

Supplementary Information for

Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice

Lei Deng¹, Timothy Z. Chang², Ye Wang¹, Song Li², Shelly Wang³, Shingo Matsuyama¹, Guoying Yu⁴, Richard W. Compans³, Jian-Dong Li¹, Mark R. Prausnitz², Julie A. Champion², Bao-Zhong Wang¹, *

¹ Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA

² School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

³ Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA

⁴State Key Laboratory of Fibrosis Biology, College of Life Science, Henan Normal University, Xinxiang, Henan, P. R. China

* Corresponding author: Bao-Zhong Wang (E-mail: <u>bwang23@gsu.edu</u>) **This PDF file includes:**

Figs. S1 to S7 Tables S1 to S2 Note S1 to S2

Fig. S1. Conservation rate of NP epitopes. (*A*) and (*B*), Homogeneity of amino acid residues in NP₅₅ and NP₁₄₇ epitopes based on NP sequences from 18540 human influenza isolates deposited in Influenza Research Database, IRD website: <u>www.fludb.org</u>).

Fig. S2. Characterization of fabricated nanoparticles. (*A*) and (*B*) Bar chart depicting desolvated nanoparticle (*A*) size and (*B*) yield variation with different materials including peptides containing 23 a.a., NP peptide (NPep), NP protein and IgG. Desolvated nanoparticles were fabricated in 4 volumes of absolute ethanol and in the absence of a crosslinker. (n=3) (*C*) Bar chart depicting the size variation of desolvated NPep- and NP-nanoparticles with increasing amounts of DTSSP. (n=3) (*D*) Western blotting analysis of Pre-wash, Unbound fraction and Eluent samples in pull-down assay. (*E*) and (*F*) Sandwich ELISA of desolvated nanoparticles using capture antibodies (*E*) 14C2 and (*F*) goat antimouse ribonucleoprotein serum. (n=3)

Fig. S3. Lung virus pathology analysis. (A) Determination of mouse lung virus titers at day 5 post a sublethal dose infection with H5N1. (B) Histological pathology analysis. Black arrows in images indicate leukocyte infiltration in lung sections from mice infected with H5N1. (C) Bar chart showing the scores of leukocyte infiltrations degree after infection with H5N1. Data are presented as mean \pm s.d. Statistical significance was analyzed by t-test for (A) and (C). P values shown in bar charts and N.S. indicates no significance between two compared groups. The experiments were repeated twice with similar results.

Fig. S4. Nanoparticle antigenicity and immunogenicity after long-term storage. (A) Sandwich ELISA of freshly fabricated NP-peptide/4M2e layered nanoparticle (NPep/4M2e nano) and those stored at 4 °C and 25 °C for 20, 40 and 60 days using capture antibody 14C2. NP-peptide nanoparticle (NPep nano) was used as negative control. (*B*) HuM2e-specific serum antibody endpoint titers in BALB/c mice that were IM immunized with freshly fabricated or aged NPep/4M2e nano stored at 4 °C (NPep/4M2e nano-4) and 25 °C (NPep/4M2e nano-25) for 60 days. Mock immunization with DPBS as negative control.

Fig. S5. In vitro dendritic cells uptake assay. (A) Fluorescent microscopy imaging of JAWS II dendritic cells with green fluorescent NP-peptide nanoparticle (Nano), green fluorescent soluble NP peptide (Soluble) or DPBS as negative control. NP peptide was fluorescently labelled with Alexa Fluor 488 NHS Ester and then desolvated into nanoparticles. After 3 h incubation, the cells were stained with DAPI (blue). (B) Dendritic cells TNF- α production. TNF- α secretion by JAWS II dendritic cells after 3 h of stimulation.

Fig. S6. Characterization of MN patch delivery. (A) MN dissolution in BALB/c mice skin *ex vivo*. Top, before insertion; bottom, remaining polymer 20 min after insertion in skin. (Bars represent 1 mm) (B) Haemotoxylin and Eosin-staining micrograph of mouse skin histological section after insertion of MN patch *ex vivo*. (Arrows indicate the punctured lesion by MN patch, bars represent 100 μ m)

Fig. S7. Mortality and lung viral titers. Mortality of immunized BALB/c after lethal dose $6 \times mLD_{50}$ infection with (*A*) PR8 and (*B*) Phi. Determination of mouse lung virus titers at day 5 post a sublethal dose $0.5 \times mLD_{50}$ infection with (*C*) PR8 and (*D*) Phi.

Abbreviations	Full names			
ADCC	Antibody dependent cellular cytotoxicity			
APC	Antigen presenting cells			
ASC	Antibody secreting cells			
BAL	Bronchial alveolar lavages			
CTL	Cytotoxic lymphocyte			
DC	Dendritic cells			
IFN	Interferon			
IIV	Inactivated influenza vaccines			
IL	Interleukin			
IM	Intramuscular(ly)			
IN	Intranasal(ly)			
МНС	Major histocompatibility complex			
M2e	Maxtrix protein 2 ectodomain			
MN	Microneedle			
MIV	Monovalent inactivated virus			
NP	Nucleoprotein			
NPep	Nucleoprotein peptide			
OVA	Ovalbumin			
Pep-23	Human M2e peptide with 23 amino acids in length			
RNP	Ribonucleoprotein			

Table S1. Definitions of abbreviations used in article.

Codes	Sequence		Origin
huM2e	SLLTEVETPIRNEWGCRCNDSSD		Human consensus
PR8M2e	SLLTEVETPIRNEWGCRCNGSSD		A/Puerto Rico/8/1934, H1N1
p09M2e	SLLTEVETPTRSEWECRCSDSSD		A/California/7/2009, H1N1
PhiM2e	SLLTEVETPIRNEWGCRCNDSSD		A/Philippines/2/1982, H3N2
rVnM2e	SLLTEVETPIRNEWGCRCNGSSD		A/Vietnam/1203/2004, H5N1
rSHM2e	SLLTEVETPIRNEWGCRCNGSSD		A/Shanghai/2/2013, H7N9
4M2e	SLLTEVETPIRNEWGSRSNDSSD PC Human consensus SLLTEVETPTRNGWESKSSGSSD PC Avian consensus	GGSSGGSS SLLTEVETPTRSEW linker Swine conser GSGSGSGS SLLTEVETPTRNGW linker Domestic fowl co	ESRSSDSSD PGGSSGGSS asus linker VESNSSDSSD onsensus

Table S2. Various M2e sequences. *

* Amino acid residues in blue represent differences from the human viral M2e consensus (huM2e). All cysteine (C) residues in M2e consensus sequences in 4M2e construct were mutated into serine (S). Residues in orange are flexible linkers.

Note S1. Nucleotide sequence of NP epitope peptide.

Note S2. Amino acid sequence of NP epitope peptide. *

MKFLVNVALVFMVVYISYIYADRLIQNSLTIERMVLSGGSSRLIQNSLTIERMVLS GGSSRLIQNSLTIERMVLSGGSSGGTYQRTRALVGGSSTYQRTRALVGGSSTYQR TRALVHHHHHH-

* Amino acid sequence in blue indicates the honeybee melittin signal peptide. Magenta sequence indicates the linkers. Yellow sequence means hexa-histidine tag.