

Supporting Information

Comparing Neutral (Monometallic) and Anionic (Bimetallic) Aluminum Complexes in Hydroboration Catalysis: Influences of Lithium Cooperation and Ligand Set

Victoria A. Pollard, M. Ángeles Fuentes, Alan R. Kennedy, Ross McLellan,* and Robert E. Mulvey*

anie_201806168_sm_miscellaneous_information.pdf

Supplementary information

Contents

General Experimental:	
Catalysis Reactions:	1
NMR spectroscopy	1
X-ray crystallography	1
Synthesis of Compounds:	2
Synthesis of [iBu ₃ Al(μ-H)Li] ₂ , 3	2
Synthesis of [(TMP)(Ph₂(H)CO)Al(μ-OC(H)Ph₂)]₂, 7	
Synthesis of [iBu₂Al(μ-NCPh₂]₂, 8	6
¹ H DOSY NMR Spectra for DIBAL in d ₈ -toluene:	9
¹ H DOSY NMR Spectra for DIBAL in C_6D_6 :	
Stoichiometric Reactions of Carbonyls:	
Hydroboration of Carbonyls	
Stoichiometric Reactions of Imines:	
Hydroboration of Imines	
Stoichiometric Reactions of Alkynes:	
Hydroboration of Alkynes	
Table S1: Crystal structure data and refinement details for compounds 7 and 8	

General Experimental:

All reactions and manipulations were performed under a protective argon atmosphere using either standard Schlenk techniques or glove box techniques. Hexane, THF, diethyl ether and toluene were dried by heating to reflux over sodium benzophenone ketyl and then distilled under nitrogen prior to use. C_6D_6 , d_8 -toluene and d_8 -THF were degassed by freeze-pump-thaw methods and stored over activated 4 Å molecular sieves. All reagents were purchased from commercial sources and used as received, unless stated otherwise. TMEDA, PMDETA and HMDS(H) were distilled and stored over activated 4 Å molecular sieves prior to use. $iBu_2Al(TMP)$,¹ (HMDS)₂AlH,² and $[iBu_2Al(TMP)(H)Li]_2$,³ were prepared according to literature methods.

Catalysis Reactions:

The desired catalyst 1 - 6 at the desired catalyst loading was added to 0.5 mL of a deuterated NMR solvent (C₆D₆, or d₈-toluene as appropriate) solution containing 0.5 mmol of the substrate precursor and of pinacolborane (80 µL, 0.55 mmol), as well as 10 mol% of internal standard; hexamethylcyclotrisiloxane. The mixture was transferred to a sealed J. Young's tap NMR tube and the reaction was regularly monitored by ¹H and ¹¹B NMR until the formation of products was completed. The yields reported are based on ¹H NMR relative to the internal standard. In all cases, the bulk of the NMR solution can be attributed to either the boronate esters or starting material.

NMR spectroscopy

NMR spectra were recorded on a Bruker AV3 or AV 400 MHz spectrometer operating at 400.13 MHz for ¹H, 155.47 MHz for ⁷Li, 104.2 MHz for ²⁷Al, 128.3 MHz for ¹¹B and 100.62 MHz for ¹³C. All ¹³C spectra were proton decoupled. ¹H, ¹³C{¹H}, ⁷Li, and ¹¹B chemical shifts are expressed in parts per million (δ , ppm) and referenced to residual solvent peaks. DOSY measurements were recorded on an AV 400 MHz spectrometer operating at 400.13 MHz, using the pulse program ledbpgp2s. Tetraphenylnaphthalene has been used as reference in the DOSY measurements.

X-ray crystallography

Data for **7** and **8** were collected on Oxford Diffraction Gemini S or Xcalibur E instruments with graphitemonochromated Mo K α (λ = 0.71073 Å) or Cu K α (λ 1.54184 Å) radiation. Data collection and processing used Rigaku and Bruker software.^{4, 5} All structures were solved and refined to convergence on F 2 for all independent reflections by the full-matrix least squares method using SHELXL-2014/7^{4, 6}, or by the Gauss Newton algorithm using OLEX2.⁷ All non-hydrogen atoms were refined using anisotropic thermal parameters. Selected crystallographic data are shown in Table S1 and full details in .cif format are available from CCDC (1845056 and 1845057).

Synthesis of Compounds:

Synthesis of $[iBu_3Al(\mu-H)Li]_2$, 3

To a solution of DIBAL-H (1 M/hexane; 5 mL; 5 mmol) in hexane (5 mL) was added iBuLi (1.7 M/heptane; 5 mmol; 2.9 mL). Spontaneous precipitation of the product was observed. The white suspension was stirred at room temperature for 1 hour, then the product isolated by filtration. (0.816 g; 3.96 mmol; 89% yield).

¹H NMR (400.1 MHz, C6D6, 300 K): δ -0.003 (d, J = 6.64 Hz, 6H CH₂); 1.17 (d, J = 6.69 Hz, 18H CH₃); 2.01 (sept, J = 6.92 Hz, 3H, CH) ppm.

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100.6 MHz, C6D6, 300 K): δ 22.9 (s, CH_2); 27.8 (s, CH); 28.7 (s, CH_3) ppm.

 ^7Li NMR (155.5 MHz, C6D6, 300 K): δ -2.42 (s) ppm.

Figure S1: ¹H DOSY NMR for **3** with internal standard tetraphenylnaphthalene, in C₆D₆.

Compound	D [m ² s ⁻¹]	MW _{calc} [g mol ⁻¹]	MW _{est} [g mol ⁻¹]	Error %
[iBu ₃ AlHLi] ₂	1.217x10 ⁻⁹	412.44	465	-7
TetraphenyInaphthalene	1.211X10 ⁻⁹	432.55	465	-11

The diffusion coefficient of iBu₃AlHLi indicates a molecular weight of 465 g mol⁻¹. This result is consistent with the calculated molecular weight for the dimeric structure [iBu₃AlHLi]₂.

Figure S3: $^{13}C\{^{1}H\}$ NMR spectrum of [iBu_3Al($\mu\text{-}H)\text{Li}]_2$, 3, in C_6D_6

Figure S4: ⁷Li NMR spectrum of $[iBu_3Al(\mu-H)Li]_2$, **3**, in C₆D₆

Synthesis of [(TMP)(Ph₂(H)CO)Al(µ-OC(H)Ph₂)]₂, 7

To a solution of iBu₂Al(TMP) (0.84 g; 3 mmol) in hexane (10 mL) was added benzophenone (0.5462 g; 3 mmol) and the reaction solution turned immediately purple. The reaction was stirred at room temperature for 15 minutes during which time the colour dissipated. Subsequent standing at room temperature overnight yielded a crop of colourless crystals (0.78 g; 0.66 mmol; 45 % yield).

¹H NMR (400.1 MHz, C6D6, 300 K): δ 0.99 (t, J = 6.65 Hz, 8H, 4 x TMP β-CH₂); 1.29 (s, 24 H 4 x TMP Me); 1.44 (m, 4H, 2 x TMP γ-CH₂); 6.68 + 6.80 (s, 2 H each, 2 x OCHPh₂ each); 6.93 – 6.98 (m, 12H, Ar-CH); 7.08 (t, J = 7.35 Hz, 4 H, Ar-CH); 7.20 – 7.22 (m, 4H Ar-CH); 7.29 (t, J = 7.58 Hz, 8 H, Ar-CH); 7.51 – 7.53 (m, 4 H Ar-CH); 7.88 (d, J = 7.17 Hz, 8 H Ar-CH) ppm.

¹³C{¹H} NMR (100.6 MHz, C6D6, 300 K): δ 17.8 (s, TMP γ-CH₂); 35.0 (s, TMP CH₃); 39. 5 (s, TMP β-CH₂); 51.7 (s, TMP $\underline{C}(CH_3)_2$); 80.1 (s, O $\underline{C}(H)Ph_2$); 81.0 (s, O $\underline{C}(H)Ph_2$); 127.5 + 128.0 + 128.7 + 128.9 + 129.0 + 129.5 (s, Ar- $\underline{C}H$); 141.1 (s, ipso Ar-C); 142.6 (s, ipso Ar-C) ppm.

Elemental analysis (%) for $C_{70}H_{80}Al_2N_2O_4$: calc'd C 78.77 H 7.55 N 2.62; found: C 78.25 H 7.58 N 2.85

Figure S6: ${}^{13}C{}^{1}H$ NMR spectrum of [(TMP)(Ph₂(H)CO)Al(μ -OC(H)Ph₂)]₂, 7, in C₆D₆

Figure S7: ¹H NMR spectrum from J. Young's NMR experiment for the formation of **7** from reaction of iBu₂Al(TMP) + 2 equivalents benzophenone in C_6D_6 . The signals corresponding to isobutene have been labelled

Synthesis of $[iBu_2Al(\mu-NCPh_2]_2, 8]$

To a solution of $iBu_2Al(TMP)$ (0.84 g;3 mmol) in hexane (10 mL) was added benzophenone imine (0.55 mL; 3 mmol). The reaction solution turned immediately bright yellow and was stirred for 1 h. Cooling at – 30 °C overnight provided yellow crystal suitable for X-ray diffraction. (0.468 g; 0.73 mmol; 24 % yield).

¹H NMR (400.1 MHz, C6D6, 300 K): δ 0.18 (d, J = 6.92 Hz, 8 H, CH₂); 1.01 (d, J = 6.41 Hz, 24 H, CH₃); 1.79 (nonet J = 6.65 Hz, 4 H, CH); 7.04 – 7.12 (m, 12 H, Ar-C*H*); 7.53 – 7.55 (m, 8 H, Ar-C*H*) ppm.

¹³C{¹H} NMR (100.6 MHz, C6D6, 300 K): δ 25.6 (s, CH₂); 26.7 (s, CH); 28.7 (s, CH₃); 128.4 + 129.0 + 142.9 (s, Ar-<u>C</u>H); 142.9 (s, ipso Ar-C); 185.8 (s, C=N) ppm.

Figure S8: ¹H NMR spectrum of [iBu₂Al(μ -NCPh₂]₂, 8, in C₆D₆

Figure S9: ${}^{13}C{}^{1}H$ NMR spectrum of $[iBu_2Al(\mu$ -NCPh₂]₂, **8**, in C₆D₆

Figure S10: ¹H NMR spectrum for the J Young's NMR tube reaction between $iBu_2Al(TMP)$ and benzophenone imine in C₆D₆ to form $Bu2Al(\mu$ -NCPh₂]₂, **8**. Gives an ¹H NMR yield of 86% with respect to internal ¹H NMR standard hexamethylcyclotrisiloxane.

 ^1H DOSY NMR Spectra for DIBAL in d_8-toluene:

Compound	D [m ² s ⁻¹]	MW _{calc} [g mol ⁻¹]	MW _{est} [g mol ⁻¹]	Error %
DIBAL	1.0897x10 ⁻⁹	142.13 (monomer)	401	6 %
		426.39 (trimer)		
TetraphenyInaphthalene	8.778x10 ⁻¹⁰	432.55	433	0%

The diffusion coefficient of DIBAL in d₈-toluene indicates a molecular weight of 401 g mol⁻¹. This result is consistent with the calculated molecular weight for a trimeric structure (iBu_2AIH)₃ = 426.39 g.

¹H DOSY NMR Spectra for DIBAL in C₆D₆:

Compound	D [m ² s ⁻¹]	MW _{calc} [g mol ⁻¹]	MW _{est} [g mol ⁻¹]	Error %
DIBAL	8.981x10 ⁻¹⁰	142.13 (monomer)	431	-1%
		426.39 (trimer)		
TetraphenyInaphthalene	8.162x10 ⁻¹⁰	432.55	433	0%

The diffusion coefficient of DIBAL in C_6D_6 indicates a molecular weight of 431 g mol⁻¹. This result is consistent with the calculated molecular weight for a trimeric structure (iBu₂AlH)₃ = 426.39 g.

Stoichiometric Reactions of Carbonyls:

Benzophenone + iBu₃Al(H)Li, **3**

In a J. Young's NMR tube $iBu_3Al(H)Li$ (0.023 g; 0.125 mmol) and benzophenone (0.026 g; 0.125 mmol) were dissolved in C₆D₆ (0.5 mL).

Figure S13: J Young's NMR reaction between benzophenone + $[iBu_3Al(H)Li]_2$, **3**, in C_6D_6 showing hydroelementation of the carbonyl.

Benzophenone + HMDS₂AlH, **5**

In a J. Young's NMR tube HMDS₂Al(H) (0.087 g; 0.25 mmol) and benzophenone (0.046 g; 0.25 mmol) were dissolved in C_6D_6 (0.5 mL).

Figure S14: J Young's NMR reaction between benzophenone + $HMDS_2AI(H)$, 5, in C_6D_6 showing hydroalumination

Benzophenone + DIBAL(H), 6

In a J. Young's NMR tube benzophenone (0.0911 g; 0.5 mmol) and DIBAL(H) (0.0711 g; 0.5 mmol) were dissolved in C_6D_6 .

Figure S15: J Young's NMR reaction between 2 equivalents benzophenone + DIBAL(H), **6**, in C_6D_6 showing hydroalumination and unreacted benzophenone

Hydroboration of Carbonyls

All hydroboration reactions of carbonyl substrates were performed at 0.5 mmol scale, room temperature, in C_6D_6 solution with 5 mol% [Al] catalyst 1 - 7, or 5 mol% LiH.

Benzophenone catalysed by [iBu₃Al(H)Li]₂, 3

Figure S17: ¹¹B NMR spectrum for the hydroboration of benzophenone catalysed by **3** (5 mol% Al) in C₆D₆

Figure S19: ¹¹B NMR spectrum for the hydroboration of benzophenone catalysed by 4 (5 mol% Al) in C₆D₆

Benzophenone catalysed by HMDS₂AlH, 5

Figure S20: ¹H NMR spectrum for the hydroboration of benzophenone catalysed by 5 (5 mol% Al) in C₆D₆

Figure S21: ¹¹B NMR spectrum for the hydroboration of benzophenone catalysed by 5 (5 mol% Al) in C₆D₆

Benzophenone catalysed by DIBAL-H, 6

Figure S22: ¹H NMR spectrum for the hydroboration of benzophenone catalysed by 6 (5 mol% Al) in C₆D₆

Figure S23: ¹¹B NMR spectrum for the hydroboration of benzophenone catalysed by 6 (5 mol% Al) in C₆D₆

Benzophenone catalysed by LiH

Figure S24: ¹H NMR spectrum for the hydroboration of acetophenone catalysed by 5 mol% LiH in C₆D₆

Figure S25: ¹¹B NMR spectrum for the hydroboration of benzophenone catalysed by LiH (5 mol%) in C₆D₆

Benzophenone catalysed by $[(TMP)(Ph_2(H)CO)AI(\mu-OC(H)Ph_2)]_2$, 7

Figure S26: ¹H NMR spectrum for the hydroboration of acetophenone catalysed by 2.5 mol% $[(TMP)(Ph_2(H)CO)Al(\mu-OC(H)Ph_2)]_2$, **7**, in C₆D₆

Figure S27: ¹¹B NMR spectrum for the hydroboration of acetophenone catalysed by 2.5 mol% $[(TMP)(Ph_2(H)CO)Al(\mu-OC(H)Ph_2)]_2$, 7in C₆D₆

Figure S28: ¹H NMR spectrum for the hydroboration of acetophenone catalysed by 3 (5 mol% Al) in C₆D₆

Figure S29: ¹¹B NMR spectrum for the hydroboration of acetophenone catalysed by 3 (5 mol% Al) in C₆D₆

Acetophenone catalysed by iBu₂Al(TMP), 4

Figure S31: ¹H NMR spectrum for the hydroboration of acetophenone catalysed by 5 (5 mol% Al) in C₆D₆

Figure S32: ¹H NMR spectrum for the hydroboration of cyclohexanone catalysed by 3 (5 mol% Al) in C_6D_6

Figure S33: ¹¹B NMR spectrum for the hydroboration of cyclohexanone catalysed by 3 (5 mol% Al) in C₆D₆

Figure S35: ¹H NMR spectrum for the hydroboration of cyclohexanone catalysed by 5 (5 mol% Al) in C₆D₆

Figure S37: ¹¹B NMR spectrum for the hydroboration of benzaldehyde catalysed by 3 (5 mol% Al) in C₆D₆

10

ò

-10

-20

-30

-40

ppm

70

60

50

40

30

20

Figure S39: ¹H NMR spectrum for the hydroboration of benzaldehyde catalysed by 5 (5 mol% Al) in C₆D₆

Stoichiometric Reactions of Imines:

N-benzylidenemethylamine + [iBu₂Al(TMP)(H)Li]₂, 1

In a J. Young's NMR tube $[iBu_2Al(TMP)(H)Li]_2$ (0.036 g 0.0625 mmol) was dissolved in C₆D₆ and N-benzylidenemethylamine (0.015 mL; 0.125 mmol) added.

Figure S40: J Young's NMR reaction between N-benzylidenemethylamine + $iBu_2Al(TMP)(H)Li$, **1**, in C₆D₆, showing hydroalumination.

N-benzylidenemethylamine + $[iBu_3Al(H)Li]_2$, 3

In a J. Young's NMR tube[iBu₂Al(H)Li]₂ (0.026 g; 0.0625 mmol) was dissolved in C₆D₆ (0.5 mL) and N-Nbenzylidenemethylamine (0.015 mL; 0.125 mmol) was added. --0.04 7.07 6.98 6.88 -2.64 C_6D_6 7 3 11 10 8 6 5 4 9 2 ò ppm 1 16.78 3.00 7.33 6.47

Figure S41: J Young's NMR reaction between N-benzylidenemethylamine + $iBu_3Al(H)Li$, **3**, in C₆D₆, showing hydroalumination.

N-benzylidenemethylamine + iBu₂Al(TMP), 4

In a J. Young's NMR tube $iBu_2AI(TMP)$ (0.070 g; 0.25 mmol) was dissolved in C_6D_6 and then N-benzylidenemethylamine (0.031 mL; 0.25 mmol) was added.

Figure S42: J Young's NMR reaction between N-benzylidenemethylamine + $iBu_2Al(TMP)$, 4, in C_6D_6 , showing coordination

N-benzylidenemethylamine + DIBAL, 6

In a J. Young's NMR tube DIBAL (0.1422 g; 1 mmol) and N-benzylidenemethylamine (0.12 mL; 1 mmol) were reacted in C_6D_6 (0.5 mL) solution.

Figure S43: J Young's NMR reaction between N-benzylidenemethylamine + DIBAL(H), **6**, in C_6D_6 , showing hydroalumination

Benzophenone imine + [iBu₂Al(TMP)(H)Li]₂, **1**

In a J. Young's NMR tube $[iBu_2Al(TMP)(H)Li]_2$ (0.125 mmol; 0.058 g) was dissolved in C_6D_6 (0.5 mL) and benzophenone imine (0.04 mL; 0.25 mmol) added.

Figure S44: J Young's NMR reaction between benzophenone imine + $iBu_2AI(TMP)(H)Li$, **1**, in C₆D₆, showing deprotonation

Benzophenone imine + $[iBu_3Al(H)Li]_2$, 3

In a J. Young's NMR tube $[iBu_2Al(H)Li]_2$ (0.026 g; 0.0625 mmol) was dissolved in C_6D_6 (0.5 mL) solution and benzophenone imine (0.021 mL; 0.125 mmol) added.

Figure S45: J Young's NMR reaction between benzophenone imine + $[iBu_3Al(H)Li]_2$, **3**, in C₆D₆, showing slow hydroalumination, and some trace H₂ evolution

Benzophenone imine + DIBAL(H), 6

In a J. Young's NMR tube DIBAL(H) (0.0711 g; 0.5 mmol) in C_6D_6 (0.5 mL) was added to benzophenone imine (0.08 mL; 0.5 mmol).

Figure S46: J Young's NMR reaction between benzophenone imine + DIBAL(H), **6**, in C_6D_6 , showing hydroalumination of the imine.

Hydroboration of Imines

Imine hydroboration reactions were undertaken at 0.5 mmol scale, at room temperature using 10 mol% [AI] catalyst 1 - 6 in C₆D₆ solution.

N-benzylidenemethylamine catalysed by [iBu₂Al(TMP)(H)Li]₂, 1

Figure S48: ¹¹B NMR spectrum for the hydroboration of N-benzylidenemethylamine catalysed by **1** (10 mol% Al) in C_6D_6

N-benzylidenemethylamine catalysed by $(HMDS)_2AIH(\mu-H)Li(THF)_3$, 2

mol% Al) in C₆D₆

Figure S50: ¹H NMR spectrum for the hydroboration of N-benzylidenemethylamine catalysed by **3** (10 mol% Al) in C_6D_6

N-benzylidenemethylamine catalysed by iBu₂Al(TMP), **4**

N-benzylidenemethylamine catalysed by HMDS₂AlH, 5

Figure S52: ¹H NMR spectrum for the hydroboration of N-benzylidenemethylamine catalysed by 5 (10 mol% Al) in C_6D_6

N-benzylidenemethylamine catalysed by DIBAL(H), 6

Figure S53: ¹H NMR spectrum for the hydroboration of N-benzylidenemethylamine catalysed by 6 (10 mol% Al) in C₆D₆

Figure S54: ¹H NMR spectrum for the hydroboration of benzophenone imine catalysed by **1** (10 mol% Al) in C_6D_6

Figure S55: ¹¹B NMR spectrum for the hydroboration of benzophenone imine catalysed by **1** (10 mol% Al) in C_6D_6

Figure S56: ¹H NMR spectrum for the hydroboration of benzophenone imine catalysed by **2** (10 mol% Al) in C_6D_6

Benzophenone imine catalysed by [iBu₃Al(H)Li]₂, **3**

Benzophenone imine catalysed by $iBu_2AI(TMP)$, 4

Figure S58: ¹H NMR spectrum for the hydroboration of benzophenone imine catalysed by 4 (10 mol% Al) in C_6D_6

Figure S60: ¹H NMR spectrum for the hydroboration of benzophenone imine catalysed by 6 (10 mol% Al) in C_6D_6

Stoichiometric Reactions of Alkynes:

Phenyl acetylene + [iBu₃Al(H)Li]₂, **3**

Figure S61: J Young's NMR reaction between phenyl acetylene + iBu3Al(H)Li, 3, in C6D6, showing no reaction at room temperature

Phenyl acetylene + iBu₂Al(TMP), 4

In a J. Young's NMR tube $iBu_2AI(TMP)$ (0.070 g; 0.25 mmol) was dissolved in C_6D_6 (0.5 mL) and phenyl acetylene added (0.030 mL; 0.25 mmol)

Figure S62: J Young's NMR reaction between phenyl acetylene + $iBu_2Al(TMP)$, **4**, in C₆D₆, showing slow deprotonation at room temperature.

Phenyl acetylene + iBu₂AlH, 6

In a J. Young's NMR tube DIBAL (0.0178 g; 0.125 mmol) was dissolved in C_6D_6 (0.5 mL) and then phenyl acetylene (0.021 mL; 0.125 mmol) was added.

Figure S63: J Young's NMR reaction between phenyl acetylene + iBu_2AIH , **6**, in C₆D₆, showing slow hydroalumination at room temperature.

Hydroboration of Alkynes

Hydroboration reactions of phenyl acetylene and diphenylacetylene were performed at 0.5 mmol scale in d8-toluene (0.5 mL) at 110 $^{\circ}$ C using 10 mol% [Al] catalyst **1**, **3**, **4**, or **6**.

Phenyl acetylene catalysed by [iBu₂Al(TMP)(H)Li]₂, 1

Figure S65: ¹¹B NMR spectrum for the hydroboration of phenyl acetylene catalysed by **1** (10 mol% Al) in d_8 -toluene

Phenyl acetylene catalysed by [iBu₃Al(H)Li]₂, **3**

Figure S66: ¹H NMR spectrum for the hydroboration of phenyl acetylene catalysed by **3** (10 mol% Al) in d_8 -toluene at 110 °C

Phenyl acetylene catalysed by iBu₂Al(TMP), 4

Figure S67: ¹H NMR spectrum for the hydroboration of phenyl acetylene catalysed by 4 (10 mol% Al) in d_8 -toluene at 110 °C

Figure S68: ¹H NMR spectrum for the hydroboration of diphenyl acetylene catalysed by **1** (10 mol% Al) in d_8 -toluene at 110 °C

Diphenyl acetylene catalysed by [iBu₂Al(TMP)(H)Li]₂, 3

Figure S69: ¹H NMR spectrum for the hydroboration of diphenyl acetylene catalysed by **3** (10 mol% Al) in d_8 -toluene at 110 °C

Figure S70: ¹¹B NMR spectrum for the hydroboration of diphenyl acetylene catalysed by **3** (10 mol% Al) in d_8 -toluene

1-phenyl-1-propyne catalysed by [iBu₂Al(TMP)(H)Li]₂, 3

Figure S71: ¹H NMR spectrum for the hydroboration of diphenyl 1-phenyl-1-propyne catalysed by **3** (10 mol% Al) in d_8 -toluene at 110 °C

Figure S72: ¹H NMR spectrum for the hydroboration of diphenyl 1-phenyl-1-propyne catalysed by **3** (10 mol% Al) in d_8 -toluene at 110 °C, showing ratio of major to minor product as 2.2: 1.

Figure S73: ¹¹B NMR spectrum for the hydroboration of 1-phenyl-1-propyne catalysed by **3** (10 mol% Al) in d_8 -toluene

Table S1: Crystal structure data and refinement details for compounds ${\bf 7}$ and ${\bf 8}$

Compound	[(TMP)(Ph₂(H)CO)Al(μ-OC(H)Ph₂)]₂, 7	[iBu₂Al(μ-NCPh₂]₂, 8
Empirical formula	$C_{70}H_{80}Al_2N_2O_4$	$C_{42}H_{56}AI_2N_2$
Mol. Mass	1067.32	642.89
Crystal system	Monoclinic	Triclinic
a/ Å	14.04490(10)	10.4347(6)
b/ Å	17.85020(10)	19.3559(14)
c/Å	23.1821(2)	21.3099(13)
α/ °	90	70.236(6)
β/ °	92.8660(10)	89.901(5)
Υ/ °	90	81.826(5)
V/ Å ³	5804.58(7)	4004.4(5)
Ζ	4	4
λ/ Å	Cu Kα (λ = 1.54184)	Μο Κα (λ = 0.71073)
Measured reflections	72409	30347
Unique reflections	11508	15688
R _{int}	0.0736	0.055
Observed rflns [I > 2σ(I)]	10297	8801
GooF	1.025	0.994
R [on F, obs rfins only]	0.0458	0.0678
ωR [on F^2 , all data]	0.1237	0.1621
Largest diff. peak/ hole e/ Å ⁻³	0.409/-0.263	0.72/-0.55

- 1. D. R. Armstrong, E. Crosbie, E. Hevia, R. E. Mulvey, D. L. Ramsay and S. D. Robertson, *Chem. Sci.*, 2014, **5**, 3031-3045.
- 2. S. Christoph and A. Reiner, *European Journal of Inorganic Chemistry*, 2013, **2013**, 3302-3306.
- 3. R. E. Mulvey, J. Okuda, L. E. Lemmerz, R. McLellan, N. R. Judge, A. R. Kennedy, S. A. Orr, M. Uzelac, E. Hevia and S. D. Robertson, *Chem. -Eur. J.*, 2018, **0**.
- 4. G. M. Sheldrick, *Acta Crystallogr.*, 2008, **A64**, 112 122.
- 5. G. M. Sheldrick, *Acta Crystallogr.*, 2015, **C71**, 3-8
- 6. A. P. Dove, V. C. Gibson, E. L. Hormnirun, E. L. Marshall, J. A. Segal, A. J. P. White and D. J. Williams, *Dalton Trans.*, 2003, 3088 - 3097.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339 341.