (*i*-Ph), 139.0 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 96.0 (d, $J_{FC} = 18.9$ Hz, C1), 94.8 (d, $J_{FC} = 194.0$ Hz, H-C2), 83.4 (C3[^]), 81.3 (d, $J_{FC} = 16.0$ Hz, C3), 78.0 (d, $J_{FC} = 7.9$ Hz, C4), 75.49 (d, $J_{FC} = 2.6$ Hz, H-C<u>H</u>₂Ph), 75.4 (H-C<u>H</u>₂Ph), 73.9 (H-C<u>H</u>₂Ph), 72.0 (d, $J_{FC} = 1.4$ Hz, C5), 69.3 (C6), 41.4 (d, $J_{FC} = 1.3$ Hz, C1[^]), 28.4 (C4[^]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.1 (dd, J = 50.2, 12.9 Hz).

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K)

-191.0 -192.0 -193.0 -194.0 -195.0 -196.0 -197.0 -198.0 -199.0 -200.0 -201.0 -202.0 -203.0 -204.0 -205.0

Compound Table 2 Entry 8:

Prepared according to the general procedure C. Starting with L4 (46 mg, 0.1 mmol) compound Table 2 Entry 8 was obtained (55 mg, 95%) as a colourless oil after filtration through celite (EtOAc).

R_f 0.59 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 589.2581 (M + Na)⁺, C₃₃H₃₉O₇FNa⁺ calculated 589.2572;

 $[\alpha]_D^{25}$ +22.8 (c 0.25 in DCM);

v_{max} (neat)/cm⁻¹ 3391w, 2927w, 1699m/s, 1497m, 1454m, 1394w, 1368m, 1254m, 1210m, 1150s, 1075s, 1027s, 961w, 903m, 845m, 734s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.40 – 7.22 (m, 15H, H-Ph), 5.65 (d, J = 3.8 Hz, 1H, H-OH), 4.87 (d, J = 10.9 Hz, 1H, H-CH₂Ph), 4.74 (d, J = 11.6 Hz, 1H, H-CH₂Ph), 4.70 (d, J = 11.6 Hz, 1H, H-CH₂Ph), 4.61 (dd, J_{FC} = 51.1, J = 2.4 Hz, 1H, H-C2), 4.59 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.57 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.51 (d, J = 12.4 Hz, 1H, H-CH₂Ph), 4.01 (ddd, J_{FC} = 29.8, J = 9.4, 2.4 Hz, 1H, H-C3), 3.95 (dddd, J = 10.0, 4.4, 1.9, 0.7 Hz, 1H, H-C5), 3.85 (td, J = 9.6, 1.0 Hz, 1H, H-C4), 3.75 (dd, J = 11.0, 4.4 Hz, 1H, H-C6), 3.64 (dd, J = 11.0, 1.8 Hz, 1H, H-C6), 2.84 (dd, J = 15.6, 2.9 Hz, 1H, H-C1[^]), 2.54 (d, J = 15.6 Hz, 1H, H-C1[^]), 1.47 (s, 9H, H-C4[^]);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 172.2 (C2[^]), 139.3 (*i*-Ph), 139.1 (*i*-Ph), 138.8 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 96.5 (d, $J_{FC} = 23.4$ Hz, C1), 89.5 (d, $J_{FC} = 179.9$ Hz, C2), 83.2 (C3[^]), 79.2 (d, $J_{FC} = 17.1$ Hz, C3), 75.6 (<u>C</u>H₂Ph), 74.7 (d, $J_{FC} = 1.4$ Hz, C4), 73.9 (<u>C</u>H₂Ph), 72.9 (C5), 72.7 (<u>C</u>H₂Ph), 69.6 (C6), 41.1 (d, $J_{FC} = 3.9$ Hz, C1[^]), 28.4 (C4[^]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -207.0 (ddt, J = 51.1, 29.7, 3.4 Hz).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

S39

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K)

-196.0 -197.0 -198.0 -199.0 -200.0 -201.0 -202.0 -203.0 -204.0 -205.0 -206.0 -207.0 -208.0 -209.0 -210.0

Compound Table 2 Entry 11:

Prepared according to the general procedure C. Starting with L5 (44 mg, 0.1 mmol) compound Table 2 Entry 11 was obtained (25 mg, 45%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.52 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 571.2685 (M + Na)⁺, C₃₃H₃₉O₇FNa⁺ calculated 571.2666;

 $[\alpha]_D^{25}$ +11.2 (*c* 0.25 in DCM);

 v_{max} (neat)/cm-1 3428m, 3064w, 3031w, 2978w, 2921m, 2869m, 2185w, 1947w, 1701m/s, 1607w, 1497w, 1454m, 1431w, 1394w, 1367m, 1351m, 1288w, 1233m, 1149s, 1084s, 1062s, 1040s, 1028s, 954w, 907w, 878m, 839w, 819w, 805w, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.39 – 7.24 (m, 15H, H-Ph), 5.15 (d, J = 2.3 Hz, 1H, H-OH), 4.90 (d, J = 11.0 Hz, 1H, H-CH₂Ph), 4.65 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.61 (d, J = 12.0 Hz, 1H, H-CH₂Ph), 4.54 (d, J = 11.1 Hz, 1H, H-CH₂Ph), 4.51 (d, J = 11.8 Hz, 1H, H-CH₂Ph), 4.44 (d, J = 11.6 Hz, 1H, H-CH₂Ph), 4.10 (m, 1H, H-C5), 4.00 (ddd, J = 11.7, 4.8, 2.6 Hz, 1H, H-C3), 3.94 – 3.90 (m, 1H, H-C4), 3.63 (dd, J = 9.4, 7.2 Hz, 1H, H-C6), 3.48 (dd, J = 9.4, 5.8 Hz, 1H, H-C6), 2.57 (d, J = 15.3 Hz, 1H, C1[°]), 2.51 (d, J = 15.2 Hz, 1H, C1[°]), 2.02 – 1.95 (m, 1H, H-C2), 1.92 (m, 1H, H-C2), 1.43 (s, 9H, H-C4[°]);

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 172.2 (C2[´]), 139.7 (*i*-Ph), 139.4 (*i*-Ph), 139.1 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 127.9 (*o*,*m*,*p*-Ph), 97.3 (C1), 82.5 (C3[´]), 75.7 (C3), 75.1 (<u>C</u>H₂Ph), 73.9 (<u>C</u>H₂Ph), 73.6 (C4), 71.5 (C5), 71.0 (<u>C</u>H₂Ph), 70.1 (C6), 45.8 (C1[´]), 36.4 (C2), 28.3 (C4[´]).

Prepared according to the general procedure C. Starting with L6 (46 mg, 0.1 mmol) compound Table 2 Entry 14 was obtained (58 mg, quant.) as a colourless oil after filtration through celite (EtOAc).

R_f 0.58 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 589.2590 (M + Na)⁺, C₃₃H₃₉O₇FNa⁺ requires 589.2572;

 $[\alpha]_D^{25}$ +23.3 (*c* 0.33 in DCM);

v_{max} (neat)/cm⁻¹ 3405w, 2923w, 1699m, 1497w, 1455m, 1394w, 1368m, 1249m, 1209m, 1148s, 1103s, 1069s, 1028s, 956w, 909w, 835m, 733s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.42 – 7.26 (m, 15H), 5.66 (d, J = 1.6 Hz, 1H, H-OH), 4.91 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.76 (d, J = 11.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.73 (d, J = 11.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.6 (dd, $J_{FC} = 51.3$, J = 9.3 Hz, 1H, H-C2), 4.51 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.51 (d, J = 11.7 Hz, 1H, H-C<u>H</u>₂Ph), 4.44 (d, J = 11.7 Hz, 1H, H-C<u>H</u>₂Ph), 4.19 (ddd, J = 7.2, 5.8, 1.3 Hz, 1H, H-C5), 4.08 – 4.02 (m, 2H, H-C3 + H-C4), 3.60 (dd, J = 9.4, 7.4 Hz, 1H, H-C6), 3.49 (dd, J = 9.3, 5.8 Hz, 1H, H-C6), 2.84 (dd, J = 15.5, 1.6 Hz, 1H, H-C1⁷), 2.53 (d, J = 15.5 Hz, 1H, H-C1⁷), 1.44 (s, 9H, H-C4⁷);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 172.2 (C2[′]), 139.2 (*i*-Ph), 139.1 (*i*-Ph), 138.9 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 96.6 (d, $J_{FC} = 19.0$ Hz, C1), 92.8 (d, $J_{FC} = 190.1$ Hz, C2), 83.2 (C3[′]), 77.8 (d, $J_{FC} = 15.9$ Hz, C3), 76.7 (d, $J_{FC} = 8.1$ Hz, C4), 75.7 (CH₂Ph), 73.9 (CH₂Ph), 73.4 (d, $J_{FC} = 1.8$ Hz, CH₂Ph), 70.7 (d, $J_{FC} = 1.2$ Hz, C5), 69.2 (C6), 41.7 (C1[′]), 28.3 (C4[′]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -206.6 – -206.7 (m).

¹H (600 MHz, Dichloromethane- d_2 , 299 K)

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K)

General Procedure D: *C*-glycosylations with allyl magnesium bromide.

Allyl magnesium bromide (1.0 M in THF, 0.10 mL, 0.1 mmol, 1.1 eq.) was added slowly to a solution of the corresponding lactone (0.1 mmol, 1.0 eq.) in dry THF (0.58 mL, 0.2 M) at -78 °C. The reaction mixture was stirred for 30 min and then quenched by addition of MeOH (5.0 mL). H₂O (5.0 mL) and EtOAc (5.0 mL) were added and the aqueous phase was extracted with EtOAc (3 x 3 mL). The combined organic layers were washed H₂O (2 x 7.0 mL) and brine (1 x 7.0 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuum*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, specified combination of CyH: EtOAc).

Compound Table 2 Entry 3:

Prepared according to the general procedure D. Starting with L3 (44 mg, 0.1 mmol) compound Table 2 Entry 3 was obtained (30 mg, 62%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

Rf 0.42 (SiO2, CyH:EtOAc 3:1);

m/z (ESI) found: 497.2306 (M + Na)⁺ and 539.2785 (double addition), C₃₀H₃₄O₅Na⁺ calculated 497.2298;

 $[\alpha]_D^{25}$ +11.7 (*c* 0.67 in DCM);

v_{max} (neat)/cm⁻¹ 3412w, 3030w, 2908w, 1641w, 1497m, 1454m, 1365m, 1206w, 1071s, 1027m, 985s, 916m, 861w, 814w, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.40 – 7.22 (m, 15H, H-Ph), 5.92 (dddd, J = 17.3, 10.3, 8.6, 6.2 Hz, 1H, H-C2[^]), 5.26 – 5.17 (m, 2H, H-C3[^]), 4.91 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.68 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.62 (d, J = 11.7 Hz, 1H, H-C<u>H</u>₂Ph), 4.60 (d, J = 10.7 Hz, 1H, H-C<u>H</u>₂Ph), 4.58 (d, J = 11.6 Hz, 1H, H-C<u>H</u>₂Ph), 4.52 (d, J = 12.1 Hz, 1H, H-C<u>H</u>₂Ph), 3.98 (ddd, J = 11.4, 8.9, 5.1 Hz, 1H, H-C3), 3.91 (ddd, J = 9.9, 4.6, 1.9 Hz, 1H, H-C5), 3.74 (dd, J = 10.7, 4.7 Hz, 1H, H-C6), 3.67 (dd, J = 10.7, 1.9 Hz, 1H, H-C6), 3.49 (dd, J = 9.9, 8.9 Hz, 1H, H-C4), 2.52 (ddt, J = 13.7, 6.2, 1.3 Hz, 1H, H-C3[^]), 2.40 (d, J = 2.5 Hz, 1H, H-OH), 2.39 – 2.34 (m, 1H, H-C1[^]), 2.27 (dd, J = 12.8, 5.1 Hz, 1H, H-C2), 1.56 (ddd, J = 12.8, 11.4, 2.5 Hz, 1H, H-C2);

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) δ 139.6 (*i*-Ph), 139.5 (*i*-Ph), 139.3 (*i*-Ph), 132.9 (C2[´]), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 120.4 (C3[´]), 97.5 (C1), 79.2 (C4), 78.6 (C3), 75.3 (CH₂Ph), 73.8 (CH₂Ph), 72.7 (C5), 72.1 (CH₂Ph), 70.3 (C6), 47.3 (C1[´]), 39.4 (C2).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

Prepared according to the general procedure D. Starting with L1 (46 mg, 0.1 mmol) compound Table 2 Entry 6 was obtained (50 mg, 99%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.45 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 515.2222 (M + Na)⁺, C₃₀H₃₃O₅FNa⁺ requires 515.2204;

 $[\alpha]_D^{25}$ +24.4 (*c* 1.00 in DCM);

v_{max} (neat)/cm⁻¹ 3413w, 3030w, 2917w, 1641w, 1497w, 1454m, 1367m, 1209w, 1072s, 1026s, 922m, 872w, 824w, 734s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.37 – 7.25 (m, 13H, H-Ph), 7.22 (ddt, J = 7.3, 1.5, 0.7 Hz, 2H, H-Ph), 5.96 – 5.87 (m, 1H, H-C2'), 5.31 – 5.25 (m, 2H, H-C3'), 4.85 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.84 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.76 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.4.57 (d, J = 10.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.56 (d, J = 11.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.50 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.30 (ddd, $J_{FH} = 50.1$, J = 9.1, 1.5 Hz, 1H, H-C2), 4.03 (dt, $J_{FH} = 12.9$, J = 9.0 Hz, 1H, H-C3), 3.94 (ddd, J = 10.1, 4.3, 2.0 Hz, 1H, H-C5), 3.72 (dd, J = 10.9, 4.3 Hz, 1H, H-C6), 3.65 (dd, J = 11.0, 1.9 Hz, 1H, H-C6), 3.60 (dd, J = 10.0, 9.0 Hz, 1H, H-C4), 2.74 (dd, J = 1.6, 0.7 Hz, 1H, H-OH), 2.58 – 2.53 (m, 2H, H-C1');

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.3 (*i*-Ph), 139.1 (*i*-Ph), 139.0 (*i*-Ph), 131.6 (C2[´]), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 121.7 (C3[´]), 96.2 (d, $J_{FC} = 19.3$ Hz, C1), 94.1 (d, $J_{FC} = 192.3$ Hz, C2), 81.7 (d, $J_{FC} = 16.2$ Hz, C3), 78.0 (d, $J_{FC} = 8.2$ Hz, C4), 75.5 (<u>C</u>H₂Ph), 75.4 (d, $J_{FC} = 2.7$ Hz, <u>C</u>H₂Ph), 73.9 (<u>C</u>H₂Ph), 72.0 (d, $J_{FC} = 1.4$ Hz, C5), 69.5 (C6), 42.9 (C1[´]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -197.0 (dd, J = 50.1, 12.9 Hz).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K) (with *cyclo*hexane)

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K)

-195.4 -195.8 -196.2 -196.6 -197.0 -197.4 -197.8 -198.2 -198.6 -199.0 -199.4 -199.8 -200.2 -200.

Compound Table 2 Entry 9:

Prepared according to the general procedure D. Starting with L4 (46 mg, 0.1 mmol) compound Table 2 Entry 9 was obtained (46 mg, 91%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.42 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 515.2203 (M + Na)⁺, C₃₀H₃₃O₅FNa⁺ calculated 515.2204;

 $[\alpha]_D^{25}$ -1.1 (*c* 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3376m, 3065w, 3030w, 2913m, 2866m, 2197w, 2169w, 1950w, 1879w, 1643w, 1606w, 1587w, 1497m, 1454m, 1398w, 1367m, 1330w, 1310w, 1262w, 1208w, 1189w, 1073s, 1026s, 994s, 919m, 878m, 843m, 734s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.40 – 7.25 (m, 13H, H-Ph), 7.24 – 7.21 (m, 2H, H-Ph), 5.94 – 5.83 (m, 1H, H-C2[']), 5.32 – 5.22 (m, 2H, H-C3[']), 4.87 (d, J = 10.9 Hz, 1H, H-CH₂Ph), 4.74 (d, J = 11.6 Hz, 1H, H-CH₂Ph), 4.69 (d, J = 12.2 Hz, 1H, H-CH₂Ph), 4.62 (dd, $J_{FH} = 50.5$, J = 2.4 Hz, 1H, H-C2), 4.59 (d, J = 12.2 Hz, 1H, H-CH₂Ph), 4.55 (d, J = 10.9 Hz, 1H, H-CH₂Ph), 4.52 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 3.97 (ddd, $J_{FH} = 29.6$, J = 9.2, 2.4 Hz, 1H, H-C3), 3.89 (ddd, J = 9.8, 4.9, 2.1 Hz, 1H, H-C5), 3.82 (m, 1H, H-C4), 3.73 (dd, J = 10.8, 4.6 Hz, 1H, H-C6), 3.67 (dd, J = 10.8, 1.9 Hz, 1H, H-C6), 2.70 (m, 1H, H-C1[']), 2.69 (d, J = 3.9 Hz, 1H, H-OH), 2.41 (dd, J = 14.0, 9.3 Hz, 1H, H-C1[']);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.2 (*i*-Ph), 139.1 (*i*-Ph), 138.9 (*i*-Ph), 131.7 (C2[']), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 121.8 (C3[']), 96.7 (d, $J_{FC} = 24.3$ Hz, C1), 89.2 (d, $J_{FC} = 179.3$ Hz, C2), 79.5 (d, $J_{FC} = 17.3$ Hz, C3), 75.6 (CH₂Ph), 74.9 (d, $J_{FC} = 1.5$ Hz, C4), 73.9 (CH₂Ph), 72.9 (C5), 72.6 (CH₂Ph), 69.8 (C6), 42.5 (d, $J_{FC} = 3.3$ Hz, C1[']);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -207.00 (ddt, J = 50.5, 29.7, 2.8 Hz).

¹H (600 MHz, Dichloromethane- d_2 , 299 K) (with H₂O)

Compound Table 2 Entry 12:

Prepared according to the general procedure D. Starting with L5 (44 mg, 0.1 mmol) compound Table 2 Entry 12 was obtained (31 mg, 65% / 18 mg, 37%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1). The compound was obtained as a mixture of the desired product and the open form. The two compounds were inseparable by column chromatography.

R_f 0.40 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 497.2288 (M + Na)⁺, C₃₀H₃₄O₅Na⁺ calculated 497.2298;

Only the major product was characterised (compound Table 2 Entry 12)

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.40 – 7.24 (m, 15H, H-Ph), 5.96 – 5.83 (m, 1H, H-C2[^]), 5.23 – 5.14 (m, 2H, H-C3[^]), 4.91 (d, J = 11.3 Hz, 1H, H-CH₂Ph), 4.63 (m, 2H, H-CH₂Ph), 4.56 (d, J = 11.3 Hz, 1H, H-CH₂Ph), 4.51 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.47 (d, J = 11.8 Hz, 1H, H-CH₂Ph), 4.09 – 4.02 (m, 1H, H-C5), 3.96 (ddd, J = 11.4, 5.1, 2.5 Hz, 1H, H-C3), 3.93 – 3.89 (m, 1H, H-C4), 3.61 (dd, J = 9.3, 6.7 Hz, 1H, H-C6), 3.54 (dd, J = 9.5, 6.2 Hz, 1H, H-C6), 2.50 (dd, J = 13.7, 6.0 Hz, 1H, H-C1[^]), 2.34 (d, J = 2.3 Hz, 1H, H-OH), 2.34 – 2.29 (m, 1H, H-C1[^]), 2.00 (td, J = 12.0, 2.3 Hz, 1H, H-C2), 1.95 (dd, J = 12.3, 5.1 Hz, 1H, H-C2);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.8 (*i*-Ph), 139.4 (*i*-Ph), 139.1 (*i*-Ph), 132.9 (C2[´]), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 127.9 (*o*,*m*,*p*-Ph), 120.3 (C3[´]), 97.9 (C1), 76.2 (C3), 74.9 (CH₂Ph), 73.9 (CH₂Ph), 73.8 (C4), 71.6 (C5), 70.9 (CH₂Ph), 70.4 (C6), 47.4 (C1[´]), 35.2 (C2).

Compound Table 2 Entry 15:

Prepared according to the general procedure D. Starting with L6 (46 mg, 0.1 mmol) compound Table 2 Entry 15 was obtained (47 mg, 94%) as a colourless oil after purification by column chromatography (SiO₂, CyH: EtOAC 6:1).

R_f 0.39 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 515.2212 (M + Na)⁺, C₃₀H₃₃O₅FNa⁺ calculated 515.2204;

 $[\alpha]_D^{25}$ +25.0 (c 0.50 in DCM);

 v_{max} (neat)/cm⁻¹ 3412w, 3030w, 2919w, 1641w, 1497w, 1454m, 1371w, 1208w, 1181w, 1067s, 1027s, 917m, 818m, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.41 – 7.26 (m, 15H, H-Ph), 5.93 – 5.84 (m, 1H, H-C2[′]), 5.28 – 5.21 (m, 2H, H-C3[′]), 4.91 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.76 (d, J = 11.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.72 (d, J = 11.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.70 (ddd, $J_{\text{FH}} = 50.8$, J = 9.5, 1.3 Hz, 1H, H-C2) 4.53 (d, J = 11.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.50 (d, J = 11.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.46 (d, J = 11.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.11 (ddd, J = 7.2, 5.9, 1.3 Hz, 1H, H-C5), 4.04 – 3.97 (m, 2H, H-C3 + H-C4), 3.58 (dd, J = 9.4, 7.2 Hz, 1H, H-C6), 3.52 (dd, J = 9.4, 6.0 Hz, 1H, H-C6), 2.67 (dd, J = 1.4, 0.7 Hz, 1H, H-OH), 2.54 (dt, J = 7.0, 1.2 Hz, 2H, H-C1[′]);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.3 (*i*-Ph), 139.1 (*i*-Ph), 138.9 (*i*-Ph), 131.7 (C2⁻), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 121.5 (C3⁻), 96.6 (d, $J_{FC} = 19.2$ Hz, C1), 92.3 (d, $J_{FC} = 188.2$ Hz, C2), 78.3 (d, $J_{FC} = 16.1$ Hz, C3), 76.5 (d, $J_{FC} = 8.4$ Hz, C4), 75.6 (CH₂Ph), 73.9 (CH₂Ph), 73.3 (d, $J_{FC} = 1.9$ Hz, CH₂Ph), 70.9 (d, $J_{FC} = 1.2$ Hz, C5), 69.3 (C6), 43.0 (C1⁻);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -207.3 (ddd, J = 50.9, 10.9, 3.8 Hz).

¹H (600 MHz, Dichloromethane- d_2 , 299 K) (with H₂O)

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K)

C-glycosylations

Compound 6:

tert-BPPTS (64 mg, 0.2 mmol, 3.0 eq.) was added to a mixture of TCA donor **5** (40 mg, 58.0 μ mol, 1.0 eq.) and compound **4** (Table 1 Entry 3) (33 mg, 70.0 μ mol, 1.2 eq.) under Argon at room temperature. The mixture was stirred overnight, filtered through celite and the volatiles evaporated in *vacuum*. The residue was purified by column chromatography CyH: EtOAc (SiO₂, 3:1). Compound **6** was obtained (17 mg, 30%, *aa*: *a* β 1.8:1) as a colourless oil.

Rf 0.50 (SiO2, CyH:EtOAc 3:1);

m/z (ESI) found: 1011.4455 (M + Na)⁺, C₆₂H₆₅FO₁₀Na⁺ calculated 1011,4459;

v_{max} (neat)/cm⁻¹ 3089w, 3063w, 3030w, 2915m, 2867m, 1497m, 1454m, 1362m, 1328w, 1265w, 1241w, 1209w, 1187w, 1066s, 1027s, 947m, 908w, 878w, 845w, 820w, 732s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.40 – 7.13 (m, 98H, H-Ph), 5.38 (d, J = 3.5 Hz, 2H, H-C1′), 4.97 (d, J = 10.7 Hz, 1H), 4.94 (d, J = 11.1 Hz, 1H), 4.94 (d, J = 11.0 Hz, 2H), 4.93 (s, 1H), 4.90 – 4.77 (m, 12H), 4.74 – 4.67 (m, 5H), 4.60 – 4.53 (m, 5H), 4.49 (d, J = 11.0 Hz, 3H), 4.47 (d, J = 8.3 Hz, 3H), 4.45 (d, J = 8.4 Hz, 2H), 4.40 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 11.9 Hz, 2H), 4.34 (d, J = 9.3 Hz, 1H), 4.31 (d, J = 6.8 Hz, 1H), 4.25 (dd, J = 9.1, 4.0 Hz, 1H), 4.17 (dt, J = 11.9, 9.4 Hz, 2H), 4.08 (dt, J = 12.2, 9.1 Hz, 2H), 4.04 – 3.98 (m, 2H), 3.75 (dd, J = 10.7, 4.1 Hz, 3H), 3.67 – 3.51 (m, 9H), 3.48 – 3.42 (m, 1H), 3.38 (dd, J = 10.8, 1.9 Hz, 2H), 3.34 (dd, J = 10.9, 3.8 Hz, 2H), 1.59 (d, J = 1.1 Hz, 4H, C7′*αβ*), 1.58 (d, J = 1.1 Hz, 6H, C7′*αα*);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.77 (dd, J = 49.3, 12.2 Hz), -197.15 (dd, J = 49.2, 12.0 Hz).

Compound S8:

2-Bromoanthraquinone (200 mg, 0.7 mmol, 1.0 eq.), TBAI (231 mg, 0.6 mmol, 0.9 eq.) and Na₂S₂O₄ (242 mg, 1.4 mmol, 2.0 eq.) in H₂O (7.0 mL) were stirred under an argon atmosphere for 10 min. CH₂Cl₂ (7.8 mL) was then was added. The mixture was stirred until the solution turned dark green and then NaOH (139 mg, 3.5 mmol, 5.0 eq. 20% in H₂O) was added. The solution then turned dark red and was stirred for and additional 1.5 h. After this time EtBr (0.52 mL, 7.0 mmol, 10.0 eq.) was added and the mixture was stirred overnight. The reaction was quenched by addition of NaHCO₃ (aq., sat. 7.0 mL). The organic layer was separated and the water layer was extracted with CH₂Cl₂ (2 x 7.0 mL). The combined organic layers were washed with H₂O (2 x 10.0 mL) and brine (1 x 10.0 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuo*. The residue was purified by column chromatography CyH: CH₂Cl₂ (SiO₂, 5:1). Compound **S8** was obtained (110 mg, 46%) as a bright yellow solid.

Rf 0.69 (SiO2, CyH:EtOAc 3:1);

Mp 89 – 93 °C;

m/z (ESI) found: 367.0310 and 369.0287 (M + Na)⁺, C₁₈H₁₇BrO₂Na⁺ calculated 367.0310 and 269.0289;

 v_{max} (neat)/cm⁻¹ 3676w, 3067w, 2974s, 2926m, 2883m, 1911w, 1737w, 1673w, 1622w, 1610m, 1558w, 1520w, 1487w, 1444m, 1424w, 1407m, 1374s, 1352s, 1336s, 1292m, 1266m, 1168m, 1156m, 1119w, 1106m, 1067s, 1051s, 1022s, 943s, 887m, 867s, 855m, 811s, 796m, 759s, 691s, 660m;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 8.45 (dd, J = 2.0, 0.6 Hz, 1H, H-C14), 8.31 – 8.24 (m, 2H, H-Ar), 8.17 (dd, J = 9.2, 0.6 Hz, 1H, H-Ar), 7.55 – 7.48 (m, 3H, H-Ar), 4.23 (q, J = 7.0 Hz, 4H, H-15 + H-C17), 1.62 (t, J = 7.1 Hz, 3H, H-C16 or H-C18), 1.61 (t, J = 7.0 Hz, 3H, H-C16 or H-C18);

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K) 148.4 (C5), 147.1 (C12), 129.1 (<u>C</u>HAr), 126.6 (<u>C</u>Ar), 126.5 (<u>C</u>Ar), 126.4 (<u>C</u>HAr), 126.2 (<u>C</u>HAr), 126.1 (<u>C</u>Ar), 125.4 (<u>C</u>HAr), 125.3 (<u>C</u>14), 124.0 (<u>C</u>Ar), 123.4 (<u>C</u>HAr), 123.3 (<u>C</u>HAr), 120.4 (<u>C</u>Ar), 72.5 (C15 or C17), 72.4 (C15 or C17), 16.3 (C16 + C18).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

Compound 8:

n-BuLi (45 μ L, 2.5 M in hexanes, 0.1 mmol, 0.1 eq.) was added to a solution of compound **S8** in THF (225 μ L mL, 0.5 M), the mixture was stirred under argon at -78 °C for 30 min. This mixture was transferred slowly to a solution of the corresponding lactone (46 mg, 0.1 mmol, 1.0 eq.) in dry THF (350 μ L, 0.3 M) at -78 °C under an argon atmosphere. The reaction mixture was stirred for 30 min and quenched by addition of MeOH (5.0 mL). H₂O (5.0 mL) and EtOAc (5.0 mL) were added and the water phase was extracted with EtOAc (3 x 3.0 mL). The combined organic layers were washed H₂O (2 x 7.0 mL) and brine (1 x 7.0 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuo*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, 6:1). Compound **8** was obtained (53 mg, 73%) as a bright yellow solid.

R_f 0.44 (SiO₂, CyH:EtOAc 3:1);

Mp 53 – 56 °C;

m/z (ESI) found: 739.3026 (M + Na)⁺, C₄₅H₄₅O₇FNa⁺ calculated 739.3042

 $[\alpha]_{D}^{25}$ +12.7 (c 1.28 in DCM);

 v_{max} (neat)/cm⁻¹ 3374w, 3031w, 2926w, 1623w, 1497w, 1454m, 1403m, 1375s, 1341s, 1208m, 1059s, 1025s, 907m, 887m, 819m, 734s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 8.55 (m, 1H, H-C14′), 8.32 – 8.27 (m, 3H, H-C3′, H-C7′, H-C10′), 7.70 (m, 1H, H-C2′), 7.54 – 7.48 (m, 2H, H-C8′, H-C9′), 7.40 – 7.23 (m, 15H, H-Ph), 4.91 (d, *J* = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.91 (d, *J* = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.82 (d, *J* = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.66 (d, *J* = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.66 (d, *J* = 12.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.58 (d, *J* = 12.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.53 (ddd, *J*_{FH} = 48.8, *J* = 9.0, 1.6 Hz, 1H, H-C2), 4.30 – 4.21 (m, 6H, H-C3, H-C5, H-C15′, H-C17′), 3.87 (dd, *J* = 11.1, 4.5 Hz, 1H, H-C6), 3.83 (dd, *J* = 10.1, 9.0 Hz, 1H, H-C4), 3.79 (dd, *J* = 11.1, 1.9 Hz, 1H, H-C6), 3.31 (d, *J* = 1.5 Hz, 1H, H-OH), 1.62 (t, *J* = 7.0 Hz, 3H, H-C16′ or H-C18′), 1.58 (t, *J* = 7.1 Hz, 3H, H-C16′ or H-C18′);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 148.8 (12[′]), 147.9 (C5[′]), 139.2 (*i*-Ph), 139.1 (*i*-Ph), 139.0 (*i*-Ph), 138.23 (d, $J_{FC} = 1.5$ Hz, C1[′]), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.4 (C6[′] or C11[′]), 126.2 (C6[′] or C11[′]), 126.1 (C8[′] or C9[′]), 125.9 (C8[′] or C9[′]), 125.5 (C4[′]), 125.0 (C13[′]), 123.9 (C7[′] or C10[′]), 123.4 (C2[′]), 123.4 (C7[′] or C10[′]), 123.3 (C3[′]), 120.84 (d, $J_{FC} = 1.1$ Hz, C14[′]), 97.2 (d, $J_{FC} = 18.6$ Hz, C1), 95.65 (d, $J_{FC} = 195.0$ Hz, C2), 82.10 (d, $J_{FC} = 16.5$ Hz, H-C3), 78.08 (d, $J_{FC} = 8.2$ Hz, H-C4), 75.6 (<u>CH</u>₂Ph), 75.6 (d, $J_{FC} = 2.8$ Hz, <u>CH</u>₂Ph), 74.0 (<u>C</u>H₂Ph), 72.5 (C15[′] or C17[′]), 72.5 (d, $J_{FC} = 1.3$ Hz, C5), 72.3 (C15[′] or C17[′]), 69.7 (C6), 16.4 (C16[′] or C18[′]), 16.4 (C16[′] or C18[′]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.13 (dd, J = 48.8, 12.5 Hz).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

Compound 9:

BF₃•Et₂O (15 μ L, 0.1 mmol, 2.0 eq.) and Et₃SiH (19 μ L, 0.1 mmol, 2.0 eq.) were added to a solution of compound **8** (44 mg, 61.0 μ mol, 1.0 eq.) in CH₂Cl₂:MeCN (1:1; 0.12 mL:0.12 mL, 0.25 M) at -10 °C. The mixture was stirred at this temperature for 3 h. Then the reaction mixture was quenched by addition of saturated NaHCO₃ (aq., 5.0 mL) followed by extractions with EtOAc (3 x 5.0 mL). The combined organic phases were washed with H₂O (2 x 7.0 mL) and brine (1 x 7.0 mL).The organic layer was dried over MgSO₄, filtered and evaporated *in vacuum*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, 8:1). Compound **9** was obtained (35 mg, 82%) as a bright yellow oil.

R_f 0.63 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 723.30934 (M + Na)⁺, C₄₅H₄₅O₆ FNa⁺ calculated 723.30924

 $[\alpha]_D^{25}$ +10.4 (*c* 1.1 in DCM);

vmax (neat)/cm⁻¹ 3064w, 3031w, 2975w, 2927m, 2869m, 1623w, 1497w, 1454m, 1403w, 1375s, 1340s, 1305w, 1271w, 1207w, 1062s, 1024s, 905m, 887m, 823m, 790w, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 8.33 (mz, 1H, H-C14′), 8.32 – 8.27 (m, 3H, H-C3′ + H-C7′ + H-C10′), 7.55 (m, 1H, H-C2′), 7.53 – 7.48 (m, 2H, H-C8′ + H-C9′), 7.41 – 7.25 (m, 15H, H-Ph), 4.94 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.84 (d, J = 11.4 Hz, 1H, H-C<u>H</u>₂Ph), 4.93 (d, J = 10.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.69 (m, C2), 4.67 (d, J = 10.7 Hz, 1H, H-C<u>H</u>₂Ph), 4.63 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.60 (m, C1), 4.57 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.25 (q, J = 7.0 Hz, 4H, H-C15′ + H-C17′), 4.05 – 3.96 (m, 1H, H-C3), 3.85 – 3.80 (m, 3H, H-C4, H-C6), 3.73 (dt, J = 10.0, 3.2 Hz, 1H, H-C5), 1.62 (t, J = 7.0 Hz, 3H, H-C16′ or H-C18′);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 148.3 (C5⁻), 148.0 (C12⁻), 139.1 (*i*-Ph), 139.0 (*i*-Ph), 134.89 (d, J = 1.1 Hz, C1⁻), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.6 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 126.2 (C6⁻ or C11⁻), 126.1 (C6⁻ or C11⁻), 125.9 (C8⁻ or C9⁻), 125.9 (C8⁻ or C9⁻), 125.6 (C4⁻), 125.3 (C4⁻), 124.3 (C2⁻), 124.0 (C14⁻), 123.3 (C3⁻), 122.4 (C7⁻ or C10⁻), 95.13 (d, J = 185.2 Hz, C2), 85.27 (d, J = 16.3 Hz, C3), 80.32 (d, J = 23.5 Hz, C1), 80.03 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d, J = 8.8 Hz, C4), 75.7 (<u>C</u>H₂Ph), 75.35 (d, J = 1.4 Hz, C5), 78.05 (d), 78.05 (d), 78.05 (d), 78.05 (d), 78.05 (d), 78.05 (d), 78.05 (d),

= 2.8 Hz, <u>C</u>H₂Ph), 74.1 (<u>C</u>H₂Ph), 72.4 (C15´ or C17´), 72.3 (C15´ or C17´, 69.8 (C6), 16.4 (C16´ or C18´), 16.4 (C16´ or C18´);

 $^{19}{\rm F}$ NMR (564 MHz, Dichloromethane- $d_2,$ 299 K) δ -192.00 – -192.60 (m)

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

¹³C{¹H} NMR (151 MHz, Dichloromethane-*d*₂, 299 K)

By changing the solvent for NMR it is possible to observe the coupling constant of C1 and determine the configuration of this stereocenter. (Found: dd, J = 9.6, 3.7Hz indicating β configuration)

¹H (600 MHz, Benzene- d_2 , 299 K): β configuration.

Compound S10:

TrtO_____Br

See General Information.

Compound 10:

n-BuLi (97.0 μ L, 2.5 M in hexanes, 0.2 mmol, 1.1 eq.) was added to a solution of compound **S10** (105 mg, 0.2 mmol, 1.1 eq.) in a mixture of toluene:THF (2:1; 0.33 mL:0.16 mL, 0.5 M), the mixture was stirred

under argon at -78 °C for 30 min. This mixture was transferred slowly to a solution of the corresponding lactone (100 mg, 0.2 mmol, 1.0 eq.) in dry THF (0.76 mL, 0.3 M) at -78 °C under argon. The reaction mixture was stirred for 30 min and quenched by addition of MeOH (5.0 mL). H₂O (5.0 mL) and EtOAc (5.0 mL) were added and the aqueous layer was extracted with EtOAc (3 x 3.0 mL). The combined organic layers were washed with H₂O (2 x 7.0 mL) and brine (1 x 7.0 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuum*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, 8:1). Compound **10** was obtained (130 mg, 73%) as a white solid.

R_f 0.58 (SiO₂, CyH:EtOAc 3:1);

Mp 58 – 64 °C;

m/z (ESI) found: 823.3417 (M + Na)⁺, C₅₃H₄₉O₆FNa⁺ calculated 823.3405

 $[\alpha]_D^{25}$ -19.0 (c 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3314m, 3061m, 3030m, 2925m, 2851m, 2341w, 2165w, 1965w, 1813w, 1597w, 1493m, 1449m, 1366m, 1309w, 1210w, 1154m, 1085m, 1020s, 976m, 942w, 899w, 846w, 809w, 765m, 744m, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.66 – 7.60 (m, 1H, H-Ph), 7.50 – 7.13 (m, 33H, H-Ph), 6.43 (d, J = 1.9 Hz, 1H, H-OH), 4.89 (d, J = 11.1 Hz, 1H, H-CH₂Ph), 4.83 (ddd, $J_{FH} = 49.6$, J = 8.8, 2.0 Hz, 1H, H-C2), 4.82 (d, J = 11.1 Hz, 1H, H-CH₂Ph), 4.79 (d, J = 11.2 Hz, 1H, H-CH₂Ph), 4.64 (d, J = 9.8 Hz, 1H, H-CH₂Ph7'), 4.55 (d, J = 11.1 Hz, 1H, H-CH₂Ph), 4.34 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.29 (d, J = 9.9 Hz, 1H, H-CH₂Ph7'), 4.28 (d, J = 12.1 Hz, 1H, H-CH₂Ph), 4.12 (dt, $J_{FH} = 12.3$, J = 8.7 Hz, 1H, H-C3), 3.70 (ddd, J = 10.0, 2.7, 1.7 Hz, 1H, H-C5), 3.66 (dd, J = 10.0, 8.7 Hz, 1H, H-C4), 3.47 (dd, J = 11.0, 2.8 Hz, 1H, H-C6);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) 143.7 (*i*-PhTrt), 141.0 (d, $J_{FC} = 2.3$ Hz, C1')139.5 (*i*-Ph), 139.4 (*i*-Ph), 138.8 (*i*-Ph), 135.5 (C6'), 133.3 (C5'), 129.6 (C3'/C4'), 129.1 (C3'/C4'), 129.1 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.7 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.0 (*o*,*m*,*p*-Ph), 127.1 (d, $J_{FC} = 4.9$ Hz, (C2'), 98.0 (d, $J_{FC} = 18.5$ Hz, C1), 93.7 (d, $J_{FC} = 194.9$ Hz, C2), 89.4 (CTrt), 82.1 (d, $J_{FC} = 16.8$ Hz, C3), 77.5 (d, $J_{FC} = 7.7$ Hz, C4), 75.7 (d, $J_{FC} = 2.7$ Hz, CH₂Ph), 75.2 (CH₂Ph), 73.7 (CH₂Ph), 70.8 (d, $J_{FC} = 1.4$ Hz, C5), 68.7 (C6), 67.1 (CH₂Ph7');

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -191.5 (ddd, J = 49.6, 12.3, 2.3 Hz).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

¹⁹F NMR (564 MHz, Dichloromethane-*d*₂, 299 K)

-190.1 -190.3 -190.5 -190.7 -190.9 -191.1 -191.3 -191.5 -191.7 -191.9 -192.1 -192.3 -192.5 -192.7 -192

Compound 11:

BF₃•Et₂O (17 μ L, 0.14 mmol, 1.1 eq.) and Et₃SiH (22 μ L, 0.14 mmol, 1.1 eq.) were added to a mixture of compound **10** (100 mg, 0.12 mmol, 1.0 eq.) in MeCN (1.8 mL, 0.1 M) under an argon atmosphere at -40 °C. The mixture was stirred for 1 h and then was warmed to 0 °C and stirred at this temperature an additional hour. The reaction mixture was quenched with NaHCO₃ (sat. aq., 1.0 mL), the aqueous layer was extracted with CH₂Cl₂ (3 x 1.0 mL), and the combined organic layers were washed H₂O (3 x 1.0 mL) and brine (1 x 1.0 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuo*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, 4:1). Compound **11** was obtained (47 mg, 69%) as a colourless oil.

R_f 0.58 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 563.2245 (M + Na)⁺, C₃₄H₃₃O₅FNa⁺ calculated 563.2215;

 $[\alpha]_D^{25}$ +28.7 (c 1.00 in DCM);

 v_{max} (neat)/cm⁻¹ 3671w, 3063w, 3031w, 2925m, 2851m, 2206w, 2167w, 2027w, 1951w, 1879w, 1812w, 1607w, 1497m, 1463m, 1453m, 1364m, 1312w, 1263w, 1208w, 1154m, 1130w, 1110w, 1086s, 1048s, 1026s, 1010s, 904m, 862w, 848w, 821w, 786,m 764w, 730s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.47 – 7.42 (m, 1H H-(C3[']/C4[']/C5[']/C6['])), 7.42 – 7.39 (m, 2H, H-(C3[']/C4[']/C5[']/C6['])), 7.38 – 7.35 (m, 2H, H-Ph), 7.35 – 7.22 (m, 14H, H-Ph + H-(C3[']/C4[']/C5[']/C6['])), 5.23 (d, J = 12.6 Hz, 1H, H-C1[']), 5.16 (d, J = 12.6, 1.0 Hz, 1H, H-C1[']), 4.90 (d, J = 11.1 Hz, 1H, H-CH₂Ph), 4.88 (d, J = 11.8 Hz, 1H, H-CH₂Ph) 4.83 (dd, $J_{FH} = 50.4$, J = 8.8 Hz, 1H, H-C2), 4.80 (d, J = 10.1 Hz, 1H, H-CH₂Ph), 4.63 (d, J = 10.9 Hz, 1H, H-CH₂Ph), 4.52 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.44 (d, J = 11.9 Hz, 1H, H-CH₂Ph), 4.19 (dt, $J_{FH} = 12.2$, J = 9.0 Hz, 1H, H-C3), 4.08 (ddd, J = 10.1, 4.1, 2.0 Hz, 1H, H-C5), 3.82 (t, J = 9.5, 1H, H-C4), 3.77 (dd, J = 11.1, 4.1 Hz, 1H, H-C6), 3.65 (dd, J = 11.1, 1.9 Hz, 1H, H-C6);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 141.0 (C7), 139.3 (*i*-Ph), 139.1 (*i*-Ph), 138.9 (*i*-Ph), 137.5 (C2), 130.4 (C3′/C4′/C5′/C6′), 128.8 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (C3′/C4′/C5′/C6′), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 122.6 (C3′/C4′/C5′/C6′), 121.8 (C3′/C4′/C5′/C6′), 108.6 (d, $J_{FC} = 21.5$ Hz, C1), 93.1 (d, $J_{FC} = 191.3$ Hz, C2), 82.3 (d, $J_{FC} = 16.4$ Hz, C3), 77.9 (d, $J_{FC} = 8.1$ Hz, C4), 75.5 (C1′), 75.5 (d, $J_{FC} = 2.7$ Hz, <u>CH</u>₂Ph), 73.9 (<u>CH</u>₂Ph), 73.6 (d, $J_{FC} = 1.4$ Hz, C5), 73.5 (<u>CH</u>₂Ph), 69.4 (C6);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.0 (dd, J = 50.0, 12.2 Hz).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

 $^{13}C{^{1}H}$ NMR (151 MHz, Dichloromethane- d_2 , 299 K)

-193.6 -194.0 -194.4 -194.8 -195.2 -195.6 -196.0 -196.4 -196.8 -197.2 -197.6 -198.0 -198.4 -198.8 -199.2 -199

Compound 14:

9-BBN (3.6 mL, 13.2 mmol, 26.0 eq.) was added to a mixture of compound **13** (Table 2 Entry 6) (250 mg, 0.5 mmol, 1.0 eq.) in THF (3.6 mL, 0.1 M) under an argon atmosphere. The reaction was stirred for 2 h and then NaOH (aq. 3.0 M, 3.3 mL, 9.6 mmol, 19.0 eq.) and H_2O_2 (30%, 1.8 mL, 22.3 mmol, 44.0 eq.) were added to the reaction. The mixture was stirred at room temperature overnight. The reaction was quenched by addition of H_2O (15 mL) then Et₂O (15 mL) was added. The aqueous layer was extracted with Et₂O (3 x
7.0 mL). The combined organic layers were washed with $Na_2S_2O_3$ (aq. Sat.) (peroxide test was negative). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuo*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, 6:1). Product **14** was obtained (130 mg, 50%) as a colourless oil.

R_f 0.16 (SiO₂, CyH:EtOAc 2:1);

m/z (ESI) found: 533.2314 (M + Na)⁺, C₃₀H₃₅O₆FNa⁺ calculated 533.2310;

 $[\alpha]_D^{25}$ +28.1 (*c* 0.33 in DCM);

 v_{max} (neat)/cm⁻¹ 3376m, 3088w, 3064w, 3032w, 2922m, 2866m, 2226w, 2160w, 2138w, 2007w, 1958w, 1877w, 1738w, 1606w, 1497m, 1454m, 1366m, 1310w, 1263w, 1208w, 1148m, 1057s, 1025s, 912w, 842w, 734s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.25 (m, 13H, H-Ph), 7.22 (m, 2H, H-Ph), 5.20 (s, 1H, H-OH tertiary), 4.86 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.84 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.76 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.55 (d, J = 10.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.55 (d, J = 12.5 Hz, 1H, H-C<u>H</u>₂Ph), 4.49 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.23 (dd, $J_{\text{FH}} = 50.3$, J = 9.0 Hz, 1H, H-C2), 4.05 (dt, $J_{\text{FH}} = 13.2$, J = 8.7 Hz, 1H, H-C3), 4.01 (ddd, J = 10.2, 5.3, 2.2 Hz, 1H, H-C5), 3.76 (m, 1H, H-C3'), 3.67 (dd, J = 10.5, 2.2 Hz, 1H, H-C6), 3.63 (dd, J = 10.5, 5.3 Hz, 1H, H-C6), 3.60 (m, 1H, C3'), 3.54 – 3.49 (m, 1H, H-C4), 2.72 (s, 1H, H-OH secondary), 2.07 – 1.98 (m, 1H, H-C1'), 1.93 – 1.84 (m, 2H, H-C1' + H-C2'), 1.78 – 1.68 (m, 1H, H-C2');

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.4 (*i*-Ph), 139.0 (*i*-Ph), 138.8 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 96.1 (d, $J_{FC} = 19.0$ Hz, C1), 95.5 (d, $J_{FC} = 192.1$ Hz, C2), 82.0 (d, $J_{FC} = 16.3$ Hz, C3), 78.4 (d, $J_{FC} = 8.0$ Hz, C4), 75.4 (d, $J_{FC} = 2.7$ Hz, <u>CH</u>₂Ph), 75.4 (<u>C</u>H₂Ph), 73.9 (<u>C</u>H₂Ph), 71.1 (d, $J_{FC} = 1.0$ Hz, C5), 69.8 (C6), 63.3 (C3²), 36.5 (C1²), 25.4 (C2²);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.66 (dd, J = 50.0, 13.2 Hz).

¹H (600 MHz, Dichloromethane-*d*₂, 299 K)

¹⁹F NMR (564 MHz, Dichloromethane-*d*₂, 299 K)

-192.0 -193.0 -194.0 -195.0 -196.0 -197.0 -198.0 -199.0 -200.0 -201.0 -20

Compound 15α and 15β :

CSA (15 mg, 66.0 μ mol, 0.8 eq.) was added to a mixture of compound **14** (45 mg, 88.0 μ mol, 1.0 eq.) in THF (1.5 mL, 0.06 M). The mixture was stirred at 80 °C for 8 h, then it was cooled at room temperature and quenched by addition of NaHCO₃ (sat. aq., 1.0 mL). The aqueous layer was extracted EtOAc (3 x 1.0 mL). The combined organic layers were washed with H₂O (2 x 2 mL) and brine (1 x 2 mL). The organic layer was dried over MgSO₄, filtered and evaporated *in vacuum*. The residue obtained was purified by column chromatography CyH: EtOAc (SiO₂, 5:1). Compound **15** α was obtained (10 mg, 23%, α) as a colourless oil, **15** β (12 mg, 28%, β) as a white solid.

Characterisation for 15α:

R_f 0.64 (SiO₂, CyH:EtOAc 3:1);

m/z (ESI) found: 515.2195 (M + Na)⁺, C₃₀H₃₃O₅FNa⁺ calculated 515.2204;

 $[\alpha]_D^{25}$ +56.8 (*c* 0.75 in DCM);

 v_{max} (neat)/cm⁻¹ 3090w, 3064w, 3030w, 2901m, 1497m, 1454m, 1365m, 1316w, 1261w, 1240w, 1207w, 1144m, 1119m, 1067s, 1026s, 999s, 925m, 911m, 866m, 801m, 733s, 695s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.26 (m, 13H, H-Ph), 7.24 – 7.19 (m, 2H, H-Ph), 4.85 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.84 (d, J = 11.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.75 (d, J = 11.2 Hz, 1H, H-

C<u>H</u>₂Ph), 4.56 (d, J = 10.1 Hz, 1H, H-C<u>H</u>₂Ph), 4.54 (d, J = 10.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.47 (d, J = 12.0 Hz, 1H), 4.43 (dd, $J_{\text{FH}} = 50.2$, J = 9.1, 1H, H-C2), 4.01 – 3.95 (m, 3H, H-C3 + H-C1[^]), 3.82 (dddd, J = 10.1, 4.0, 2.0, 0.8 Hz, 1H, H-C5), 3.72 (dd, J = 10.9, 3.9 Hz, 1H, H-C6), 3.65 – 3.62 (m, 2H, H-C4 + H-C6), 2.20 – 2.14 (m, 1H, H-C3[^]), 2.09 – 2.02 (m, 1H, H-C2[^]), 2.01 – 1.96 (m, 1H, H-C3[^]) 1.96 – 1.90 (m, 1H, H-C2[^]);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.4 (*i*-Ph), 139.2 (*i*-Ph), 139.0 (*i*-Ph), 129.0 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.3 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*o*,*m*,*p*-Ph), 128.1 (*d*, *J*_{FC} = 20.0 Hz, C1), 92.4 (*d*, *J*_{FC} = 191.4 Hz, C2), 82.5 (*d*, *J*_{FC} = 16.1 Hz, C3), 78.0 (*d*, *J*_{FC} = 8.1 Hz, C4), 75.4 (<u>C</u>H₂Ph), 75.4 (<u>C</u>H₂Ph), 73.8 (<u>C</u>H₂Ph), 71.9 (*d*, *J*_{FC} = 1.4 Hz, C5), 69.5 (C1[°]), 69.5 (C6), 34.1 (C3[°]), 24.2 (C2[°]);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -197.8 (dd, J = 50.2, 12.5 Hz).

¹H (600 MHz, Dichloromethane- d_2 , 299 K)

 $^{13}C{^{1}H}$ NMR (151 MHz, Dichloromethane- d_2 , 299 K)

¹⁹F NMR (564 MHz, Dichloromethane-*d*₂, 299 K)

-196.8 -197.2 -197.6 -198.0 -198.4 -198.8 -199.2 -199.6 -200.0 -200.4 -200.8 -201.2 -201.6 -202.0 -20

15

Characterisation for 15β :

R_f 0.42 (SiO₂, CyH:EtOAc 3:1);

Mp 67 °C;

m/z (ESI) found: 515.2195 (M + Na)⁺, C₃₀H₃₃O₅FNa⁺ calculated 515.2204;

 $[\alpha]_D^{25}$ +26.1 (*c* 0.48 in DCM);

 v_{max} (neat)/cm⁻¹ 3673w, 3063w, 3031w, 2890m, 2347w, 2153w, 2075w, 1966w, 1879w, 1812w, 1753w, 1587w, 1497m, 1454m, 1403w, 1366m, 1318w, 1262w, 1209w, 1150m, 1068s, 1025s, 999s, 951m, 912m, 889m, 820w, 787w, 739s, 696s;

¹H NMR (600 MHz, Dichloromethane- d_2 , 299 K) δ 7.38 – 7.26 (m, 13H, H-Ph), 7.20 – 7.17 (m, 2H, H-Ph), 4.87 (d, J = 11.2 Hz, 1H, H-C<u>H</u>₂Ph), 4.82 (d, J = 10.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.75 (d, J = 11.2 Hz, 1H, H-

C<u>H</u>₂Ph), 4.57 (d, J = 11.9 Hz, 1H, H-C<u>H</u>₂Ph), 4.53 (d, J = 10.8 Hz, 1H, H-C<u>H</u>₂Ph), 4.50 (d, J = 12.0 Hz, 1H, H-C<u>H</u>₂Ph), 4.45 (dd, $J_{FH} = 51.0$, J = 9.2 Hz, 1H, H-C2), 4.04 – 3.92 (m, 2H, H-C1[']), 3.72 – 3.65 (m, 3H, H-C3 + H-C6), 3.62 (t, J = 9.4 Hz, 1H, H-C4), 3.44 (ddd, J = 9.8, 3.7, 2.7 Hz, 1H, H-C5), 2.10 – 1.93 (m, 4H, H-C2['] + H-C3[']);

¹³C{¹H} NMR (151 MHz, Dichloromethane- d_2 , 299 K) δ 139.1 (*i*-Ph), 138.9 (*i*-Ph), 138.9 (*i*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.9 (*o*,*m*,*p*-Ph), 128.8 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.5 (*o*,*m*,*p*-Ph), 128.4 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 128.2 (*o*,*m*,*p*-Ph), 108.1 (d, $J_{FC} = 21.2$ Hz, C1), 93.8 (d, $J_{FC} = 189.6$ Hz, C2), 83.5 (d, $J_{FC} = 16.1$ Hz, C3), 77.7 (d, $J_{FC} = 8.2$ Hz, C4), 75.6 (CH₂Ph), 75.3 (d, $J_{FC} = 2.9$ Hz, CH₂Ph), 74.3 (d, $J_{FC} = 1.3$ Hz, C5), 73.9 (CH₂Ph), 69.7 (C6), 69.1 (C1⁻), 28.3 (C3⁻), 25.3 (C2⁻);

¹⁹F NMR (564 MHz, Dichloromethane- d_2 , 299 K) δ -196.3 (dd, J = 51.1, 12.6 Hz).

¹H (600 MHz, Dichloromethane- d_2 , 299 K)

-195.0	-196.0	-197.0	-198.0	-199.0	-200.0	-201.0	-202.0	-203.0	-204.0	-20